
DINAMICA 1.0:

Multi-Stable Dynamics Analysis

Ilya Potapov

1

Contents

1 Introduction 3
1.1 Interface . 3
1.2 Disclaimer . 4
1.3 Where To Get . 4
1.4 Acknowledgements . 5
1.5 Installation . 5

1.5.1 Prerequisites . 5
1.5.2 Main Steps of Installation Process 5
1.5.3 Important to Know Before Configuring the Package . 6

1.6 Running DINAMICA . 7

2 Input Files 10
2.1 ODE Files . 10

2.1.1 Two Start-off Examples 10
2.1.2 The Syntax in Details 13

3 Methods 13
3.1 Simulation Methods . 13
3.2 Dynamics Analysis Methods 13

3.2.1 The Concept of a Slope 13
3.2.2 1D Dynamical Analysis 15

4 Examples 18

2

1 Introduction

DINAMICA is the tool for the automated analysis of the multi-stable dy-
namics. For this, it uses the differential equation tools supplied with various
stochastic validation algorithms. Consequently, DINAMICA can be used
as a tool for the comparative analysis between the deterministic and the
corresponding stochastic systems.

Simple systems usually do not have very complex dynamics. On the
other hand, as the complexity of the system grows the number of possible
dynamical regimes increase, leading inevitably to the co-existing of some of
the regimes. In rigid terms, for the same parameter set the system demon-
strates several possible regimes and, as usual rule for the deterministic sys-
tems, different initial conditions lead to the different dynamics.

The usual assumption in physics, chemistry and biology is that the whole
system consists of the equal elements of smaller size. Thus, DINAMICA
considers the equation supplied by the user to be divided into sub-systems of
smaller size. In principle, these sub-systems must be of the same dimension
and all equal in other respects. Such a system is called a Symmetrically
Coupled System.

1.1 Interface

DINAMICA has a primitive interface with no graphics carried out by the
program itself. It is easy expandable for using the Gnuplot for visualization
of results. The installation process can be done with or without support of
the Gnuplot utility. The Gnuplot is freely available through the Internet.

DINAMICA also uses the external library (Gnu Scientific Library, GSL)
to perform some basic calculations like integration of the system of differ-
ential equations, performing statistics etc. The library can be easily found
and downloaded from the Web and subsequently installed.

These two are the main dependencies of DINAMICA which require the
user to have them pre-installed. Although the Gnuplot is optional, the GSL
is mandatory to have installed on the user’s computer.

DINAMICA has beed successfully tested on Unix-like OS: Linux, Mac
OS X etc. No testing was performed in the Windows environment, though
the Windows use of the program is NOT prohibited. Any tests for imple-
mentation of the software on the new platforms are much appreciated and
all needed help will be provided by the original author.

The most updated information regarding the interface as well as the
installation and prerequisites instructions can be found in the README file of
DINAMICA package.

3

1.2 Disclaimer

DINAMICS is distributed as is. The author has no responsibility for the per-
formance of the software nor for any possible harm or damage the software
might cause to the platform it is run upon. All the details of the disclaimer
are explained and further clarified in the Gnu General Public License.

DINAMICA is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

DINAMICA is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

The License can be found at http://www.gnu.org/licenses or in COPYING

file of the package. All the source files of DINAMICA have the Disclaimer
in the beginning along with the copyright information and contact details
of the original author(s).

1.3 Where To Get

DINAMICA is a part of the free-software community. The description and
all source files needed for the end-user utilization and the development are
located in the main software forge of the Free Software Foundation — Sa-
vannah (http://savannah.gnu.org). All the latest updates of the program
get uploaded to the Savannah pages dedicated to DINAMICA:

http://savannah.nongnu.org/projects/din

No special registration is needed, the software is available right there. Vari-
ous information about the package and the course of its development can be
found on those pages. For example, the download area contains all public
releases of the software:

http://download.savannah.gnu.org/releases/din/

There is also possibility to become a member of the developers’ team if
someone is interested in introducing the new features to DINAMICA. All
such efforts are appreciated. In this regard, the package file TODO is a good
opportunity to see all the new features and capabilities waiting to be realized.

All the changes and updates are recorded in the ChangeLog and NEWS file
of the package. ChangeLog files are also organized by year, i.e. all updates
introduced in 2012 are in ChangeLog2012. The most recent updates are in
ChangeLog.

4

1.4 Acknowledgements

The author is thankful to all his teachers in the area of dynamical systems
and stohastic processes, whom he met during the fulfillment of the Masters
and Doctoral thesis. Especially, Prof. Evgenii Volkov (Lebedev Physical
Institute, Moscow) and Andre Ribeiro, PhD (Tampere University of Tech-
nology).

The special thanks go to N.Devillard, who has developed the interface
for using the Gnuplot utility from within a C-program
(see http://ndevilla.free.fr/gnuplot/). DINAMICA uses this inter-
face.

1.5 Installation

NOTE: the most recent instructions for the installation process and all
dependent procedures are located in the package README file.

DINAMICA uses AutoConf and AutoMake systems for configuration.
The general information on how to configure the package administrated by
these two systems is located in the INSTALL file of the package.

1.5.1 Prerequisites

1. Unix/Linux OS.

2. gcc compatible C compiler, needed for Dinamica functioning (not only
compilation).

3. GNU Scientific Library (GSL) installed.

4. Gnuplot plotting utility installed (optional, but advisable).

1.5.2 Main Steps of Installation Process

1. Dowload the archive (usually .zip or .tar.gz) and uncompress it.

2. Configure the systemm by typing ./configure. This will check for all
the requirements and complain if any of those is not found. You may
consider CPPFLAGS and LDFLAGS variables, as well as --prefix option
to ./configure, before configuring the system (see below).

3. Type ”make” to compile the libdin.a and the dinamica itself. The
two must appear under the src/ directory in the root, i.e. where you
uncompressed the archive. (It is also important to know why we need
these two files for the software to work.)

4. Type make install to install dinamica executable and libdin.a li-
brary to the usual destinations (/usr/local/bin and /usr/local/lib,

5

respectively). This might require the root password. You may unin-
stall the program later by typing make uninstall to remove those
two files from the system. After the installation one might want to
remove all the files extracted from the archive.

1.5.3 Important to Know Before Configuring the Package

DINAMICA processes the input from the user (equations, parameters, vari-
ables, constants etc.) in the form of the file having .ode extension (ode-file,
for short). The result of the processing is the output .c file with C language
definitions and functions for the user system and the binary configuration
.bcf file. This output .c file is then compiled with the DINAMICA library
(libdin.*) generating the final executable .din. This executable is then in-
voked to read the .bcf file and, finally, the program fires up. Schematically
this process is shown in Fig. 1.

starts

.ode file

User supplied

System in C

(.c file)

Configuration

.bcf file

.din file

Executable

converter

.ode −> .c

DINAMICA

DINAMICA

configuration

creator

libdin.so(.a)

against

C−compiler:

compilation

Program

Figure 1: The general scheme representing the DINAMICA preparation
procedures before it starts.

It is important to understand that the compilation and linking of the
libraries take place during the functioning of DINAMICA. Thus, the com-
piler and the right path for the required libraries are needed to be properly
set when DINAMICA is first compiled. One should take care of this before
the configuration starts.

The way DINAMICA can obtain the full set of the paths is to specify
CPPFLAGS, LDFLAGS and --prefix option, together or one by one when
needed. These three variables are passed to the DINAMICA compilation
command, so they are crucial. The current directory where DINAMICA is
invoked is always checked for the dinamica library (libdin.so or libdin.a).

6

CPPFLAGS. This variable is important for the preprocessor, a program
checking the included, so called header, files. During the configuration pro-
cess the ./configure script checks for several .h files from the GSL and the
standard C libraries whether they are available. Sometimes it fails to find
them in the standard locations. In this case, the CPPFLAGS is needed. The
usage is simple: if one knows that the GSL headers are located, for example,
in /usr/local/include/, e.g. the full path to gsl odeiv2.h file is
/usr/local/include/gsl/gsl odeiv2.h (similarly for all other gsl *.h

files), then one could type at the shell prompt:

CPPFLAGS=/usr/local/include ./configure

This sets the environment variable for the ./configure script. Next, in
DINAMICA this variable will be set after the -I flag of the compiler, i.e.
will also be used as a path to the header files to find (since DINAMICA
uses the same set of header files to compile the user-defined .c file). Note,
that the path to the GSL header files is always gsl/*.h, so omit the gsl/

directory when specifying the CPPFLAGS like in the example provided.

LDFLAGS. This variable shows the path to the GSL library (and possi-
bly the standard C libraries). If the gsl library files are located in /usr/local/lib

then combining with CPPFLAGS one could type

CPPFLAGS=/usr/local/include LDFLAGS=/usr/local/lib ./configure

which should do the trick. Additionally, DINAMICA will compile the out-
put .c file against the libdin.so/libdin.a using this variable or the one
specified by --prefix (see below) to find the libdin.so/libdin.a library.
This value will go to the -L flag of the compiler, which specifies the path to
the libraries to be used in the compilation.

- - prefix. ./configure script accepts the --prefix option, which spec-
ifies the installation directory for make install command. Namely,

./configure --prefix=/usr/local

would install all the files produced by the package to the corresponding
subdirectories of /usr/local. For example, binary files, i.e dinamica, would
go into /usr/local/bin and libraries, i.e. libdin.a, — into /usr/local/lib.
This variable is set after the -L flag to the compiler in DINAMICA.

1.6 Running DINAMICA

The most simple invocation of DINAMICA is to type at the command line:

7

dinamica <your_ode_file>.ode

This will fire up the program, if the configuration and installation processes
went well. <your ode file>.ode is the .ode file containing the system to
be analyzed. This file should be prepared by the user.

The program starts by showing some information about the system it has
read from the .ode file, a little report on the compilation of the transformed
.c file against the DINAMICA library (libdin.so) and some miscellaneous
information. A typical output looks like:

<here is your prompt>$ dinamica bruss2.ode

Starting to check system’s specification:

Rebuilding the function:

f(x,y)=a-(b+1)*x+y*x^2

Rebuilding the function:

g(x,y)=b*x-y*x^2

u1’ = f(u1,v1)

v1’ = g(u1,v1)+dv*(v2-v1)

u2’ = f(u2,v2)

v2’ = g(u2,v2)+dv*(v1-v2)

Starting transfer to ‘bruss2.c’...

Done.

Active parameters: ‘b’, ‘a’, ‘dv’,

Writing ‘bruss2.bcf’...Done.

Preparing for ‘bruss2.c’ compiling...

Compiling with: ‘gcc -Wall bruss2.c

-I/opt/local/include -L/opt/local/lib -L./

-o bruss2.din -ldin -lgsl -lgslcblas -lm ’

ld: warning: directory not found for option ’-L/usr/oma/potapov/lib’

Starting bruss2.din...

./bruss2.din bruss2.bcf

DINAMICA Ver. 0.11 (<dl.sv.nongnu.org/releases/din/>)

Copyright 2008, 2009, 2010, 2011, 2012, 2013 Elias Potapov

Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,

2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team

This software uses the gnuplot_i library written by N.Devillard

(see <http://ndevilla.free.fr/gnuplot/>).

This program comes with ABSOLUTELY NO WARRANTY;

for details type ‘warranty’ or simply ‘w’

This is free software, and you are welcome to redistribute it

8

under certain conditions; see GNU General Public License for details.

Report bugs to <elias.potapov@gmail.com>

Reading ‘bruss2.bcf’...Done.

>

Then the DINAMICA’s own command line (>) is shown up.
DINAMICA is organized in menus, which have a certain hierarchy that

does not go deeper than 2-3 levels starting from the main menu and ending at
submenus. The ubiquitous commands are ls and sh/show (not everywhere).
The former shows the list of possible menu items and the command shortcuts
to access them, while the latter shows the information corresponding to a
certain type of menu.

The menu items are shown such that the shortest command abbrevia-
tion for invocation of this particular menu is surrounded with parentheses.
For example, menu item (N)umerics can be accessed by typing n at the
DINAMICA prompt. The main menu look like:

>ls

MAIN menu:

(R)un*

(R)un (t)ransient*

(R)un (i)nitial*

(C)alculate*/

(F)ile/

(N)umerics/

(P)arameters*

(V)ariables*

P(e)riodics/

(G)raphics/

(I)nitials*

(T)rajectory/

C(o)ntinue/

R(a)ndom/

(Er)rors/

(S)ingularity/

(L)yapunov/

(R)un (l)inear*

Some more examples to clarify the concept, to access File menu one should
type in f at the prompt, to run system for the transient amount of time
type in rt etc.

9

The main menu also has the sign showing the type of the submenu. A
slash ’/’ at the end of menu item tells a user that this is a regular menu,
while an asterisk ’*’ tells about a command to be invoked.

Every command released at the prompt needs an ’Enter’ key hit at the
end to be accepted by the DINAMICA interpreter. One can use several
commands in a row to access more items in the submenus. For example, to
show the numerics information of the systems one could type in n, ’Enter’,
sh which will first bring the user to the Numerics submenu and then in that
particular submenu the show command is invoked. Alternatively, the same
result in a rather faster way can be achieved by typing n sh at the prompt.
This is quite self-explanatory.

>n sh

* Dimension: 4

* Number of systems: 2

* Number of parameters: 3

* Number of user functions: 2

* Number of auxillary entities: 0

Total time: 50

Transient time: 50

Step: 0.02

Writing step: 1

Sampling frequency: 1.00

Method: rkf45

Langevin flag: false

2 Input Files

2.1 ODE Files

This type of files is the main source for DINAMICA. Certainly, men must tell
software what to do, that is why .ode files preparation mostly lies upon the
user’s shoulders. First, we will present some general examples of using .ode

files, which will provide one with a good basis to start his/her own research
almost immediately once the examples are understood. Next, we will try
to draw the detailed explanation on how the .ode files are constructed and
what is the main syntax and usuall pitfalls one might encounter during the
declaration own system.

2.1.1 Two Start-off Examples

Let’s start from the simple example we used before for invocation of DI-
NAMICA:

10

bruss2.ode

two Brusselator coupled by the diffusion equations

The next statement is NOT comment and determines the number of

coupled systems (sub-systems).

system 2

du1/dt=f(u1,v1)

dv1/dt=g(u1,v1)+dv*(v2-v1)

du2/dt=f(u2,v2)

dv2/dt=g(u2,v2)+dv*(v1-v2)

f(x,y)=a-(b+1)*x+y*x^2

g(x,y)=b*x-y*x^2

jac u1=-(b+1)+2*v1*u1-du,u1^2,du,0

jac v1=b-2*v1*u1,-u1^2-dv,0,dv

jac u2=-(b+1)+2*v2*u2+du,u1^2,-du,0

jac v2=b-2*v2*u2,-u1^2-dv,0,dv

par b=2.5,a=1,dv=.57

init u1=10,u2=1,v1=1.5,v2=15

@ total = 50,yax=v1,yax2=v2

done

This file specifies the systems of two diffusively coupled Brusselators. The
system of Ordinary Differential Equations (ODE’s) is written down in a
self-explanatory way. The variables of the system are u1, v1, u2 and v2.
Everthing that is not a variable in the ODE’s is either parameter or func-
tion/auxillary entity. Thus, dv is a parameter, while f and g are the func-
tions whose definition follows the ODE specification. The function decla-
ration introduce new parameters: a and b. The function arguments list is
within the parentheses, hence (x,y) denotes two arguments to the functions.

There is a possibility to include Jacobian into the system declaration.
This is used by several solvers. However, it is not necessary since DINAM-
ICA has a capability of calculating the Jacobian numerically. That is done
automatically, when the program cannot find the user-supplied Jacobian.
The Jacobian is included through jac statement followed by a variable name
whose differential equation is going to be subject for differentiation. All dif-
ferent derivatives are separated by commas ’,’ . Thus, the Jacobian matrix
is formed.

par statement specifies the initial values of the parameters of the system.
If some of the parameters are omitted here, their values equal to zero by
default.

11

init statement does the same job as par, but for the initial values of
the variables. Again, omitted variable values default to zero.

@ sign denotes the line with internal parameters for DINAMICA. In the
above example, total means the total time of integration, yax denotes the
variable to be plotted on the Y-axis, yax2 denotes the second variable to be
plotted along with the first one on the Y-axis.

done statement is not necessary, but shows the hereditary connection
of DINAMICA to the Bard Ermentrout’s XPPAUT software. Actually, the
ODE syntax is mainly like in XPPAUT
(see http://www.math.pitt.edu/~bard/xpp/xpp.html).

As you might have noted the # sign starts the comments except for
the very important DINAMICA directive #system which defines number of
physical sub-systems that the whole system has. In the example above, this
number is 2, meaning that there are 2 Brusselators coupled with each other.

This example must provide a start-off principles of defining the ODE
systems through the .ode file.

The next example include the definition of the discrete stochastic system
whose dynamics is going to be compared against the deterministic system
of ODE’s.

Toggle Switch example

two mutually inhibiting proteins x and y

x’=alpha/(1+y^n)-d*x

y’=alpha/(1+x^n)-d*y

init x=10,y=0

par alpha=1,n=2,d=0.1

g:alpha/(1+x^n);+y

g:alpha/(1+y^n);+x

g:d*x;-x

g:d*y;-y

@method=complex,method2=rkf45,sf=1,total=10000

done

This system has tow ODE’s describing the dynamics of two protein species in
a Genetic Toggle Switch. This systems is characterized with the two stable
states and possibility to switch between them. Here you can find another
type of variables/ODE definition — through x’ notation. This totally equals
the dx/dt notation.

The main difference as compared to the first example in this section is
the ’g:’s statements closer to the end of the file. These statements de-
fine the Gillespie procedure for solving systems possessing the discrete and

12

stochastic dynamics. The syntax goes as follows: g is a keyword, everything
between ’:’ and the following ’;’ is known as the propensity of the chem-
ical reaction and, finally, everything after ’;’ is the update vector, i.e. the
vector (whose elements are separated by commas ’,’) containing the infor-
mation on how the numbers of the species involved in the reaction change
after the reaction takes place. In our example, first reaction produces (+y)
one molecule y, while the third one removes (-x) one x molecule from the
reaction space.

Under the section of internal parameters (after @) you can find method=complex

directive which tells DINAMICA to use both stochastic discrete and normal
ODE integration methods altogether and compare the results. Addition-
ally, sf=1 statement tells DINAMICA to use sampling frequency for the
stochastic simulation equal to 1 (depending on the units used in the system,
it could be seconds, years or ages).

Finally, done finishes the input.

2.1.2 The Syntax in Details

3 Methods

3.1 Simulation Methods

3.2 Dynamics Analysis Methods

For the analysis of the dynamics DINAMICA uses the simulated time series.
At the moment, all methodology described in this section refers only to the
deterministic time series that is obtained from the simulation of a system
described in terms of Ordinary Differential Equations (ODE’s).

First, DINAMICA analyzes the dynamics of 1D system: either the whole
system, if the system’s physical dimension is equal to 1, or every sub-system
of the larger system (number of physical systems, or sub-systems, is deter-
mined by the #system directive in the .ode file). Next, the whole system
analysis is fulfilled producing the overall dynamics report.

The whole analysis is based upon the concept of slope. The next section
explains in detail the concept. Then, we present the slope algorithm for 1D
systems with the dynamical regimes the algorithm is capable to determine.

3.2.1 The Concept of a Slope

Once the deterministic time series is simulated it can be analyzed through
the DINAMICA TRAJECTORY-system (or T-system). The elementary unit
the whole analysis relies upon is slope . The slope is a part of the calculated
trajectory (or the time series) from the beginning of section, where the
trajectory’s points start to decline over time, up to the beginning of section,

13

where the points start to ascend over time, or vice versa. The concept is
illustrated in Fig. 2.

Time0
t

1
t

2

P
0

P
1

P
2

t

Figure 2: The graphical representation of the slope concept

The set of calculated points belonging to the trajectory has turning
points at which the trajectory changes its direction pointing either upwards
or downwards. Strictly speaking in terms of continuous trajectory and in-
finitesimal time step, at those points the corresponding derivative becomes
equal zero.

In Fig. 2 these points are depicted in red and blue (P0, P1 and P2)
demarcating two slopes: the first contains all the points from point P0 up
to P1 inclusively and the second — from P1 to P2.

Practically speaking, all kinds of trajectories contain the slopes, since
in the most cases the calculated points have at least small discrepancies
in their values caused by the computer representation of the real numbers.
Nevertheless, in those really rare cases, when two adjacent points have values
that are the same (up to the all representation bits of the numbers), the T-
system determines the plateau, and the beginning and/or end of the slope
is calculated as the average point between the plateau points (in case of
non-integral value the ceiling operation result is taken).

Thus, one can distinguish ascending and descending slopes. In Fig. 2 the
first slope is descending (from P0 to P1), while the second one (from P1 to P2)
is ascending. For the obvious reasons, the ascending and descending slopes
alternate over time. Additionally, the end of each slope is the beginning of
the next one. For this reason, for example, the T-system of DINAMICA
stores only the time that the slope starts at. Using the example depicted in
Fig. 2, only t0 and t1 are stored for the two slopes shown.

There are three entities that describe a slope in DINAMICA. The slope

14

amplitude is the difference between the variable values at the beginning and
at the end of the slope. The slope base is the lowest points of the slope. The
beginning of the slope in time is the third entity.

Continuing with the example of Fig. 2, the slope appearing earlier in
time has amplitude equal to (P0 − P1), base — P1 and the start time — t0,
while the later appearing slope has amplitude equal to (P2−P1), base — P1

and the start time — t1. As a result, two adjacent slopes (descending and
then ascending) have the common base.

3.2.2 1D Dynamical Analysis

DINAMICA processes the simulated time series of a single variable within
the first physical dimension of the system. All dynamics detection is based
on the slope analysis of the simulated trajectory. The process could be
virtually divided into the preparation stage and actual slope algorithm.

The preparation process starts with the calculation of the peaks and
troughs of the simulated trajectory (in Fig. 2 points P0 and P2 are peaks
and point P1 is a trough). Then, based on the peak and trough information
the slopes of the trajectory are calculated. Next, the slopes are checked
to represent real slopes of the trajectory and not small “fluctuations” of it.
These small fluctuations appear in systems with very different timescales,
e.g. when there are very slow and very fast equations in the system. The
“fluctuations” appear due to this difference of the time scales and not due
to any stochastic forces applied to the system. Perhaps, a suitable integra-
tion algorithm accounting for the stiffnes of the system might resolve this
problem. In any case, this “sanity” checking of the slopes does not hamper
the whole analysis and, hence, is included in the preliminary preparation
stage of the process.

Before moving to the section explaining the slope algorithm we need to
take a look at the dynamical regimes and the definitions DINAMICA utilizes
in the dynamics processing.

Dynamical Regimes of 1D Systems. 1D (here we refer to the physical
dimension) systems can in principle have two types of dynamics: stationary
and non-stationary behavior. The former refers to so called steady state of
a dynamical system, at which the system eventually ends up at a stationary
point. The latter, oppositely, connotes a behavior that does not rest at any
particular point. The non-stationary behavior contains many sub-classes
of behaviors, ranging from pure oscillatory dynamics with a distinguished
period and amplitude to chaos with no certainty in the period and amplitude.

NOTE #1: the DINAMICA slope algorithm determines the genuine
dynamics of a system in a sense of the realized (really appearing) behavior.
For example, there is no way in the slope algorithm to distinguish between
oscillations induced by the harmonic oscillator and the limit cycle oscillations

15

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

sin(x)

sin(x)+sin(x/2)

Figure 3: Sinusoidal oscillations as an example of period-1 (blue) and period-
2 (red) oscillatory dynamics.

(the first one is the linear system possessing the “center” stationary point
with pure imaginary Lyapunov numbers, while the second is the non-linear
system containing the Hopf bifurcation).

NOTE #2: DINAMICA is capable of determining the chaotic behav-
ior — a dynamical regime in which the deterministic laws of motion produce
unpredictable behavior. But this capability of the program goes beyond the
slope algorithm, which most likely would produce the “unknown” or period-
n oscillatory regime (see below), where n is very large, in the case of chaos.

Thus, the non-stationary dynamical behavior is either oscillations with
some predictable periodicity or chaos. The oscillatory regime can be char-
acterized with its amplitude and period. While the amplitude value is not
qualitatively useful, the period might be composed of several sub-periods,
denoting, if they are present, the additional frequency of oscillations. This
takes place, for instance, in case of the torus attractor.

Here, we define period -n oscillations referring to the oscillatory trajectory
with every oscillation being of the same amplitude and the same level as
those of the n-th oscillation prior or next to the given one. For example,
Fig. 3 shows two sinusoidal oscillation trends. The first one is described by
the expression sin(x) and the second one — by sin(x)+sin(x/2). The former
has one frequency of oscillations and the latter one has a period composed
of two sub-periods. The sin(x) oscillatory regime is period-1 oscillations,
the sin(x) + sin(x/2) oscillatory regime is period-2 oscillations.

The summary of all dynamical regimes detectable within the frame of
the slope alglorithm goes in Tabl. 1. Here we also present the numerical
codes for each possible regimes: 0 means stationary dynamics, 1 . . . n means

16

period-1. . .period-n oscillatory regime and −1 stands for the unknown or
undetermined regime.

Regime Name(numerical code)

Stationary state SS(0)

Period-n oscillations OS(n)

Unknown/undetermined –(−1)

Table 1: 1D dynamical regimes detected by the slope algorithm.

The slope algorithm. Note that the dynamics of a system cannot be
stationary and non-stationary at the same time. Thus, these two pathways
of analysis are separated from each other in the slope algorithm (SA).

The stationary dynamics can be easily detected when the system is
already at the rest state, meaning it does not deviated from the state signif-
icantly. This can be checked by comparing the very last slope’s amplitude
to the system-wide absolute error level (which is defined by the user). If the
amplitude is so small (less than the error level), then the decision is made
right away — SS(0) (see Tabl. 1).

The more complex situation of the stationary dynamics detection takes
place, when the algorithm receives the time series where the system does not
appear to be in its final resting state. But, since the system has it, it must
converge to it. The convergence is manifested in the consistent decrease in
the slope amplitudes when moving from the first slopes to the last ones. So
the slopes successively demonstrate a decrease in their amplitudes as time
goes on (or any other independent variable).

An example of the stationary dynamics is shown in Fig. 4, where we have
taken the Brusselator system1 with parameter set: A = 1 and B = 1.9.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 10 20 30 40 50 60 70 80 90 100

Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

S
lo

p
e
 A

m
p
lit

u
d
e

s

Time

Figure 4: The stationary dynamics of one of the variables of the Brusse-
lator (left) and the corresponding slope amplitudes (right) over time. The
parameter set for the Brusselator equations: A = 1 and B = 1.9

1http://en.wikipedia.org/wiki/Brusselator

17

4 Examples

18

