GNU Libidn

Internationalized string processing for the GNU system
for version 1.28, 10 July 2013

Simon Josefsson

This manual is last updated 10 July 2013 for version 1.28 of GNU Libidn.
Copyright (©) 2002-2013 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction.................., 1
1.1 Getting Started 1
1.2 Featureso 2
1.3 Library OVerviewouiruieiiit i 2
1.4 Supported Platforms.......... i 3
1.5 Getting help ... 5
1.6 Commercial Supporto 5
1.7 Downloading and Installing........... o i i, 6

1.7.1 Installing under Windowso .. 7
1.8 Bug Reports 7
1.9 Contributing 8

2 Preparation 9
2.1 Header.ot 9
2.2 Imitializationo 10
2.3 Version Check.o e 10
2.4 Building the sourceo i 11
2.5 Autoconf testS 11
2.6 Memory handling under Windows 12
2.7 Header file idn-free.h ...ttt 12
2.8 Memory de-allocation function, 12

3 Utility Functions 14
3.1 Header file stringprep.h... ...t 14
3.2 Unicode Encoding Transformation............................. 14
3.3 Unicode Normalization........... ..., 15
3.4 Character Set CONVErSionoouttteiite e 16

4 Stringprep Functions.......................... 17
4.1 Header file stringprep.h... ...t 17
4.2 Defining A Stringprep Profile.......... 17
4.3 Control Flags 17
4.4 Core Functions.o 17
4.5 Error Handling......... ... i 19
4.6 Stringprep Profile Macros ... 20

5 Punycode Functions........................... 22
5.1 Header file punycode.httt 22
5.2 Unicode Code Point Data Typecooiiiiiiii i, 22
5.3 Core FUnctions.ouuiiiii i 22
5.4 Error Handling. ... i 24

6 IDNA Functions.............. 25
6.1 Header file idna.hot 25
6.2 Control Flags 25
6.3 Prefix String 25
6.4 Core FUNCLIONS . . oo v ettt e 25
6.5 Simplified ToASCII Interface..............oooiiiiiiiiiiii.. 27
6.6 Simplified ToUnicode Interface...................... 28
6.7 Error Handling.......... ... i 29

7 TLD Functions i ... 31
7.1 Header file t1d.ht 31
7.2 Core FUNCLIONS . . . oo ot 31
7.3 Utility Functions. i 32
7.4 High-Level Wrapper Functionsoo... 33
7.5 FError Handling.............. oo 35

8 PR29 Functions............. 36
8.1 Header file pr29.h 36
8.2 Core FUNCHIONS . . o oottt 36
8.3 Utility Functions........ ..o 37
8.4 Error Handling......... ... i 37

9 Examples............ ... 38
9.1 Example 1. ... 38
9.2 Example 2. ... 40
9.3 Example 3. ... 45
9.4 Example 4.o 46
9.5 Example 5. ... 48

10 Invokingidn.................................. 52
101 NaIC . oo 52
10.2 Descriptiont 52
10.3 OPtIONS . ..ttt 52
10.4 Environment Variables.............. i 53
105 Examples. 53
10.6 Troubleshooting.......... ..o 54

11 Emacs API 56
11.1 Punycode Emacs API...... i 56
11.2 IDNA Emacs APL. ... 56

ii

12 Java APIL..... ... L. 58
12,1 OVeIVIEW . ottt e 58
12.2 Miscellaneous Programs............ ..o, 58

12.2.1 GenerateRFC3454. 58
12.2.2 GenerateNEFKC 58
12.2.3 TestIDNA ..o 59
12.2.4 TestNEFKC . ..o e 59
12.3 Possible Problems. ... 59
12.4 A Note on Java and Unicode......... ... i, 59

13 C# AP 61

14 Acknowledgements........................... 62

15 History........ ... 63

Appendix A PR29 discussion 64

Appendix B On Label Separators............. 67
B.1 Recommended Workaround, 67

Appendix C Copying Information............. 68
C.1 GNU Free Documentation License, 68

Function and Variable Index 76

Concept Index............. 77

iii

Chapter 1: Introduction 1

1 Introduction

GNU Libidn is a fully documented implementation of the Stringprep, Punycode and IDNA
specifications. Libidn’s purpose is to encode and decode internationalized domain name
strings. There are native C, C# and Java libraries.

The C library contains a generic Stringprep implementation. Profiles for Nameprep,
iSCSI, SASL, XMPP and Kerberos V5 are included. Punycode and ASCII Compatible
Encoding (ACE) via IDNA are supported. A mechanism to define Top-Level Domain
(TLD) specific validation tables, and to compare strings against those tables, is included.
Default tables for some TLDs are also included.

The Stringprep API consists of two main functions, one for converting data from the
system’s native representation into UTF-8, and one function to perform the Stringprep
processing. Adding a new Stringprep profile for your application within the API is straight-
forward. The Punycode API consists of one encoding function and one decoding function.
The IDNA API consists of the ToASCII and ToUnicode functions, as well as an high-level
interface for converting entire domain names to and from the ACE encoded form. The TLD
API consists of one set of functions to extract the TLD name from a domain string, one
set of functions to locate the proper TLD table to use based on the TLD name, and core
functions to validate a string against a TLD table, and some utility wrappers to perform
all the steps in one call.

The library is used by, e.g., GNU SASL and Shishi to process user names and passwords.
Libidn can be built into GNU Libc to enable a new system-wide getaddrinfo flag for IDN
processing.

Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms
(including Solaris, IRIX, AIX, and Tru64) and Windows. The library is written in C and
(parts of) the API is also accessible from C++, Emacs Lisp, Python and Java. A native
Java and C# port is included.

Also included is a command line tool, several self tests, code examples, and more.

1.1 Getting Started

This manual documents the library programming interface. All functions and data types
provided by the library are explained. Included are also examples, and documentation for
the command line tool idn that provide a quick interface to the library. The Emacs Lisp
bindings for the library is also discussed.

The reader is assumed to possess basic familiarity with internationalization concepts and
network programming in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual (see Chapter 9 [Examples|, page 38), and then only read up those parts of the
interface which are unclear.

Chapter 1: Introduction 2

1.2 Features

This library might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of a free software
license.

It’s thread-safe
No global state is kept in the library. All functions are re-entrant.

It’s portable
The code is intended to be written in pure ANSI C89. It has been tested on
many Unix like operating systems, and Windows.

It’s modularized
The library is composed of several modules, and the only interaction between
modules is through each modules’ public APIL. If you only need one piece of
functionality, it is possible to take the files you need and incorporate them into
your own project.

It’s not bloated
The design of the library is based on the smallest API necessary to implement
the basic functionality. It has been carefully extended with a small number of
high-level wrappers to make it comfortable to use the library. However, it does
not implement additional functionality just for the sake of completeness.

It’s documented
Sadly, not all software comes with documentation these days. This one does.

1.3 Library Overview

The following illustration show the components that make up Libidn, and how your applica-
tion relates to the library. In the illustration, various components are shown as boxes. You
see the generic StringPrep component, the various StringPrep profiles including Nameprep,
the Punycode component, the IDNA component, and the TLD component. The arrows
indicate aggregation, e.g., IDNA uses Punycode and Nameprep, and in turn Nameprep

Chapter 1: Introduction 3

uses the generic StringPrep interface. The interfaces to all components are available for
applications, no component within the library is hidden from the application.

t StringPrep ’ ‘ Punycode ’ ‘ TLD ’

‘XMPP’ ‘ SASL’ ‘ iSCSI ’ ‘ Nameprep ’

IDNA

GNU IDN Library

1.4 Supported Platforms

Libidn has at some point in time been tested on the following platforms. Build reports
for each platforms and Libidn version is available at http://autobuild. josefsson.org/
libidn/.

1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, 1686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

http://autobuild.josefsson.org/libidn/
http://autobuild.josefsson.org/libidn/

Chapter 1: Introduction 4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.
SuSE Linux

GCC 3.2.2 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

SuSE Enterprise Server 9 on IBM OpenPower 720
GCC 3.3.3 and GNU Make. powerpc64-unknown-linux-gnu.
RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-1linux-gnu.

RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. 1686-pc-1linux-gnu.

Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. 1i686-pc-linux-gnu.

Mandrake Linux 9.0

GCC 3.2 and GNU Make. 1686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.
Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin.

HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.7

GCC 3.0.4 and GNU Make. sparc-sun-solaris2.7.

SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris?2.8.
SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.

Chapter 1: Introduction 5

20.

21.

22.

23.

24.

25.

26.

27.

28.

NetBSD 1.6

GCC 295.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelfl.6.

OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

FreeBSD 4.7 and 4.8

GCC 2.954 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, i386—unknown-freebsd4.8.

MacOS X 10.2 Server Edition

GCC 3.1 and GNU Make. powerpc-apple-darwiné.5.
MacOS X 10.4 “Tiger” with Xcode 2.0

GCC 4.0 and GNU Make. powerpc-apple-darwin8.O.
Cross compiled to uClinux/uClibc on Motorola Coldfire
GCC 3.4 and GNU Make m68k-uclinux-elf.

Cross compiled to ARM using Glibc

GCC 2.95 and GNU Make arm-1linux.

Cross compiled to Mingw32.

GCC 3.4.4 and GNU Make i586-mingw32msvc.

0S/2

GCC.

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

1.5 Getting help

A mailing list where users of Libidn may help each other exists, and you can reach it by
sending e-mail to help-1ibidn@gnu.org. Archives of the mailing list discussions, and an
interface to manage subscriptions, is available through the World Wide Web at http://
lists.gnu.org/mailman/listinfo/help-libidn.

1.6 Commercial Support

Commercial support is available for users of GNU Libidn. The kind of support that can be
purchased may include:

Implement new features. Such as country code specific profiling to support a restricted
subset of Unicode.

Port Libidn to new platforms. This could include porting Libidn to an embedded
platforms that may need memory or size optimization.

Integrating IDN support in your existing project.
System design of components related to IDN.

If you are interested, please write to:

mailto:help-libidn@gnu.org
http://lists.gnu.org/mailman/listinfo/help-libidn
http://lists.gnu.org/mailman/listinfo/help-libidn

Chapter 1: Introduction 6

Simon Josefsson Datakonsult AB
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GNU Libidn and would like to be mentioned
here, contact the author (see Section 1.8 [Bug Reports|, page 7).

1.7 Downloading and Installing

The package can be downloaded from several places, including;:
ftp://alpha.gnu.org/pub/gnu/libidn/
The latest version is stored in a file, e.g., ‘1libidn-1.28.tar.gz’ where the ‘1.28’ value
is the highest version number in the directory.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://alpha.gnu.org/pub/gnu/libidn/1ibidn-1.28.tar.gz
$ tar xfz libidn-1.28.tar.gz

$ cd libidn-1.28/

$./configure

$ make
$ make install

After that Libidn should be properly installed and ready for use.

A few configure options may be relevant, summarized in the table.

--enable-java
Build the Java port into a *.JAR file. See Chapter 12 [Java API], page 58, for
more information.

-—-disable-tld
Disable the TLD module. This would typically only be useful if you are building
on a memory restricted platforms. See Chapter 7 [TLD Functions|, page 31,
for more information.

--enable-csharp[=IMPL]
Build the C# port into a *.DLL file. See Chapter 13 [C# API], page 61, for
more information. Here, IMPL is pnet or mono, indicating whether the PNET
cscc compiler or the Mono mcs compiler should be used, respectively.

--disable-valgrind-tests
Disable running the self-checks under Valgrind (http://valgrind.org/). Nor-
mally Valgrind does not cause problems and can detect some severe memory

ftp://alpha.gnu.org/pub/gnu/libidn/
http://valgrind.org/

Chapter 1: Introduction 7

errors. If you are getting errors from Valgrind that are caused by the compiler
or libe (possibly as a result of special optimization flags), you may use this
option to disable the use of Valgrind.

For the complete list, refer to the output from configure --help.

1.7.1 Installing under Windows

There are two ways to build Libidn on Windows: via MinGW or via Visual Studio.

With MinGW, you can build a Libidn DLL and use it from other applications. After
installing MinGW (http://mingw.org/) follow the generic installation instructions (see
Section 1.7 [Downloading and Installing|, page 6). The DLL is installed by default.

For information on how to use the DLL in other applications, see: http://www.mingw.
org/mingwfaq.shtml#faq-msvedll.

You can build Libidn as a native Visual Studio C++ project. This allows you to build
the code for other platforms that VS supports, such as Windows Mobile. You need Visual
Studio 2005 or later.

First download and unpack the archive as described in the generic installation instruc-
tions (see Section 1.7 [Downloading and Installing], page 6). Don’t run ./configure. In-
stead, start Visual Studio and open the project file windows/1libidn.sln inside the Libidn
directory. You should be able to build the project using Build Project.

Output libraries will be written into the windows/1ib (or windows/1lib/debug for Debug
versions) folder.

When working with Windows you may want to look into the special memory handling
functions that may be needed (see Section 2.6 [Memory handling under Windows|, page 12).

1.8 Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.

e Please make sure that the bug is really in Libidn, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-1ibidn@gnu.org’

http://mingw.org/
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll

Chapter 1: Introduction 8

1.9 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.8 [Bug
Reports|, page 7). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
e Coding Style. Follow the GNU Standards document (see Section “top” in standards).

If you normally code using another coding standard, there is no problem, but you should
use ‘indent’ to reformat the code (see Section “top” in indent) before submitting your
work.

e Use the unified diff format ‘diff -u’.

e Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables and the like.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into GTK-DOC web pages. Don’t forget to update the Texinfo
manual as well.

e Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: Preparation 9

2 Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to
look at the examples at the end of this manual (see Chapter 9 [Examples|, page 38).

2.1 Header

The library contains a few independent parts, and each part export the interfaces (data
types and functions) in a header file. You must include the appropriate header files in all
programs using the library, either directly or through some other header file, like this:

#include <stringprep.h>
The header files and the functions they define are categorized as follows:

stringprep.h

The low-level stringprep API entry point. For IDN applications, this is usually
invoked via IDNA. Some applications, specifically non-IDN ones, may want to
prepare strings directly though, and should include this header file.

The name space of the stringprep part of Libidn is stringprep* for function
names, Stringprep* for data types and STRINGPREP_* for other symbols. In
addition, _stringprepx* is reserved for internal use and should never be used
by applications.

punycode.h
The entry point to Punycode encoding and decoding functions. Normally puny-
code is used via the idna.h interface, but some application may want to perform
raw punycode operations.
The name space of the punycode part of Libidn is punycode_x for function
names, Punycodex for data types and PUNYCODE_* for other symbols. In ad-
dition, _punycodex is reserved for internal use and should never be used by

applications.

idna.h
The entry point to the IDNA functions. This is the normal entry point for
applications that need IDN functionality.
The name space of the IDNA part of Libidn is idna_x* for function names,
Idnax* for data types and IDNA_* for other symbols. In addition, _idna* is
reserved for internal use and should never be used by applications.

tld.h

The entry point to the TLD functions. Normal applications are not expected
to need this functionality, but it is present for applications that are used by
TLDs to validate customer input.

The name space of the TLD part of Libidn is t1d_x* for function names, T1d_x*
for data types and TLD_* for other symbols. In addition, _t1d* is reserved for
internal use and should never be used by applications.

Chapter 2: Preparation 10

pr29.h

The entry point to the PR29 functions. These functions are used to detect
“problem sequences” (see Chapter 8 [PR29 Functions|, page 36), mostly for use
in security critical applications.

The name space of the PR29 part of Libidn is pr29_x for function names, Pr29_
* for data types and PR29_* for other symbols. In addition, _pr29%* is reserved
for internal use and should never be used by applications.

idn-free.h

The entry point to the Windows memory de-allocation function (see Section 2.6
[Memory handling under Windows|, page 12). It contains only one function
idn_free.

All header files defined and use the symbol IDNAPI to decorate the API functions.

2.2 Initialization

Libidn is stateless and does not need any initialization.

2.3 Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

stringprep_check_version

const char * stringprep_check_version (const char * [Function]
req_version)
req-version: Required version number, or NULL.

Check that the version of the library is at minimum the requested one and return the
version string; return NULL if the condition is not satisfied. If a NULL is passed to
this function, no check is done, but the version string is simply returned.

See STRINGPREP_VERSION for a suitable req_version string.

Return value: Version string of run-time library, or NULL if the run-time library does
not meet the required version number.

The normal way to use the function is to put something similar to the following first in
your main:

if (!stringprep_check_version (STRINGPREP_VERSION))
{
printf ("stringprep_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit (EXIT_FAILURE) ;
}

Chapter 2: Preparation 11

2.4 Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the -I option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libidn’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the --cflags option to pkg-config
libidn. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config libidn --cflags®
Adding the output of ‘pkg-config libidn --cflags’ to the compilers command line
will ensure that the compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --1ibs to pkg-config
libidn can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libidn’ library. The example shows how to link foo.o
with the ‘libidn’ library to a program foo.

gcc —o foo foo.o ‘pkg-config libidn --libs‘
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc —o foo foo.c ‘pkg-config libidn --cflags --1ibs®

2.5 Autoconf tests

If your project uses Autoconf (see Section “top” in autoconf) to check for installed libraries,
you might find the following snippet illustrative. It add a new configure parameter —-
with-1ibidn, and check for idna.h and ‘-1idn’ (possibly below the directory specified as
the optional argument to —-with-1ibidn), and define the CPP symbol LIBIDN if the library
is found. The default behaviour is to search for the library and enable the functionality
(that is, define the symbol) when the library is found, but if you wish to make the default
behaviour of your package be that Libidn is not used (even if it is installed on the system),
change ‘libidn=yes’ to ‘libidn=no’ on the third line.
AC_ARG_WITH(1libidn, AC_HELP_STRING([--with-libidn=[DIR]],
[Support IDN (needs GNU Libidn)]),
libidn=$withval, libidn=yes)
if test "$1libidn" != "no"; then
if test "$libidn" != "yes"; then
LDFLAGS="${LDFLAGS} -L$libidn/lib"
CPPFLAGS="${CPPFLAGS} -I$libidn/include"
fi
AC_CHECK_HEADER (idna.h,
AC_CHECK_LIB(idn, stringprep_check_version,
[libidn=yes LIBS="${LIBS} -lidn"], libidn=no),

Chapter 2: Preparation 12

libidn=no)
fi
if test "$libidn" != "no" ; then
AC_DEFINE(LIBIDN, 1, [Define to 1 if you want IDN support.])
else
AC_MSG_WARN([Libidn not found])
fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT($1ibidn)

If you require that your users have installed pkg-config (which I cannot recommend
generally), the above can be done more easily as follows.

AC_ARG_WITH(libidn, AC_HELP_STRING([--with-1libidn=[DIR]],
[Support IDN (needs GNU Libidn)]),
libidn=$withval, libidn=yes)

if test "$libidn" !'= "no" ; then
PKG_CHECK_MODULES(LIBIDN, libidn >= 0.0.0, [libidn=yes], [libidn=no])
if test "$libidn" != "yes" ; then
libidn=no
AC_MSG_WARN([Libidn not found])
else
libidn=yes
AC_DEFINE(LIBIDN, 1, [Define to 1 if you want Libidn.])
fi
fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT($1libidn)

2.6 Memory handling under Windows

Several functions in the library allocates memory. The memory is expected to be de-
allocated using the free function. Under Windows, it is sometimes necessary to de-allocate
memory in the same module that allocated a memory region. The reason is that different
modules use separate heap memory regions. To solve this problem we provide a function to
de-allocate memory inside the library.

Note that we do not recommend using this interface generally if you do not care about
Windows portability.

2.7 Header file idn-free.h

To use the function explained in this chapter, you need to include the file idn-free.h using

#include <idn-free.h>

2.8 Memory de-allocation function

Chapter 2: Preparation 13

idn_free

void idn_free (void * ptr) [Function]
ptr: memory region to deallocate, or NULL.

Deallocates memory region by calling free(). If ptr is NULL no operation is per-
formed.

Normally applications de-allocate strings allocated by libidn by calling free() di-
rectly. Under Windows, different parts of the same application may use different
heap memory, and then it is important to deallocate memory allocated within the
same module that allocated it. This function makes that possible.

Chapter 3: Utility Functions 14

3 Utility Functions

The rest of this library makes extensive use of Unicode characters. In order to interface
this library with the outside world, your application may need to make various Unicode
transformations.

3.1 Header file stringprep.h
To use the functions explained in this chapter, you need to include the file stringprep.h
using:

#include <stringprep.h>
3.2 Unicode Encoding Transformation

stringprep_unichar_to_utf8

int stringprep_unichar_to_utf8 (uint32-t c, char * outbuf) [Function]
c: a ISO10646 character code

outbuf: output buffer, must have at least 6 bytes of space. If NULL, the length will
be computed and returned and nothing will be written to outbuf.

Converts a single character to UTF-8.

Return value: number of bytes written.
stringprep_utf8_to_unichar

uint32_t stringprep_utf8_to_unichar (const char * p) [Function]
p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode character. If p does not
point to a valid UTF-8 encoded character, results are undefined.

Return value: the resulting character.
stringprep_ucs4_to_utf8

char * stringprep_ucs4_to_utf8 (const uint32_t * str, ssize_t len, [Function]
size_t * items_read, size_t * items_written)
str: a UCS-4 encoded string

len: the maximum length of str to use. If len < 0, then the string is terminated with
a 0 character.

items_read: location to store number of characters read read, or NULL.

items_written: location to store number of bytes written or NULL. The value here
stored does not include the trailing 0 byte.

Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The
result will be terminated with a 0 byte.

Return value: a pointer to a newly allocated UTF-8 string. This value must be
deallocated by the caller. If an error occurs, NULL will be returned.

Chapter 3: Utility Functions 15

stringprep_utf8_to_ucs4

uint32_t * stringprep_utf8_to_ucs4 (const char * str, ssize-t len, [Function]
size_t * items_written)
str: a UTF-8 encoded string

len: the maximum length of str to use. If 1len < 0, then the string is nul-terminated.
items_written: location to store the number of characters in the result, or NULL.

Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4, assum-
ing valid UTF-8 input. This function does no error checking on the input.

Return value: a pointer to a newly allocated UCS-4 string. This value must be
deallocated by the caller.

3.3 Unicode Normalization
stringprep_ucs4_nfkc_normalize

uint32_t * stringprep_ucs4_nfkc_normalize (const uint32_t * [Function]
str, ssize_t len)
str: a Unicode string.

len: length of str array, or -1 if str is nul-terminated.

Converts a UCS4 string into canonical form, see stringprep_utf8_nfkc_
normalize () for more information.

Return value: a newly allocated Unicode string, that is the NFKC normalized form
of str.

stringprep_utf8_nfkc_normalize

char * stringprep_utf8_nfkc_normalize (const char * str, ssize_t [Function]
len)
str: a UTF-8 encoded string.

len: length of str, in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

Return value: a newly allocated string, that is the NFKC normalized form of str.

Chapter 3: Utility Functions 16

3.4 Character Set Conversion

stringprep_locale_charset

const char * stringprep_locale_charset (void) [Function]
Find out current locale charset. The function respect the CHARSET environment
variable, but typically uses nl_langinfo(CODESET) when it is supported. It fall back
on "ASCII" if CHARSET isn’t set and nl_langinfo isn’t supported or return anything.

Note that this function return the application’s locale’s preferred charset (or thread’s
locale’s preffered charset, if your system support thread-specific locales). It does not
return what the system may be using. Thus, if you receive data from external sources
you cannot in general use this function to guess what charset it is encoded in. Use
stringprep_convert from the external representation into the charset returned by this
function, to have data in the locale encoding.

Return value: Return the character set used by the current locale. It will never return
NULL, but use "ASCII" as a fallback.

stringprep_convert

char * stringprep_convert (const char * str, const char * [Function]
to_codeset, const char * from_codeset)
str: input zero-terminated string.

to_codeset: name of destination character set.
from_codeset: name of origin character set, as used by str.

Convert the string from one character set to another using the system’s iconv()
function.

Return value: Returns newly allocated zero-terminated string which is str transcoded
into to_codeset.

stringprep_locale_to_utf8

char * stringprep_locale_to_utf8 (const char * str) [Function]
str: input zero terminated string.

Convert string encoded in the locale’s character set into UTF-8 by using stringprep_
convert ().

Return value: Returns newly allocated zero-terminated string which is str transcoded
into UTF-8.

stringprep_utf8_to_locale

char * stringprep_utf8_to_locale (const char * str) [Function]
str: input zero terminated string.

Convert string encoded in UTF-8 into the locale’s character set by using stringprep_
convert ().

Return value: Returns newly allocated zero-terminated string which is str transcoded
into the locale’s character set.

Chapter 4: Stringprep Functions 17

4 Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase the
likelihood that string input and string comparison work in ways that make sense for typical
users throughout the world. The stringprep protocol is useful for protocol identifier values,
company and personal names, internationalized domain names, and other text strings.

4.1 Header file stringprep.h
To use the functions explained in this chapter, you need to include the file stringprep.h
using:

#include <stringprep.h>

4.2 Defining A Stringprep Profile

Further types and structures are defined for applications that want to specify their own
stringprep profile. As these are fairly obscure, and by necessity tied to the implementa-
tion, we do not document them here. Look into the stringprep.h header file, and the
profiles.c source code for the details.

4.3 Control Flags

Stringprep_profile_flags STRINGPREP_NO_NFKC [Stringprep flags]
Disable the NFKC normalization, as well as selecting the non-NFKC case folding
tables. Usually the profile specifies BIDI and NFKC settings, and applications should
not override it unless in special situations.

Stringprep_profile_flags STRINGPREP_NO_BIDI [Stringprep flags]
Disable the BIDI step. Usually the profile specifies BIDI and NFKC settings, and
applications should not override it unless in special situations.

Stringprep_profile_flags STRINGPREP_NO_UNASSIGNED [Stringprep flags]
Make the library return with an error if string contains unassigned characters accord-
ing to profile.

4.4 Core Functions

stringprep_4i

int stringprep_4i (uint32_t * ucs4, size_t * len, size_t maxucs4len, [Function]
Stringprep_profile_flags flags, const Stringprep_profile * profile)
ucs4: input/output array with string to prepare.

len: on input, length of input array with Unicode code points, on exit, length of
output array with Unicode code points.

maxucs4len: maximum length of input/output array.
flags: a Stringprep_profile_flags value, or 0.

profile: pointer to Stringprep_profile to use.

Chapter 4: Stringprep Functions 18

Prepare the input UCS-4 string according to the stringprep profile, and write back
the result to the input string.

The input is not required to be zero terminated (ucs4[len] = 0). The output will
not be zero terminated unless ucs4[len| = 0. Instead, see stringprep_4zi() if your
input is zero terminated or if you want the output to be.

Since the stringprep operation can expand the string, maxucs4len indicate how large
the buffer holding the string is. This function will not read or write to code points
outside that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an Stringprep_rc error code.
stringprep_4zi

int stringprep_4zi (uint32-t * ucs4, size_t maxucs4len, [Function]
Stringprep_profile_flags flags, const Stringprep_profile * profile)
ucs4: input/output array with zero terminated string to prepare.

maxucs4len: maximum length of input/output array.
flags: a Stringprep_profile_flags value, or 0.
profile: pointer to Stringprep_profile to use.

Prepare the input zero terminated UCS-4 string according to the stringprep profile,
and write back the result to the input string.

Since the stringprep operation can expand the string, maxucs4len indicate how large
the buffer holding the string is. This function will not read or write to code points
outside that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an Stringprep_rc error code.
stringprep

int stringprep (char * in, size_t maxlen, Stringprep_profile_flags [Function]
flags, const Stringprep_profile * profile)
in: input/ouput array with string to prepare.

maxlen: maximum length of input/output array.
flags: a Stringprep_profile_flags value, or 0.
profile: pointer to Stringprep_profile to use.

Prepare the input zero terminated UTF-8 string according to the stringprep profile,
and write back the result to the input string.

Chapter 4: Stringprep Functions 19

Note that you must convert strings entered in the systems locale into UTF-8 before
using this function, see stringprep_locale_to_utf8().

Since the stringprep operation can expand the string, maxlen indicate how large the
buffer holding the string is. This function will not read or write to characters outside
that size.

The flags are one of Stringprep_profile_flags values, or 0.

The profile contain the Stringprep_profile instructions to perform. Your appli-
cation can define new profiles, possibly re-using the generic stringprep tables that
always will be part of the library, or use one of the currently supported profiles.

Return value: Returns STRINGPREP_OK iff successful, or an error code.
stringprep_profile

int stringprep_profile (const char * in, char ** out, const char * [Function]
profile, Stringprep-profile_flags flags)
in: input array with UTF-8 string to prepare.
out: output variable with pointer to newly allocate string.
profile: name of stringprep profile to use.
flags: a Stringprep_profile_flags value, or 0.

Prepare the input zero terminated UTF-8 string according to the stringprep profile,
and return the result in a newly allocated variable.

Note that you must convert strings entered in the systems locale into UTF-8 before
using this function, see stringprep_locale_to_utf8().

The output out variable must be deallocated by the caller.
The flags are one of Stringprep_profile_flags values, or 0.

The profile specifies the name of the stringprep profile to use. It must be one of
the internally supported stringprep profiles.

Return value: Returns STRINGPREP_OK iff successful, or an error code.

4.5 Error Handling

stringprep_strerror

const char * stringprep_strerror (Stringprep-_rc rc) [Function]
rc: a Stringprep_rc return code.
Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.
STRINGPREP _OK: Successful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison
purposes.
STRINGPREP_CONTAINS_UNASSIGNED: String contain unassigned Unicode
code points, which is forbidden by the profile.
STRINGPREP_CONTAINS_PROHIBITED: String contain code points prohibited
by the profile.

Chapter 4: Stringprep Functions 20

STRINGPREP _BIDI_BOTH_L_AND_RAL: String contain code points with conflict-
ing bidirection category.

STRINGPREP_BIDI_LEADTRAIL_NOT_RAL: Leading and trailing character in
string not of proper bidirectional category.

STRINGPREP_BIDI_CONTAINS_PROHIBITED: Contains prohibited code points
detected by bidirectional code.

STRINGPREP_TOO_SMALL_BUFFER: Buffer handed to function was too small.
This usually indicate a problem in the calling application.

STRINGPREP_PROFILE_ERROR: The stringprep profile was inconsistent. This
usually indicate an internal error in the library.

STRINGPREP_FLAG_ERROR: The supplied flag conflicted with profile. This usu-
ally indicate a problem in the calling application.

STRINGPREP_UNKNOWN_PROFILE: The supplied profile name was not known
to the library.

STRINGPREP _NFKC_FAILED: The Unicode NFKC operation failed. This usually
indicate an internal error in the library.

STRINGPREP_MALLOC_ERROR: The malloc() was out of memory. This is usu-
ally a fatal error.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc.

4.6 Stringprep Profile Macros

int stringprep_nameprep_no_unassigned (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the nameprep profile. The AllowUnas-
signed flag is false, use stringprep_nameprep for true AllowUnassigned. Returns 0
iff successful, or an error code.

int stringprep_iscsi (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft iSCSI stringprep profile. Re-
turns 0 iff successful, or an error code.

int stringprep_plain (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft SASL ANONYMOUS profile.
Returns 0 iff successful, or an error code.

Chapter 4: Stringprep Functions 21

int stringprep_xmpp_nodeprep (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP node identifier profile.
Returns 0 iff successful, or an error code.

int stringprep_xmpp_resourceprep (char * in, int maxlen) [Function]
in: input/ouput array with string to prepare.

maxlen: maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP resource identifier
profile. Returns 0 iff successful, or an error code.

Chapter 5: Punycode Functions 22

5 Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Interna-
tionalized Domain Names in Applications. It uniquely and reversibly transforms a Unicode
string into an ASCII string. ASCII characters in the Unicode string are represented liter-
ally, and non-ASCII characters are represented by ASCII characters that are allowed in host
name labels (letters, digits, and hyphens). A general algorithm called Bootstring allows a
string of basic code points to uniquely represent any string of code points drawn from a
larger set. Punycode is an instance of Bootstring that uses particular parameter values,
appropriate for IDNA.

5.1 Header file punycode.h

To use the functions explained in this chapter, you need to include the file punycode.h
using:

#include <punycode.h>

5.2 Unicode Code Point Data Type

The punycode function uses a special type to denote Unicode code points. It is guaranteed
to always be a 32 bit unsigned integer.

uint32_t punycode_uint [Punycode Unicode code point]
A unsigned integer that hold Unicode code points.

5.3 Core Functions

Note that the current implementation will fail if the input_length exceed 4294967295
(the size of punycode_uint). This restriction may be removed in the future. Meanwhile
applications are encouraged to not depend on this problem, and use sizeof to initialize
input_length and output_length.

The functions provided are the following two entry points:

punycode_encode

int punycode_encode (size_t input_length, const punycode_uint || [Function]
input, const unsigned char [| case_flags, size_t * output_length, char ||
output)

input_length: The number of code points in the input array and the number of flags
in the case_flags array.

input: An array of code points. They are presumed to be Unicode code points,
but that is not strictly REQUIRED. The array contains code points, not code units.
UTF-16 uses code units D800 through DFFF to refer to code points 10000..10FFFF.
The code points D800..DFFF do not occur in any valid Unicode string. The code
points that can occur in Unicode strings (0..D7FF and E000..10FFFF) are also called
Unicode scalar values.

case_flags: A NULL pointer or an array of boolean values parallel to the input array.
Nonzero (true, flagged) suggests that the corresponding Unicode character be forced

Chapter 5: Punycode Functions 23

to uppercase after being decoded (if possible), and zero (false, unflagged) suggests
that it be forced to lowercase (if possible). ASCII code points (0..7F) are encoded
literally, except that ASCII letters are forced to uppercase or lowercase according to
the corresponding case flags. If case_flags is a NULL pointer then ASCII letters are
left as they are, and other code points are treated as unflagged.

output_length: The caller passes in the maximum number of ASCII code points that
it can receive. On successful return it will contain the number of ASCII code points
actually output.

output: An array of ASCII code points. It is *not* null-terminated; it will contain
zeros if and only if the input contains zeros. (Of course the caller can leave room for
a terminator and add one if needed.)

Converts a sequence of code points (presumed to be Unicode code points) to Puny-
code.

Return value: The return value can be any of the Punycode_status values defined
above except PUNYCODE_BAD_INPUT. If not PUNYCODE_SUCCESS, then output_size
and output might contain garbage.

punycode_decode

int punycode_decode (size_t input_length, const char [| input, size_t [Function]
* output_length, punycode_uint [| output, unsigned char [| case_flags)
input_length: The number of ASCII code points in the input array.

input: An array of ASCII code points (0..7F).

output_length: The caller passes in the maximum number of code points that it can
receive into the output array (which is also the maximum number of flags that it
can receive into the case_flags array, if case_flags is not a NULL pointer). On
successful return it will contain the number of code points actually output (which
is also the number of flags actually output, if case_flags is not a null pointer). The
decoder will never need to output more code points than the number of ASCII code
points in the input, because of the way the encoding is defined. The number of code
points output cannot exceed the maximum possible value of a punycode_uint, even if
the supplied output_length is greater than that.

output: An array of code points like the input argument of punycode_encode () (see
above).

case_flags: A NULL pointer (if the flags are not needed by the caller) or an array of
boolean values parallel to the output array. Nonzero (true, flagged) suggests that the
corresponding Unicode character be forced to uppercase by the caller (if possible),
and zero (false, unflagged) suggests that it be forced to lowercase (if possible). ASCII
code points (0..7F) are output already in the proper case, but their flags will be set
appropriately so that applying the flags would be harmless.

Converts Punycode to a sequence of code points (presumed to be Unicode code
points).
Return value: The return value can be any of the Punycode_status values defined

above. If not PUNYCODE_SUCCESS, then output_length, output, and case_flags
might contain garbage.

Chapter 5: Punycode Functions 24

5.4 Error Handling

punycode_strerror

const char * punycode_strerror (Punycode_status rc) [Function]
rc: an Punycode_status return code.

Convert a return code integer to a text string. This string can be used to output a
diagnostic message to the user.

PUNYCODE_SUCCESS: Successful operation. This value is guaranteed to always
be zero, the remaining ones are only guaranteed to hold non-zero values, for logical
comparison purposes.

PUNYCODE_BAD_INPUT: Input is invalid.
PUNYCODE_BIG_OUTPUT: Output would exceed the space provided.
PUNYCODE_OVERFLOW: Input needs wider integers to process.

Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the return code rc.

Chapter 6: IDNA Functions 25

6 IDNA Functions

Until now, there has been no standard method for domain names to use characters outside
the ASCII repertoire. The IDNA document defines internationalized domain names (IDNs)
and a mechanism called IDNA for handling them in a standard fashion. IDNs use characters
drawn from a large repertoire (Unicode), but IDNA allows the non-ASCII characters to be
represented using only the ASCII characters already allowed in so-called host names today.
This backward-compatible representation is required in existing protocols like DNS, so that
IDNs can be introduced with no changes to the existing infrastructure. IDNA is only meant
for processing domain names, not free text.

6.1 Header file idna.h

To use the functions explained in this chapter, you need to include the file idna.h using:

#include <idna.h>

6.2 Control Flags

The IDNA flags parameter can take on the following values, or a bit-wise inclusive or of
any subset of the parameters:

Idna_flags IDNA_ALLOW_UNASSIGNED [Return code]
Allow unassigned Unicode code points.

Idna_flags IDNA_USE_STD3_ASCII_RULES [Return code]
Check output to make sure it is a STD3 conforming host name.

6.3 Prefix String

#define IDNA_ACE_PREFIX [Macro]
String with the official IDNA prefix, xn--.

6.4 Core Functions

The idea behind the IDNA function names are as follows: the idna_to_ascii_4i and idna_
to_unicode_44i functions are the core IDNA primitives. The 4 indicate that the function
takes UCS-4 strings (i.e., Unicode code points encoded in a 32-bit unsigned integer type) of
the specified length. The i indicate that the data is written “inline” into the buffer. This
means the caller is responsible for allocating (and de-allocating) the string, and providing
the library with the allocated length of the string. The output length is written in the
output length variable. The remaining functions all contain the z indicator, which means
the strings are zero terminated. All output strings are allocated by the library, and must
be de-allocated by the caller. The 4 indicator again means that the string is UCS-4, the
8 means the strings are UTF-8 and the 1 indicator means the strings are encoded in the
encoding used by the current locale.

The functions provided are the following entry points:

Chapter 6: IDNA Functions 26

idna_to_ascii_4i

int idna_to_ascii_4i (const uint32_-t * in, size_t inlen, char * out, [Function]
int flags)

in: input array with unicode code points.
inlen: length of input array with unicode code points.
out: output zero terminated string that must have room for at least 63 characters
plus the terminating zero.
flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_
ASCII_RULES.
The ToASCII operation takes a sequence of Unicode code points that make up one
domain label and transforms it into a sequence of code points in the ASCII range
(0..7F). If ToASCII succeeds, the original sequence and the resulting sequence are
equivalent labels.
It is important to note that the ToASCII operation can fail. ToASCII fails if any step
of it fails. If any step of the ToASCII operation fails on any label in a domain name,
that domain name MUST NOT be used as an internationalized domain name. The
method for deadling with this failure is application-specific.
The inputs to ToASCII are a sequence of code points, the AllowUnassigned flag, and
the UseSTD3ASCIIRules flag. The output of ToASCII is either a sequence of ASCII
code points or a failure condition.

ToASCII never alters a sequence of code points that are all in the ASCII range to
begin with (although it could fail). Applying the ToASCII operation multiple times
has exactly the same effect as applying it just once.

Return value: Returns 0 on success, or an Idna_rc error code.
idna_to_unicode_44i

int idna_to_unicode_44i (const uint32_t * in, size_t inlen, uint32_t [Function]
* out, size_-t * outlen, int flags)
in: input array with unicode code points.
inlen: length of input array with unicode code points.
out: output array with unicode code points.

outlen: on input, maximum size of output array with unicode code points, on exit,
actual size of output array with unicode code points.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_
ASCII_RULES.

The ToUnicode operation takes a sequence of Unicode code points that make up one
domain label and returns a sequence of Unicode code points. If the input sequence is
a label in ACE form, then the result is an equivalent internationalized label that is
not in ACE form, otherwise the original sequence is returned unaltered.

ToUnicode never fails. If any step fails, then the original input sequence is returned
immediately in that step.

The Punycode decoder can never output more code points than it inputs, but
Nameprep can, and therefore ToUnicode can. Note that the number of octets needed

Chapter 6: IDNA Functions 27

to represent a sequence of code points depends on the particular character encoding
used.

The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag,
and the UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of
Unicode code points.

Return value: Returns Idna_rc error condition, but it must only be used for debug-
ging purposes. The output buffer is always guaranteed to contain the correct data
according to the specification (sans malloc induced errors). NB! This means that you
normally ignore the return code from this function, as checking it means breaking the
standard.

6.5 Simplified ToASCII Interface

idna_to_ascii_4z

int idna_to_ascii_4z (const uint32_t * input, char ** output, int [Function]
flags)
input: zero terminated input Unicode string.
output: pointer to newly allocated output string.

flags: an Idna_flags value, e.g., IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_
ASCII_RULES.

Convert UCS-4 domain name to ASCII string.