
GNU Linear Programming Kit

Graph and Network Routines

for GLPK Version 4.49

(DRAFT, April 2013)

The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright c⃝ 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Andrew
Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All
rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

2

Contents

1 Basic Graph API Routines 5
1.1 Graph program object . 5
1.2 Graph creating and modifying routines . 8

1.2.1 glp create graph — create graph . 8
1.2.2 glp set graph name — assign (change) graph name 8
1.2.3 glp add vertices — add new vertices to graph 8
1.2.4 glp set vertex name — assign (change) vertex name 9
1.2.5 glp add arc — add new arc to graph . 9
1.2.6 glp del vertices — delete vertices from graph 9
1.2.7 glp del arc — delete arc from graph . 10
1.2.8 glp erase graph — erase graph content . 10
1.2.9 glp delete graph — delete graph . 10

1.3 Graph searching routines . 11
1.3.1 glp create v index — create vertex name index 11
1.3.2 glp find vertex — find vertex by its name . 11
1.3.3 glp delete v index — delete vertex name index 11

1.4 Graph reading/writing routines . 12
1.4.1 glp read graph — read graph from plain text file 12
1.4.2 glp write graph — write graph to plain text file 12
1.4.3 glp read ccdata — read graph from text file in DIMACS clique/coloring

format . 13
1.4.4 glp write ccdata — write graph to text file in DIMACS clique/coloring

format . 15
1.5 Graph analysis routines . 16

1.5.1 glp weak comp — find all weakly connected components of graph 16
1.5.2 glp strong comp — find all strongly connected components of graph 16
1.5.3 glp top sort — topological sorting of acyclic digraph 18

2 Network optimization API routines 20
2.1 Minimum cost flow problem . 20

2.1.1 Background . 20
2.1.2 glp read mincost — read minimum cost flow problem data in DIMACS

format . 21

3

2.1.3 glp write mincost — write minimum cost flow problem data in DIMACS
format . 24

2.1.4 glp mincost lp — convert minimum cost flow problem to LP 25
2.1.5 glp mincost okalg — solve minimum cost flow problem with out-of-kilter

algorithm . 27
2.1.6 glp mincost relax4 — solve minimum cost flow problem with relaxation

method of Bertsekas and Tseng (RELAX-IV) 30
2.1.7 glp netgen — Klingman’s network problem generator 32
2.1.8 glp netgen prob — Klingman’s standard network problem instance 33
2.1.9 glp gridgen — grid-like network problem generator 34

2.2 Maximum flow problem . 37
2.2.1 Background . 37
2.2.2 glp read maxflow — read maximum flow problem data in DIMACS

format . 38
2.2.3 glp write maxflow — write maximum flow problem data in DIMACS

format . 40
2.2.4 glp maxflow lp — convert maximum flow problem to LP 41
2.2.5 glp maxflow ffalg — solve maximum flow problem with Ford-Fulkerson

algorithm . 42
2.2.6 glp rmfgen — Goldfarb’s maximum flow problem generator 44

2.3 Assignment problem . 46
2.3.1 Background . 46
2.3.2 glp read asnprob — read assignment problem data in DIMACS format 48
2.3.3 glp write asnprob — write assignment problem data in DIMACS format . . . 51
2.3.4 glp check asnprob — check correctness of assignment problem data 51
2.3.5 glp asnprob lp — convert assignment problem to LP 52
2.3.6 glp asnprob okalg — solve assignment problem with out-of-kilter

algorithm . 54
2.3.7 glp asnprob hall — find bipartite matching of maximum cardinality 57

2.4 Critical path problem . 60
2.4.1 Background . 60
2.4.2 glp cpp — solve critical path problem . 61

3 Graph Optimization API Routines 64
3.1 Maximum clique problem . 64

3.1.1 Background . 64
3.1.2 glp wclique exact — find maximum weight clique with exact algorithm 64

4

Chapter 1

Basic Graph API Routines

1.1 Graph program object

In GLPK the base program object used to represent graphs and networks is a directed graph
(digraph).

Formally, digraph (or simply, graph) is a pair G = (V,A), where V is a set of vertices, and A
is a set arcs.1 Each arc a ∈ A is an ordered pair of vertices a = (x, y), where x ∈ V is called tail
vertex of arc a, and y ∈ V is called its head vertex.

Representation of a graph in the program includes three structs defined by typedef in the header
glpk.h:

— glp_graph, which represents the graph in a whole,

— glp_vertex, which represents a vertex of the graph, and

— glp_arc, which represents an arc of the graph.

All these three structs are “semi-opaque”, i.e. the application program can directly access their
fields through pointers, however, changing the fields directly is not allowed — all changes should
be performed only with appropriate GLPK API routines.

glp graph. The struct glp_graph has the following fields available to the application program:

char *name;

Symbolic name assigned to the graph. It is a pointer to a null terminated character string of
length from 1 to 255 characters. If no name is assigned to the graph, this field contains NULL.

int nv;

The number of vertices in the graph, nv ≥ 0.

int na;

The number of arcs in the graph, na ≥ 0.

1A may be a multiset.

5

glp_vertex **v;

Pointer to an array containing the list of vertices. Element v[0] is not used. Element v[i],
1 ≤ i ≤ nv, is a pointer to i-th vertex of the graph. Note that on adding new vertices to the
graph the field v may be altered due to reallocation. However, pointers v[i] are not changed
while corresponding vertices exist in the graph.

int v_size;

Size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field data in the struct
glp_vertex.)

int a_size;

Size of arc data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field data in the struct
glp_arc.)

glp vertex. The struct glp_vertex has the following fields available to the application program:

int i;

Ordinal number of the vertex, 1 ≤ i ≤ nv. Note that element v[i] in the struct glp_graph

points to the vertex, whose ordinal number is i.

char *name;

Symbolic name assigned to the vertex. It is a pointer to a null terminated character string of
length from 1 to 255 characters. If no name is assigned to the vertex, this field contains NULL.

void *data;

Pointer to a data block associated with the vertex. This data block is automatically allocated on
creating a new vertex and freed on deleting the vertex. If v size = 0, the block is not allocated,
and this field contains NULL.

void *temp;

Working pointer, which may be used freely for any purposes. The application program can
change this field directly.

glp_arc *in;

Pointer to the (unordered) list of incoming arcs. If the vertex has no incoming arcs, this field
contains NULL.

glp_arc *out;

Pointer to the (unordered) list of outgoing arcs. If the vertex has no outgoing arcs, this field
contains NULL.

glp arc. The struct glp_arc has the following fields available to the application program:

glp_vertex *tail;

Pointer to a vertex, which is tail endpoint of the arc.

glp_vertex *head;

Pointer to a vertex, which is head endpoint of the arc.

6

void *data;

Pointer to a data block associated with the arc. This data block is automatically allocated on
creating a new arc and freed on deleting the arc. If v size = 0, the block is not allocated, and
this field contains NULL.

void *temp;

Working pointer, which may be used freely for any purposes. The application program can
change this field directly.

glp_arc *t_next;

Pointer to another arc, which has the same tail endpoint as this one. NULL in this field indicates
the end of the list of outgoing arcs.

glp_arc *h_next;

Pointer to another arc, which has the same head endpoint as this one. NULL in this field indicates
the end of the list of incoming arcs.

7

1.2 Graph creating and modifying routines

1.2.1 glp create graph — create graph

Synopsis

glp_graph *glp_create_graph(int v_size, int a_size);

Description

The routine glp_create_graph creates a new graph, which initially is empty, i.e. has no vertices
and arcs.

The parameter v_size specifies the size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256.

The parameter a_size specifies the size of arc data blocks, in bytes, 0 ≤ a size ≤ 256.

Returns

The routine returns a pointer to the graph object created.

1.2.2 glp set graph name — assign (change) graph name

Synopsis

void glp_set_graph_name(glp_graph *G, const char *name);

Description

The routine glp_set_graph_name assigns a symbolic name specified by the character string
name (1 to 255 chars) to the graph.

If the parameter name is NULL or an empty string, the routine erases the existing symbolic name
of the graph.

1.2.3 glp add vertices — add new vertices to graph

Synopsis

int glp_add_vertices(glp_graph *G, int nadd);

Description

The routine glp_add_vertices adds nadd vertices to the specified graph. New vertices are
always added to the end of the vertex list, so ordinal numbers of existing vertices remain unchanged.
Note that this operation may change the field v in the struct glp_graph (pointer to the vertex array)
due to reallocation.

Being added each new vertex is isolated, i.e. has no incident arcs.

If the size of vertex data blocks specified on creating the graph is non-zero, the routine also
allocates a memory block of that size for each new vertex added, fills it by binary zeros, and stores
a pointer to it in the field data of the struct glp_vertex. Otherwise, if the block size is zero, the
field data is set to NULL.

8

Returns

The routine glp_add_vertices returns the ordinal number of the first new vertex added to the
graph.

1.2.4 glp set vertex name — assign (change) vertex name

Synopsis

void glp_set_vertex_name(glp_graph *G, int i, const char *name);

Description

The routine glp_set_vertex_name assigns a given symbolic name (1 up to 255 characters) to
i-th vertex of the specified graph.

If the parameter name is NULL or empty string, the routine erases an existing name of i-th
vertex.

1.2.5 glp add arc — add new arc to graph

Synopsis

glp_arc *glp_add_arc(glp_graph *G, int i, int j);

Description

The routine glp_add_arc adds one new arc to the specified graph.

The parameters i and j specify the ordinal numbers of, resp., tail and head endpoints (vertices)
of the arc. Note that self-loops and multiple arcs are allowed.

If the size of arc data blocks specified on creating the graph is non-zero, the routine also allocates
a memory block of that size, fills it by binary zeros, and stores a pointer to it in the field data of
the struct glp_arc. Otherwise, if the block size is zero, the field data is set to NULL.

1.2.6 glp del vertices — delete vertices from graph

Synopsis

void glp_del_vertices(glp_graph *G, int ndel, const int num[]);

Description

The routine glp_del_vertices deletes vertices along with all incident arcs from the speci-
fied graph. Ordinal numbers of vertices to be deleted should be placed in locations num[1], . . . ,
num[ndel], ndel > 0.

Note that deleting vertices involves changing ordinal numbers of other vertices remaining in the
graph. New ordinal numbers of the remaining vertices are assigned under the assumption that the
original order of vertices is not changed.

9

1.2.7 glp del arc — delete arc from graph

Synopsis

void glp_del_arc(glp_graph *G, glp_arc *a);

Description

The routine glp_del_arc deletes an arc from the specified graph. The arc to be deleted must
exist.

1.2.8 glp erase graph — erase graph content

Synopsis

void glp_erase_graph(glp_graph *G, int v_size, int a_size);

Description

The routine glp_erase_graph erases the content of the specified graph. The effect of this
operation is the same as if the graph would be deleted with the routine glp_delete_graph and
then created anew with the routine glp_create_graph, with exception that the pointer to the
graph remains valid.

The parameters v_size and a_size have the same meaning as for glp_create_graph.

1.2.9 glp delete graph — delete graph

Synopsis

void glp_delete_graph(glp_graph *G);

Description

The routine glp_delete_graph deletes the specified graph and frees all the memory allocated
to this program object.

10

1.3 Graph searching routines

1.3.1 glp create v index — create vertex name index

Synopsis

void glp_create_v_index(glp_graph *G);

Description

The routine glp_create_v_index creates the name index for the specified graph. The name
index is an auxiliary data structure, which is intended to quickly (i.e. for logarithmic time) find
vertices by their names.

This routine can be called at any time. If the name index already exists, the routine does
nothing.

1.3.2 glp find vertex — find vertex by its name

Synopsis

int glp_find_vertex(glp_graph *G, const char *name);

Returns

The routine glp_find_vertex returns the ordinal number of a vertex, which is assigned (by the
routine glp_set_vertex_name) the specified symbolic name. If no such vertex exists, the routine
returns 0.

1.3.3 glp delete v index — delete vertex name index

Synopsis

void glp_delete_v_index(glp_graph *G);

Description

The routine glp_delete_v_index deletes the name index previously created by the routine
glp_create_v_index and frees the memory allocated to this auxiliary data structure.

This routine can be called at any time. If the name index does not exist, the routine does
nothing.

11

1.4 Graph reading/writing routines

1.4.1 glp read graph — read graph from plain text file

Synopsis

int glp_read_graph(glp_graph *G, const char *fname);

Description

The routine glp_read_graph reads a graph from a plain text file, whose name is specified by
the parameter fname. Note that before reading data the current content of the graph object is
completely erased with the routine glp_erase_graph.

For the file format see description of the routine glp_write_graph.

Returns

If the operation was successful, the routine returns zero. Otherwise it prints an error message
and returns non-zero.

1.4.2 glp write graph — write graph to plain text file

Synopsis

int glp_write_graph(glp_graph *G, const char *fname);

Description

The routine glp_write_graph writes the graph to a plain text file, whose name is specified by
the parameter fname.

Returns

If the operation was successful, the routine returns zero. Otherwise it prints an error message
and returns non-zero.

File format

The file created by the routine glp_write_graph is a plain text file, which contains the following
information:

nv na

i[1] j[1]

i[2] j[2]

. . .

i[na] j[na]

where: nv is the number of vertices (nodes); na is the number of arcs; i[k], k = 1, . . . , na, is the
index of tail vertex of arc k; j[k], k = 1, . . . , na, is the index of head vertex of arc k.

12

1.4.3 glp read ccdata — read graph from text file in DIMACS clique/coloring
format

Synopsis

int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);

Description

The routine glp read ccdata reads a graph from a text file in DIMACS clique/coloring format.
(Though this format is originally designed to represent data for the minimal vertex coloring and
maximal clique problems, it may be used to represent general undirected and directed graphs,
because the routine allows reading self-loops and multiple edges/arcs keeping the order of vertices
specified for each edge/arc of the graph.)

The parameter G specifies the graph object to be read in. Note that before reading data the
current content of the graph object is completely erased with the routine glp erase graph.

The parameter v wgt specifies an offset of the field of type double in the vertex data block, to
which the routine stores the vertex weight. If v wgt < 0, the vertex weights are not stored.

The character string fname specifies the name of a text file to be read in. (If the file name ends
with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine decompresses
it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

DIMACS clique/coloring format2

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [−231, 231 − 1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line must appear before any
node or edge descriptor lines. It has the following format:

p edge NODES EDGES

The lower-case letter p signifies that this is a problem line. The four-character problem designator
edge identifies the file as containing data for the minimal vertex coloring or maximal clique problem.
The NODES field contains an integer value specifying the number of vertices in the graph. The EDGES

2This material is based on the paper “Clique and Coloring Problems Graph Format”, which is publically available
at http://dimacs.rutgers.edu/Challenges.

13

http://dimacs.rutgers.edu/Challenges

field contains an integer value specifying the number of edges (arcs) in the graph.

Vertex descriptors. These lines give the weight assigned to a vertex of the graph. There is one
vertex descriptor line for each vertex, with the following format. Vertices without a descriptor take
on a default value of 1.

n ID VALUE

The lower-case character n signifies that this is a vertex descriptor line. The ID field gives a vertex
identification number, an integer between 1 and n, where n is the number of vertices in the graph.
The VALUE field gives a vertex weight, which can either positive or negative (or zero).

Edge descriptors. There is one edge descriptor line for each edge (arc) of the graph, each with
the following format:

e I J

The lower-case character e signifies that this is an edge descriptor line. For an edge (arc) (i, j) the
fields I and J specify its endpoints.

Example. The following example of an undirected graph:

v1

��
��
��
��
��
��
��
�

CC
CC

CC
CC

v2

||
||
||
||

11
11
11
11
11
11
11

v7

{{
{{
{{
{{

BB
BB

BB
BB

v6

22
22
22
22
22
22
22
2 v10

CC
CC

CC
CC

v8

||
||
||
||

v3

v9

{{
{{
{{
{{

BB
BB

BB
BB

v5 v4

might be coded in DIMACS clique/coloring format as follows:

c sample.col

c

c This is an example of the vertex coloring problem data

c in DIMACS format.

c

p edge 10 21

c

e 1 2

e 1 6

e 1 7

e 1 10

e 2 3

e 2 7

e 2 8

e 3 4

e 3 8

14

e 4 5

e 4 8

e 4 9

e 5 6

e 5 9

e 5 10

e 6 10

e 7 8

e 7 10

e 8 9

e 8 10

e 9 10

c

c eof

1.4.4 glp write ccdata — write graph to text file in DIMACS clique/coloring
format

Synopsis

int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);

Description

The routine glp write ccdata writes the graph object specified by the parameter G to a text
file in DIMACS clique/coloring format. (Though this format is originally designed to represent
data for the minimal vertex coloring and maximal clique problems, it may be used to represent
general undirected and directed graphs, because the routine allows writing self-loops and multiple
edges/arcs keeping the order of vertices specified for each edge/arc of the graph.)

The parameter v wgt specifies an offset of the field of type double in the vertex data block,
which contains the vertex weight. If v wgt < 0, it is assumed that the weight of each vertex is 1.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

15

1.5 Graph analysis routines

1.5.1 glp weak comp — find all weakly connected components of graph

Synopsis

int glp_weak_comp(glp_graph *G, int v_num);

Description

The routine glp_weak_comp finds all weakly connected components of the specified graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the number of a weakly connected component containing that vertex. If
v_num < 0, no component numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where nc is the total number of
components found, 0 ≤ nc ≤ |V |.
Returns

The routine returns nc, the total number of components found.

1.5.2 glp strong comp — find all strongly connected components of graph

Synopsis

int glp_strong_comp(glp_graph *G, int v_num);

Description

The routine glp_strong_comp finds all strongly connected components of the specified graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the number of a strongly connected component containing that vertex. If
v_num < 0, no component numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where nc is the total number of
components found, 0 ≤ nc ≤ |V |. However, the component numbering has the property that for
every arc (i → j) in the graph the condition num(i) ≥ num(j) holds.

Returns

The routine returns nc, the total number of components found.

References

I. S. Duff, J. K. Reid, Algorithm 529: Permutations to block triangular form, ACM Trans. on
Math. Softw. 4 (1978), 189-92.

16

Example

The following program reads a graph from a plain text file ‘graph.txt’ and finds all its strongly
connected components.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int num; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i, nc;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_graph(G, "graph.txt");

nc = glp_strong_comp(G, offsetof(v_data, num));

printf("nc = %d\n", nc);

for (i = 1; i <= G->nv; i++)

printf("num[%d] = %d\n", i, vertex(G->v[i])->num);

glp_delete_graph(G);

return 0;

}

If the file ‘graph.txt’ contains the following graph:

1 // 2 // 3 //

��

4

��

5

OO

6oo

7

OO

8

__@@@@@@@@
oo // 9 // 10 //

��

11

��
12

OO 77oooooooooooooo
33 13oo

OO

// 14

__@@@@@@@
15oo

the program output may look like follows:

Reading graph from ‘graph.txt’...

Graph has 15 vertices and 30 arcs

31 lines were read

nc = 4

num[1] = 3

num[2] = 3

num[3] = 3

num[4] = 2

num[5] = 3

num[6] = 3

num[7] = 3

num[8] = 3

num[9] = 1

17

num[10] = 1

num[11] = 1

num[12] = 4

num[13] = 4

num[14] = 1

num[15] = 1

1.5.3 glp top sort — topological sorting of acyclic digraph

Synopsis

int glp_top_sort(glp_graph *G, int v_num);

Description

The routine glp_top_sort performs topological sorting of vertices of the specified acyclic di-
graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the vertex number assigned. If v_num < 0, vertex numbers are not stored.

The vertices are numbered from 1 to n, where n is the total number of vertices in the graph.
The vertex numbering has the property that for every arc (i → j) in the graph the condition
num(i) < num(j) holds. Special case num(i) = 0 means that vertex i is not assigned a number,
because the graph is not acyclic.

Returns

If the graph is acyclic and therefore all the vertices have been assigned numbers, the routine
glp_top_sort returns zero. Otherwise, if the graph is not acyclic, the routine returns the number
of vertices which have not been numbered, i.e. for which num(i) = 0.

Example

The following program reads a digraph from a plain text file ‘graph.txt’ and performs topo-
logical sorting of its vertices.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int num; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i, cnt;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_graph(G, "graph.txt");

cnt = glp_top_sort(G, offsetof(v_data, num));

printf("cnt = %d\n", cnt);

for (i = 1; i <= G->nv; i++)

printf("num[%d] = %d\n", i, vertex(G->v[i])->num);

18

glp_delete_graph(G);

return 0;

}

If the file ‘graph.txt’ contains the following graph:

1 // 2 //

��+
++
++
++
++
++
++
++
++
++

3

!!B
BB

BB
BB

4

==|||||||
5 // 6

!!B
BB

BB
BB

��

7 // 8 // 9

GG�������������

>>~~~~~~~
//

 @
@@

@@
@ 10 //

66mmmmmmmmmmmmmm
11

==|||||||
12 // 13

14 // 15

44iiiiiiiiiiiiiiiiiiii // 16

66mmmmmmmmmmmmm // 17

the program output may look like follows:

Reading graph from ‘graph.txt’...

Graph has 17 vertices and 23 arcs

24 lines were read

cnt = 0

num[1] = 8

num[2] = 9

num[3] = 10

num[4] = 4

num[5] = 11

num[6] = 12

num[7] = 1

num[8] = 2

num[9] = 3

num[10] = 5

num[11] = 6

num[12] = 14

num[13] = 16

num[14] = 7

num[15] = 13

num[16] = 15

num[17] = 17

The output corresponds to the following vertex numbering:

8 // 9 //

��*
**
**
**
**
**
**
**
**
**

10

!!B
BB

BB
BB

4

>>~~~~~~~
11 // 12

!!B
BB

BB
BB

��

1 // 2 // 3

GG������������

@@������
//

��=
==

==
= 5 //

66nnnnnnnnnnnnn 6

==|||||||
14 // 16

7 // 13

44iiiiiiiiiiiiiiiiiiii // 15

66mmmmmmmmmmmmm // 17

19

Chapter 2

Network optimization API routines

2.1 Minimum cost flow problem

2.1.1 Background

The minimum cost flow problem (MCFP) is stated as follows. Let there be given a directed
graph (flow network) G = (V,A), where V is a set of vertices (nodes), and A ⊆ V × V is a set of
arcs. Let for each node i ∈ V there be given a quantity bi having the following meaning:

if bi > 0, then |bi| is a supply at node i, which shows how many flow units are generated at node
i (or, equivalently, entering the network through node i from outside);

if bi < 0, then |bi| is a demand at node i, which shows how many flow units are lost at node i
(or, equivalently, leaving the network through node i to outside);

if bi = 0, then i is a transshipment node, at which the flow is conserved, i.e. neither generated
nor lost.

Let also for each arc a = (i, j) ∈ A there be given the following three quantities:

lij , a (non-negative) lower bound to the flow through arc (i, j);

uij , an upper bound to the flow through arc (i, j), which is the arc capacity;

cij , a per-unit cost of the flow through arc (i, j).

The problem is to find flows xij through every arc of the network, which satisfy the specified
bounds and the conservation constraints at all nodes, and minimize the total flow cost. Here the
conservation constraint at a node means that the total flow entering this node through its incoming
arcs plus the supply at this node must be equal to the total flow leaving this node through its
outgoing arcs plus the demand at this node.

An example of the minimum cost flow problem is shown on Fig. 1.

20

20

�� �O
�O
�O

v2 0,10,$2 //

0,9,$3

��

v3

2,12,$1

��

0,18,$0 // v8

0,20,$9
MMM

MM

&&MM
MMM

v1

0,14,$0qqqqq

88qqqqq

0,23,$0
MMM

MM

&&MM
MMM

v6

0,7,$0

��

4,8,$0

OO

v9

��
�O
�O
�O

v4 0,26,$0 // v5

0,11,$1;;;;;;;;

]];;;;;;;

0,25,$5qqqqq

88qqqqq

0,4,$7 // v7

0,15,$3qqqqq

88qqqqq

20

vi l,u,$c // vj supply ///o/o/o vi vi ///o/o/o demand

Fig. 1. An example of the minimum cost flow problem.

The minimum cost flow problem can be naturally formulated as the following LP problem:

minimize
z =

∑
(i,j)∈A

cijxij (1)

subject to ∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi for all i ∈ V (2)

lij ≤ xij ≤ uij for all (i, j) ∈ A (3)

2.1.2 glp read mincost — read minimum cost flow problem data in DIMACS
format

Synopsis

int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,

int a_cost, const char *fname);

Description

The routine glp_read_mincost reads the minimum cost flow problem data from a text file in
DIMACS format.

The parameter G specifies the graph object, to which the problem data have to be stored. Note
that before reading data the current content of the graph object is completely erased with the
routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value. If v_rhs < 0, the value is not stored.

The parameter a_low specifies an offset of the field of type double in the arc data block, to
which the routine stores lij , the lower bound to the arc flow. If a_low < 0, the lower bound is not
stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores uij , the upper bound to the arc flow (the arc capacity). If a_cap < 0, the
upper bound is not stored.

21

The parameter a_cost specifies an offset of the field of type double in the arc data block, to
which the routine stores cij , the per-unit cost of the arc flow. If a_cost < 0, the cost is not stored.

The character string fname specifies the name of a text file to be read in. (If the file name
name ends with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine
decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

Example

typedef struct

{ /* vertex data block */

...

double rhs;

...

} v_data;

typedef struct

{ /* arc data block */

...

double low, cap, cost;

...

} a_data;

int main(void)

{ glp_graph *G;

int ret;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

ret = glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

if (ret != 0) goto ...

...

}

DIMACS minimum cost flow problem format1

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [−231, 231 − 1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is a comment line

1This material is based on the paper “The First DIMACS International Algorithm Implementation Challenge:
Problem Definitions and Specifications”, which is publically available at http://dimacs.rutgers.edu/Challenges.

22

http://dimacs.rutgers.edu/Challenges

Problem line. There is one problem line per data file. The problem line must appear before any
node or arc descriptor lines. It has the following format:

p min NODES ARCS

The lower-case character p signifies that this is a problem line. The three-character problem
designator min identifies the file as containing specification information for the minimum cost flow
problem. The NODES field contains an integer value specifying the number of nodes in the network.
The ARCS field contains an integer value specifying the number of arcs in the network.

Node descriptors. All node descriptor lines must appear before all arc descriptor lines. The
node descriptor lines describe supply and demand nodes, but not transshipment nodes. That is,
only nodes with non-zero node supply/demand values appear. There is one node descriptor line
for each such node, with the following format:

n ID FLOW

The lower-case character n signifies that this is a node descriptor line. The ID field gives a node
identification number, an integer between 1 and NODES. The FLOW field gives the amount of supply
(if positive) or demand (if negative) at node ID.

Arc descriptors. There is one arc descriptor line for each arc in the network. Arc descriptor lines
are of the following format:

a SRC DST LOW CAP COST

The lower-case character a signifies that this is an arc descriptor line. For a directed arc (i, j)
the SRC field gives the identification number i for the tail endpoint, and the DST field gives the
identification number j for the head endpoint. Identification numbers are integers between 1 and
NODES. The LOW field specifies the minimum amount of flow that can be sent along arc (i, j), and
the CAP field gives the maximum amount of flow that can be sent along arc (i, j) in a feasible flow.
The COST field contains the per-unit cost of flow sent along arc (i, j).

Example. Below here is an example of the data file in DIMACS format corresponding to the
minimum cost flow problem shown on Fig 1.

c sample.min

c

c This is an example of the minimum cost flow problem data

c in DIMACS format.

c

p min 9 14

c

n 1 20

n 9 -20

c

a 1 2 0 14 0

a 1 4 0 23 0

a 2 3 0 10 2

a 2 4 0 9 3

a 3 5 2 12 1

a 3 8 0 18 0

a 4 5 0 26 0

a 5 2 0 11 1

a 5 6 0 25 5

23

a 5 7 0 4 7

a 6 7 0 7 0

a 6 8 4 8 0

a 7 9 0 15 3

a 8 9 0 20 9

c

c eof

2.1.3 glp write mincost — write minimum cost flow problem data in DIMACS
format

Synopsis

int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,

int a_cost, const char *fname);

Description

The routine glp_write_mincost writes the minimum cost flow problem data to a text file in
DIMACS format.

The parameter G is the graph (network) program object, which specifies the minimum cost flow
problem instance.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains bi, the supply/demand value. If v_rhs < 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains lij , the lower bound to the arc flow. If a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the per-unit cost of the arc flow. If a_cost < 0, it is assumed that cij = 0 for all arcs.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

24

2.1.4 glp mincost lp — convert minimum cost flow problem to LP

Synopsis

void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,

int a_low, int a_cap, int a_cost);

Description

The routine glp_mincost_lp builds LP problem (1)—(3), which corresponds to the specified
minimum cost flow problem.

The parameter P is the resultant LP problem object to be built. Note that on entry its current
content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies the minimum cost flow
problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic names of the graph
object components to assign symbolic names to the LP problem object components. If the flag is
GLP_OFF, no symbolic names are assigned.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains bi, the supply/demand value. If v_rhs < 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains lij , the lower bound to the arc flow. If a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the per-unit cost of the arc flow. If a_cost < 0, it is assumed that cij = 0 for all arcs.

Example

The example program below reads the minimum cost problem instance in DIMACS format from
file ‘sample.min’, converts the instance to LP, and then writes the resultant LP in CPLEX format
to file ‘mincost.lp’.

#include <stddef.h>

#include <glpk.h>

typedef struct { double rhs; } v_data;

typedef struct { double low, cap, cost; } a_data;

int main(void)

{ glp_graph *G;

glp_prob *P;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

P = glp_create_prob();

25

glp_mincost_lp(P, G, GLP_ON, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost));

glp_delete_graph(G);

glp_write_lp(P, NULL, "mincost.lp");

glp_delete_prob(P);

return 0;

}

If ‘sample.min’ is the example data file from the subsection describing glp_read_mincost, file
‘mincost.lp’ may look like follows:

Minimize

obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6)

+ x(5,2) + 3 x(7,9) + 9 x(8,9)

Subject To

r_1: + x(1,2) + x(1,4) = 20

r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0

r_3: + x(3,5) + x(3,8) - x(2,3) = 0

r_4: + x(4,5) - x(2,4) - x(1,4) = 0

r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0

r_6: + x(6,7) + x(6,8) - x(5,6) = 0

r_7: + x(7,9) - x(6,7) - x(5,7) = 0

r_8: + x(8,9) - x(6,8) - x(3,8) = 0

r_9: - x(8,9) - x(7,9) = -20

Bounds

0 <= x(1,4) <= 23

0 <= x(1,2) <= 14

0 <= x(2,4) <= 9

0 <= x(2,3) <= 10

0 <= x(3,8) <= 18

2 <= x(3,5) <= 12

0 <= x(4,5) <= 26

0 <= x(5,7) <= 4

0 <= x(5,6) <= 25

0 <= x(5,2) <= 11

4 <= x(6,8) <= 8

0 <= x(6,7) <= 7

0 <= x(7,9) <= 15

0 <= x(8,9) <= 20

End

26

2.1.5 glp mincost okalg — solve minimum cost flow problem with out-of-kilter
algorithm

Synopsis

int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,

int a_cost, double *sol, int a_x, int v_pi);

Description

The routine glp_mincost_okalg finds optimal solution to the minimum cost flow problem with
the out-of-kilter algorithm.2 Note that this routine requires all the problem data to be integer-
valued.

The parameter G is a graph (network) program object which specifies the minimum cost flow
problem instance to be solved.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains bi, the supply/demand value. This value must be integer in the range [−INT_MAX,
+INT_MAX]. If v_rhs < 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains lij , the lower bound to the arc flow. This bound must be integer in the range [0, INT_MAX].
If a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). This bound must be integer in
the range [lij , INT_MAX]. If a_cap < 0, it is assumed that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the per-unit cost of the arc flow. This value must be integer in the range [−INT_MAX,
+INT_MAX]. If a_cost < 0, it is assumed that cij = 0 for all arcs.

The parameter sol specifies a location, to which the routine stores the objective value (that is,
the total cost) found. If sol is NULL, the objective value is not stored.

The parameter a_x specifies an offset of the field of type double in the arc data block, to which
the routine stores xij , the arc flow found. If a_x < 0, the arc flow value is not stored.

The parameter v_pi specifies an offset of the field of type double in the vertex data block,
to which the routine stores πi, the node potential, which is the Lagrange multiplier for the corre-
sponding flow conservation equality constraint (see (2) in Subsection “Background”). If necessary,
the application program may use the node potentials to compute λij , reduced costs of the arc flows
xij , which are the Lagrange multipliers for the arc flow bound constraints (see (3) ibid.), using the
following formula:

λij = cij − (πi − πj),

where cij is the per-unit cost for arc (i, j).

2GLPK implementation of the out-of-kilter algorithm is based on the following book: L. R. Ford, Jr., and
D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report R-375-PR (August 1962), Chap. III “Minimal
Cost Flow Problems,” pp. 113-26.

27

Note that all solution components (the objective value, arc flows, and node potentials) computed
by the routine are always integer-valued.

Returns

0 Optimal solution found.

GLP_ENOPFS No (primal) feasible solution exists.

GLP_EDATA Unable to start the search, because some problem data are either not integer-valued
or out of range. This code is also returned if the total supply, which is the sum of
bi over all source nodes (nodes with bi > 0), exceeds INT_MAX.

GLP_ERANGE The search was prematurely terminated because of integer overflow.

GLP_EFAIL An error has been detected in the program logic. (If this code is returned for your
problem instance, please report to <bug-glpk@gnu.org>.)

Comments

By design the out-of-kilter algorithm is applicable only to networks, where bi = 0 for all nodes,
i.e. actually this algorithm finds a minimal cost circulation. Due to this requirement the rou-
tine glp_mincost_okalg converts the original network to a network suitable for the out-of-kilter
algorithm in the following way:3

1) it adds two auxiliary nodes s and t;

2) for each original node i with bi > 0 the routine adds auxiliary supply arc (s → i), flow xsi
through which is costless (csi = 0) and fixed to +bi (lsi = usi = +bi);

3) for each original node i with bi < 0 the routine adds auxiliary demand arc (i → t), flow xit
through which is costless (cit = 0) and fixed to −bi (lit = uit = −bi);

4) finally, the routine adds auxiliary feedback arc (t → s), flow xts through which is also costless

(cts = 0) and fixed to F (lts = uts = F), where F =
∑
bi>0

bi is the total supply.

Example

The example program below reads the minimum cost problem instance in DIMACS format from
file ‘sample.min’, solves it by using the routine glp_mincost_okalg, and writes the solution found
on the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double rhs, pi; } v_data;

typedef struct { double low, cap, cost, x; } a_data;

#define node(v) ((v_data *)((v)->data))

#define arc(a) ((a_data *)((a)->data))

3The conversion is performed internally and does not change the original network program object passed to the
routine.

28

int main(void)

{ glp_graph *G;

glp_vertex *v, *w;

glp_arc *a;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

ret = glp_mincost_okalg(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), &sol, offsetof(a_data, x),

offsetof(v_data, pi));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

printf("node %d: pi = %5g\n", i, node(v)->pi);

for (a = v->out; a != NULL; a = a->t_next)

{ w = a->head;

printf("arc %d->%d: x = %5g; lambda = %5g\n",

v->i, w->i, arc(a)->x,

arc(a)->cost - (node(v)->pi - node(w)->pi));

}

}

glp_delete_graph(G);

return 0;

}

If ‘sample.min’ is the example data file from the subsection describing glp_read_mincost, the
output may look like follows:

Reading min-cost flow problem data from ‘sample.min’...

Flow network has 9 nodes and 14 arcs

24 lines were read

ret = 0; sol = 213

node 1: pi = -12

arc 1->4: x = 13; lambda = 0

arc 1->2: x = 7; lambda = 0

node 2: pi = -12

arc 2->4: x = 0; lambda = 3

arc 2->3: x = 7; lambda = 0

node 3: pi = -14

arc 3->8: x = 5; lambda = 0

arc 3->5: x = 2; lambda = 3

node 4: pi = -12

arc 4->5: x = 13; lambda = 0

node 5: pi = -12

arc 5->7: x = 4; lambda = -1

arc 5->6: x = 11; lambda = 0

arc 5->2: x = 0; lambda = 1

node 6: pi = -17

arc 6->8: x = 4; lambda = 3

arc 6->7: x = 7; lambda = -3

node 7: pi = -20

arc 7->9: x = 11; lambda = 0

29

node 8: pi = -14

arc 8->9: x = 9; lambda = 0

node 9: pi = -23

2.1.6 glp mincost relax4 — solve minimum cost flow problem with relaxation
method of Bertsekas and Tseng (RELAX-IV)

Synopsis

int glp_mincost_relax4(glp_graph *G, int v_rhs, int a_low, int a_cap,

int a_cost, int crash, double *sol, int a_x, int a_rc);

Description

The routine glp_mincost_relax4 finds optimal solution to the minimum cost flow problem
with the relaxation method RELAX-IV developed by Bertsekas and Tseng.4 This method is one
of most efficient methods for network optimization.

Note that this routine requires all the problem data to be integer-valued.

The parameter G is a graph (network) program object which specifies the minimum cost flow
problem instance to be solved.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains bi, the supply/demand value. This value must be integer in the range [−INT_MAX/4,
+INT_MAX/4]. If v_rhs < 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block,
which contains lij , the lower bound to the arc flow. This bound must be integer in the range
[0, INT_MAX/4]. If a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). This bound must be integer in
the range [lij , INT_MAX/4]. If a_cap < 0, it is assumed that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the per-unit cost of the arc flow. This value must be integer in the range [−INT_MAX/4,
+INT_MAX/4]. If a_cost < 0, it is assumed that cij = 0 for all arcs.

The parameter crash is option specifying initialization method:

0 — default initialization is used;

1 — auction initialization is used.

If crash = 1, initialization is performed with a special crash procedure based on an auction/shorest
path method. This option is recommended for difficult problems where the default initialization
results in long running times.

The parameter sol specifies a location, to which the routine stores the objective value (that is,
the total cost) found. If sol is NULL, the objective value is not stored.

4GLPK implementation of this method is based on a C translation of the original Fortran code RELAX4 written by
Dimitri P. Bertsekas and Paul Tseng, with a contribution by Jonathan Eckstein in the phase II initialization.

30

The parameter a_x specifies an offset of the field of type double in the arc data block, to which
the routine stores xij , the arc flow found. If a_x < 0, the arc flow value is not stored.

The parameter a_rc specifies an offset of the field of type double in the arc data block, to which
the routine stores the reduced cost for corresponding arc flow (see (3) in Subsection “Background”).
If a_rc < 0, the reduced cost is not stored.

Note that all solution components (the objective value, arc flows, and node potentials) computed
by the routine are always integer-valued.

Returns

0 Optimal solution found.

GLP_ENOPFS No (primal) feasible solution exists.

GLP_EDATA Unable to start the search, because some problem data are either not integer-valued
or out of range.

GLP_ERANGE Unable to start the search because of integer overflow.

Example

The example program below reads the minimum cost problem instance in DIMACS format
from file ‘sample.min’, solves it by using the routine glp_mincost_relax4, and writes the solution
found on the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double rhs; } v_data;

typedef struct { double low, cap, cost, x, rc; } a_data;

#define node(v) ((v_data *)((v)->data))

#define arc(a) ((a_data *)((a)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v, *w;

glp_arc *a;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), "sample.min");

ret = glp_mincost_relax4(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),

offsetof(a_data, cost), 0, &sol, offsetof(a_data, x),

offsetof(a_data, rc));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (a = v->out; a != NULL; a = a->t_next)

31

{ w = a->head;

printf("arc %d->%d: x = %5g; rc = %5g\n",

v->i, w->i, arc(a)->x, arc(a)->rc);

}

}

glp_delete_graph(G);

return 0;

}

If ‘sample.min’ is the example data file from the subsection describing glp_read_mincost, the
output may look like follows:

Reading min-cost flow problem data from ‘sample.min’...

Flow network has 9 nodes and 14 arcs

24 lines were read

ret = 0; sol = 213

arc 1->4: x = 13; rc = 0

arc 1->2: x = 7; rc = 0

arc 2->4: x = 0; rc = 3

arc 2->3: x = 7; rc = 0

arc 3->8: x = 5; rc = 0

arc 3->5: x = 2; rc = 3

arc 4->5: x = 13; rc = 0

arc 5->7: x = 4; rc = -1

arc 5->6: x = 11; rc = 0

arc 5->2: x = 0; rc = 1

arc 6->8: x = 4; rc = 3

arc 6->7: x = 7; rc = -3

arc 7->9: x = 11; rc = 0

arc 8->9: x = 9; rc = 0

2.1.7 glp netgen — Klingman’s network problem generator

Synopsis

int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,

const int parm[1+15]);

Description

The routine glp_netgen is a GLPK version of the network problem generator developed by
Dr. Darwin Klingman.5 It can create capacitated and uncapacitated minimum cost flow (or trans-
shipment), transportation, and assignment problems.

The parameter G specifies the graph object, to which the generated problem data have to be
stored. Note that on entry the graph object is erased with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block, to
which the routine stores the supply or demand value. If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores the arc capacity. If a_cap < 0, the capacity is not stored.

5D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale capacitated assignment,
transportation, and minimum cost flow networks. Management Science 20 (1974), 814-20.

32

The parameter a_cost specifies an offset of the field of type double in the arc data block, to
which the routine stores the per-unit cost if the arc flow. If a_cost < 0, the cost is not stored.

The array parm contains description of the network to be generated:

parm[0] not used
parm[1] iseed 8-digit positive random number seed
parm[2] nprob 8-digit problem id number
parm[3] nodes total number of nodes
parm[4] nsorc total number of source nodes (including transshipment nodes)
parm[5] nsink total number of sink nodes (including transshipment nodes)
parm[6] iarcs number of arc
parm[7] mincst minimum cost for arcs
parm[8] maxcst maximum cost for arcs
parm[9] itsup total supply
parm[10] ntsorc number of transshipment source nodes
parm[11] ntsink number of transshipment sink nodes
parm[12] iphic percentage of skeleton arcs to be given the maximum cost
parm[13] ipcap percentage of arcs to be capacitated
parm[14] mincap minimum upper bound for capacitated arcs
parm[15] maxcap maximum upper bound for capacitated arcs

Returns

If the instance was successfully generated, the routine glp_netgen returns zero; otherwise, if
specified parameters are inconsistent, the routine returns a non-zero error code.

Notes

1. The routine generates a transportation problem if:

nsorc+ nsink = nodes, ntsorc = 0, and ntsink = 0.

2. The routine generates an assignment problem if the requirements for a transportation problem
are met and:

nsorc = nsink and itsup = nsorc.

3. The routine always generates connected graphs. So, if the number of requested arcs has been
reached and the generated instance is not fully connected, the routine generates a few remaining
arcs to ensure connectedness. Thus, the actual number of arcs generated by the routine may be
greater than the requested number of arcs.

2.1.8 glp netgen prob — Klingman’s standard network problem instance

Synopsis

void glp_netgen_prob(int nprob, int parm[1+15]);

Description

The routine glp_netgen_prob provides the set of parameters for Klingman’s network problem
generator (see the routine glp_netgen), which describe a standard network problem instance.

33

The parameter nprob (101 ≤ nprob ≤ 150) specifies the problem instance number.

The array parm contains description of the network, provided by the routine. (For detailed
description of these parameters see comments to the routine glp_netgen.)

Problem characteristics

The table below shows characteristics of Klingman’s standard network problem instances.

Problem Nodes Arcs Optimum

101 5000 25336 6191726
102 5000 25387 72337144
103 5000 25355 218947553
104 5000 25344 −19100371
105 5000 25332 31192578
106 5000 12870 4314276
107 5000 37832 7393769
108 5000 50309 8405738
109 5000 75299 9190300
110 5000 12825 8975048
111 5000 37828 4747532
112 5000 50325 4012671
113 5000 75318 2979725
114 5000 26514 5821181
115 5000 25962 6353310
116 5000 25304 5915426
117 5000 12816 4420560
118 5000 37797 7045842
119 5000 50301 7724179
120 5000 75330 8455200
121 5000 25000 66366360
122 5000 25000 30997529
123 5000 25000 23388777
124 5000 25000 17803443
125 5000 25000 14119622

Problem Nodes Arcs Optimum

126 5000 12500 18802218
127 5000 37500 27674647
128 5000 50000 30906194
129 5000 75000 40905209
130 5000 12500 38939608
131 5000 37500 16752978
132 5000 50000 13302951
133 5000 75000 9830268
134 1000 25000 3804874
135 2500 25000 11729616
136 7500 25000 33318101
137 10000 25000 46426030
138 5000 25000 60710879
139 5000 25000 32729682
140 5000 25000 27183831
141 5000 25000 19963286
142 5000 25000 20243457
143 5000 25000 18586777
144 5000 25000 2504591
145 5000 25000 215956138
146 5000 25000 2253113811
147 5000 25000 −427908373
148 5000 25000 −92965318
149 5000 25000 86051224
150 5000 25000 619314919

2.1.9 glp gridgen — grid-like network problem generator

Synopsis

int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,

const int parm[1+14]);

Description

The routine glp_gridgen is a GLPK version of the grid-like network problem generator devel-
oped by Yusin Lee and Jim Orlin.6

6Y. Lee and J. Orlin. GRIDGEN generator., 1991. The original code is publically available from ftp://dimacs.

rutgers.edu/pub/netflow/generators/network/gridgen.

34

ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen

The parameter G specifies the graph object, to which the generated problem data have to be
stored. Note that on entry the graph object is erased with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block, to
which the routine stores the supply or demand value. If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores the arc capacity. If a_cap < 0, the capacity is not stored.

The parameter a_cost specifies an offset of the field of type double in the arc data block, to
which the routine stores the per-unit cost if the arc flow. If a_cost < 0, the cost is not stored.

The array parm contains parameters of the network to be generated:

parm[0] not used
parm[1] two-ways arcs indicator:

1 — if links in both direction should be generated
0 — otherwise

parm[2] random number seed (a positive integer)
parm[3] number of nodes (the number of nodes generated might be slightly different to

make the network a grid)
parm[4] grid width
parm[5] number of sources
parm[6] number of sinks
parm[7] average degree
parm[8] total flow
parm[9] distribution of arc costs: 1 — uniform, 2 — exponential
parm[10] lower bound for arc cost (uniform), 100λ (exponential)
parm[11] upper bound for arc cost (uniform), not used (exponential)
parm[12] distribution of arc capacities: 1 — uniform, 2 — exponential
parm[13] lower bound for arc capacity (uniform), 100λ (exponential)
parm[14] upper bound for arc capacity (uniform), not used (exponential)

Returns

If the instance was successfully generated, the routine glp_gridgen returns zero; otherwise, if
specified parameters are inconsistent, the routine returns a non-zero error code.

Comments7

This network generator generates a grid-like network plus a super node. In additional to the
arcs connecting the nodes in the grid, there is an arc from each supply node to the super node and
from the super node to each demand node to guarantee feasiblity. These arcs have very high costs
and very big capacities.

The idea of this network generator is as follows: First, a grid of n1 × n2 is generated. For
example, 5× 3. The nodes are numbered as 1 to 15, and the supernode is numbered as n1×n2+1.
Then arcs between adjacent nodes are generated. For these arcs, the user is allowed to specify
either to generate two-way arcs or one-way arcs. If two-way arcs are to be generated, two arcs, one
in each direction, will be generated between each adjacent node pairs. Otherwise, only one arc will

7This material is based on comments to the original version of GRIDGEN.

35

be generated. If this is the case, the arcs will be generated in alterntive directions as shown below.

1 //

��

2 // 3 //

��

4 // 5

��
6

��

7oo

OO

8oo

��

9oo

OO

10oo

��
11 // 12 //

OO

13 // 14 //

OO

15

Then the arcs between the super node and the source/sink nodes are added as mentioned before.
If the number of arcs still doesn’t reach the requirement, additional arcs will be added by uniformly
picking random node pairs. There is no checking to prevent multiple arcs between any pair of nodes.
However, there will be no self-arcs (arcs that poins back to its tail node) in the network.

The source and sink nodes are selected uniformly in the network, and the imbalances of each
source/sink node are also assigned by uniform distribution.

36

2.2 Maximum flow problem

2.2.1 Background

The maximum flow problem (MAXFLOW) is stated as follows. Let there be given a directed
graph (flow network) G = (V,A), where V is a set of vertices (nodes), and A ⊆ V × V is a set of
arcs. Let also for each arc a = (i, j) ∈ A there be given its capacity uij . The problem is, for given
source node s ∈ V and sink node t ∈ V , to find flows xij through every arc of the network, which
satisfy the specified arc capacities and the conservation constraints at all nodes, and maximize the
total flow F through the network from s to t. Here the conservation constraint at a node means
that the total flow entering this node through its incoming arcs (plus F , if it is the source node)
must be equal to the total flow leaving this node through its outgoing arcs (plus F , if it is the sink
node). An example of the maximum flow problem, where s = v1 and t = v9, is shown on Fig. 2.

F

�� �O
�O
�O

v2 10 //

9

��

v3

12

��

18 // v8

20
MMM

MM

&&MM
MMM

v1

14qqqqq

88qqqqq

23
MMM

MM

&&MM
MMM

v6

7

��

8

OO

v9

��
�O
�O
�O

v4 26 // v5

11;;;;;;;;

]];;;;;;;;

25qqqqq

88qqqqq

4 // v7

15qqqqq

88qqqqq

F

Fig. 2. An example of the maximum flow problem.

The maximum flow problem can be naturally formulated as the following LP problem:

maximize
F (4)

subject to

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji =

+F, for i = s
0, for all i ∈ V \{s, t}

−F, for i = t
(5)

0 ≤ xij ≤ uij for all (i, j) ∈ A (6)

where F ≥ 0 is an additional variable playing the role of the objective.

Another LP formulation of the maximum flow problem, which does not include the variable F ,
is the following:

maximize
z =

∑
(s,j)∈A

xsj −
∑

(j,s)∈A

xjs (= F) (7)

subject to

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji

≥ 0, for i = s
= 0, for all i ∈ V \{s, t}
≤ 0, for i = t

(8)

0 ≤ xij ≤ uij for all (i, j) ∈ A (9)

37

2.2.2 glp read maxflow — read maximum flow problem data in DIMACS
format

Synopsis

int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,

const char *fname);

Description

The routine glp_read_maxflow reads the maximum flow problem data from a text file in DI-
MACS format.

The parameter G specifies the graph object, to which the problem data have to be stored. Note
that before reading data the current content of the graph object is completely erased with the
routine glp_erase_graph.

The pointer s specifies a location, to which the routine stores the ordinal number of the source
node. If s is NULL, the source node number is not stored.

The pointer t specifies a location, to which the routine stores the ordinal number of the sink
node. If t is NULL, the sink node number is not stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores uij , the arc capacity. If a_cap < 0, the arc capacity is not stored.

The character string fname specifies the name of a text file to be read in. (If the file name
name ends with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine
decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

Example

typedef struct

{ /* arc data block */

...

double cap;

...

} a_data;

int main(void)

{ glp_graph *G;

int s, t, ret;

G = glp_create_graph(..., sizeof(a_data));

ret = glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");

if (ret != 0) goto ...

...

}

38

DIMACS maximum flow problem format8

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [−231, 231 − 1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line must appear before any
node or arc descriptor lines. It has the following format:

p max NODES ARCS

The lower-case character p signifies that this is a problem line. The three-character problem
designator max identifies the file as containing specification information for the maximum flow
problem. The NODES field contains an integer value specifying the number of nodes in the network.
The ARCS field contains an integer value specifying the number of arcs in the network.

Node descriptors. Two node descriptor lines for the source and sink nodes must appear before
all arc descriptor lines. They may appear in either order, each with the following format:

n ID WHICH

The lower-case character n signifies that this a node descriptor line. The ID field gives a node
identification number, an integer between 1 and NODES. The WHICH field gives either a lower-case s
or t, designating the source and sink, respectively.

Arc descriptors. There is one arc descriptor line for each arc in the network. Arc descriptor lines
are of the following format:

a SRC DST CAP

The lower-case character a signifies that this is an arc descriptor line. For a directed arc (i, j)
the SRC field gives the identification number i for the tail endpoint, and the DST field gives the
identification number j for the head endpoint. Identification numbers are integers between 1 and
NODES. The CAP field gives the arc capacity, i.e. maximum amount of flow that can be sent along
arc (i, j) in a feasible flow.

Example. Below here is an example of the data file in DIMACS format corresponding to the
maximum flow problem shown on Fig 2.

c sample.max

c

c This is an example of the maximum flow problem data

c in DIMACS format.

c

8This material is based on the paper “The First DIMACS International Algorithm Implementation Challenge:
Problem Definitions and Specifications”, which is publically available at http://dimacs.rutgers.edu/Challenges/.

39

http://dimacs.rutgers.edu/Challenges/

p max 9 14

c

n 1 s

n 9 t

c

a 1 2 14

a 1 4 23

a 2 3 10

a 2 4 9

a 3 5 12

a 3 8 18

a 4 5 26

a 5 2 11

a 5 6 25

a 5 7 4

a 6 7 7

a 6 8 8

a 7 9 15

a 8 9 20

c

c eof

2.2.3 glp write maxflow — write maximum flow problem data in DIMACS
format

Synopsis

int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,

const char *fname);

Description

The routine glp_write_maxflow writes the maximum flow problem data to a text file in DI-
MACS format.

The parameter G is the graph (network) program object, which specifies the maximum flow
problem instance.

The parameter s specifies the ordinal number of the source node.

The parameter t specifies the ordinal number of the sink node.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that uij = 1 for all arcs.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

40

2.2.4 glp maxflow lp — convert maximum flow problem to LP

Synopsis

void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s, int t,

int a_cap);

Description

The routine glp_maxflow_lp builds LP problem (7)—(9), which corresponds to the specified
maximum flow problem.

The parameter P is the resultant LP problem object to be built. Note that on entry its current
content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies the maximum flow
problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic names of the graph
object components to assign symbolic names to the LP problem object components. If the flag is
GLP_OFF, no symbolic names are assigned.

The parameter s specifies the ordinal number of the source node.

The parameter t specifies the ordinal number of the sink node.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that uij = 1 for all arcs.

Example

The example program below reads the maximum flow problem in DIMACS format from file
‘sample.max’, converts the instance to LP, and then writes the resultant LP in CPLEX format to
file ‘maxflow.lp’.

#include <stddef.h>

#include <glpk.h>

int main(void)

{ glp_graph *G;

glp_prob *P;

int s, t;

G = glp_create_graph(0, sizeof(double));

glp_read_maxflow(G, &s, &t, 0, "sample.max");

P = glp_create_prob();

glp_maxflow_lp(P, G, GLP_ON, s, t, 0);

glp_delete_graph(G);

glp_write_lp(P, NULL, "maxflow.lp");

glp_delete_prob(P);

return 0;

}

If ‘sample.max’ is the example data file from the previous subsection, the output ‘maxflow.lp’
may look like follows:

41

Maximize

obj: + x(1,4) + x(1,2)

Subject To

r_1: + x(1,2) + x(1,4) >= 0

r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0

r_3: + x(3,5) + x(3,8) - x(2,3) = 0

r_4: + x(4,5) - x(2,4) - x(1,4) = 0

r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0

r_6: + x(6,7) + x(6,8) - x(5,6) = 0

r_7: + x(7,9) - x(6,7) - x(5,7) = 0

r_8: + x(8,9) - x(6,8) - x(3,8) = 0

r_9: - x(8,9) - x(7,9) <= 0

Bounds

0 <= x(1,4) <= 23

0 <= x(1,2) <= 14

0 <= x(2,4) <= 9

0 <= x(2,3) <= 10

0 <= x(3,8) <= 18

0 <= x(3,5) <= 12

0 <= x(4,5) <= 26

0 <= x(5,7) <= 4

0 <= x(5,6) <= 25

0 <= x(5,2) <= 11

0 <= x(6,8) <= 8

0 <= x(6,7) <= 7

0 <= x(7,9) <= 15

0 <= x(8,9) <= 20

End

2.2.5 glp maxflow ffalg — solve maximum flow problem with Ford-Fulkerson
algorithm

Synopsis

int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, double *sol,

int a_x, int v_cut);

Description

The routine glp_mincost_ffalg finds optimal solution to the maximum flow problem with the
Ford-Fulkerson algorithm.9 Note that this routine requires all the problem data to be integer-
valued.

The parameter G is a graph (network) program object which specifies the maximum flow problem
instance to be solved.

The parameter s specifies the ordinal number of the source node.

9GLPK implementation of the Ford-Fulkerson algorithm is based on the following book: L. R. Ford, Jr., and
D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report R-375-PR (August 1962), Chap. I “Static Maximal
Flow,” pp. 30-33.

42

The parameter t specifies the ordinal number of the sink node.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains uij , the upper bound to the arc flow (the arc capacity). This bound must be integer in
the range [0, INT_MAX]. If a_cap < 0, it is assumed that uij = 1 for all arcs.

The parameter sol specifies a location, to which the routine stores the objective value (that is,
the total flow from s to t) found. If sol is NULL, the objective value is not stored.

The parameter a_x specifies an offset of the field of type double in the arc data block, to which
the routine stores xij , the arc flow found. If a_x < 0, the arc flow values are not stored.

The parameter v_cut specifies an offset of the field of type int in the vertex data block, to
which the routine stores node flags corresponding to the optimal solution found: if the node flag is
1, the node is labelled, and if the node flag is 0, the node is unlabelled. The calling program may
use these node flags to determine the minimal cut, which is a subset of arcs whose one endpoint is
labelled and other is not. If v_cut < 0, the node flags are not stored.

Note that all solution components (the objective value and arc flows) computed by the routine
are always integer-valued.

Returns

0 Optimal solution found.

GLP_EDATA Unable to start the search, because some problem data are either not integer-valued
or out of range.

Example

The example program shown below reads the maximum flow problem instance in DIMACS for-
mat from file ‘sample.max’, solves it using the routine glp_maxflow_ffalg, and write the solution
found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int cut; } v_data;

typedef struct { double cap, x; } a_data;

#define node(v) ((v_data *)((v)->data))

#define arc(a) ((a_data *)((a)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v, *w;

glp_arc *a;

int i, s, t, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");

ret = glp_maxflow_ffalg(G, s, t, offsetof(a_data, cap),

&sol, offsetof(a_data, x), offsetof(v_data, cut));

43

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (a = v->out; a != NULL; a = a->t_next)

{ w = a->head;

printf("x[%d->%d] = %5g (%d)\n", v->i, w->i,

arc(a)->x, node(v)->cut ^ node(w)->cut);

}

}

glp_delete_graph(G);

return 0;

}

If ‘sample.max’ is the example data file from the subsection describing glp_read_maxflow, the
output may look like follows:

Reading maximum flow problem data from ‘sample.max’...

Flow network has 9 nodes and 14 arcs

24 lines were read

ret = 0; sol = 29

x[1->4] = 19 (0)

x[1->2] = 10 (0)

x[2->4] = 0 (0)

x[2->3] = 10 (1)

x[3->8] = 10 (0)

x[3->5] = 0 (1)

x[4->5] = 19 (0)

x[5->7] = 4 (1)

x[5->6] = 15 (0)

x[5->2] = 0 (0)

x[6->8] = 8 (1)

x[6->7] = 7 (1)

x[7->9] = 11 (0)

x[8->9] = 18 (0)

2.2.6 glp rmfgen — Goldfarb’s maximum flow problem generator

Synopsis

int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap, const int parm[1+5]);

Description

The routine glp_rmfgen is a GLPK version of the maximum flow problem generator developed
by D. Goldfarb and M. Grigoriadis.10,11,12

The parameter G specifies the graph object, to which the generated problem data have to be
stored. Note that on entry the graph object is erased with the routine glp_erase_graph.

10D. Goldfarb and M. D. Grigoriadis, “A computational comparison of the Dinic and network simplex methods for
maximum flow.” Annals of Op. Res. 13 (1988), pp. 83-123.

11U. Derigs and W. Meier, “Implementing Goldberg’s max-flow algorithm: A computational investigation.”
Zeitschrift für Operations Research 33 (1989), pp. 383-403.

12The original code of RMFGEN implemented by Tamas Badics is publically available from ftp://dimacs.

rutgers.edu/pub/netflow/generators/network/genrmf.

44

ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf
ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf

The pointers s and t specify locations, to which the routine stores the source and sink node
numbers, respectively. If s or t is NULL, corresponding node number is not stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores the arc capacity. If a_cap < 0, the capacity is not stored.

The array parm contains description of the network to be generated:

parm[0] not used
parm[1] seed random number seed (a positive integer)
parm[2] a frame size
parm[3] b depth
parm[4] c1 minimal arc capacity
parm[5] c2 maximal arc capacity

Returns

If the instance was successfully generated, the routine glp_netgen returns zero; otherwise, if
specified parameters are inconsistent, the routine returns a non-zero error code.

Comments13

The generated network is as follows. It has b pieces of frames of size a× a. (So alltogether the
number of vertices is a× a× b.)

In each frame all the vertices are connected with their neighbours (forth and back). In addition
the vertices of a frame are connected one to one with the vertices of next frame using a random
permutation of those vertices.

The source is the lower left vertex of the first frame, the sink is the upper right vertex of the
b-th frame.

t

+-------+

| .|

| . |

/ | / |

+-------+/ -+ b

| | |/.

a | -v- |/

| | |/

+-------+ 1

s a

The capacities are randomly chosen integers from the range of [c1, c2] in the case of intercon-
necting edges, and c2 · a2 for the in-frame edges.

13This material is based on comments to the original version of RMFGEN.

45

2.3 Assignment problem

2.3.1 Background

Let there be given an undirected bipartite graph G = (R ∪ S,E), where R and S are disjoint
sets of vertices (nodes), and E ⊆ R×S is a set of edges. Let also for each edge e = (i, j) ∈ E there
be given its cost cij . A matching (which in case of bipartite graph is also called assignment) M ⊆ E
in G is a set of pairwise non-adjacent edges, that is, no two edges in M share a common vertex. A
matching, which matches all vertices of the graph, is called a perfect matching. Obviously, a perfect
matching in bipartite graph G = (R ∪ S,E) defines some bijection R ↔ S.

The assignment problem has two different variants. In the first variant the problem is to find
matching (assignment) M , which maximizes the sum:∑

(i,j)∈M

cij (10)

(so this variant is also called the maximum weighted bipartite matching problem or, if all cij = 1,
the maximum cardinality bipartite matching problem). In the second, classic variant the problem is
to find perfect matching (assignment) M , which minimizes or maximizes the sum (10).

An example of the assignment problem, which is the maximum weighted bipartite matching
problem, is shown on Fig. 3.

The maximum weighted bipartite matching problem can be naturally formulated as the following
LP problem:

maximize
z =

∑
(i,j)∈E

cijxij (11)

subject to ∑
(i,j)∈E

xij ≤ 1 for all i ∈ R (12)

∑
(i,j)∈E

xij ≤ 1 for all j ∈ S (13)

0 ≤ xij ≤ 1 for all (i, j) ∈ E (14)

where xij = 1 means that (i, j) ∈ M , and xij = 0 means that (i, j) /∈ M .14

14The constraint matrix of LP formulation (11)—(14) is totally unimodular, due to which xij ∈ {0, 1} for any basic
solution.

46

v1 13

21
UUUU

UUUU
UUU

UUUU
UUUU

UU
20
BB

BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

v9

v2 12

8
LLL

LLL
L

LLL
LLL

LLL
LLL

LLL
LLL

26
BB

BB
BB

BB
BB

B

BB
BB

BB
BB

BB
BB

BB
BB

BB

v10

v3 22

11
LLL

LLL

LLL
LLL

LLL
LLL

LLL
LL

v11

v4

12||||||||||||||||||

|||||||||||

36

25
LLL

LLL
LLL

LLL
LLL

LL

LLL
LLL

v12

v5

41rrrrrrrrrr

rrrrrrrrrrrrrr

40iiiiiiii

iiiiiiiiiiiii

11

4
UUUU

UUUU
UUUU

U

UUUU
UUUU

8
LLL

LLL
LLL

LLL

LLL
LLL

LLL
LLL

35
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

32

99
99

99
99

99
99

99
99

9

99
99

99
99

99
99

99
99

9

v13

v6

13

v14

v7

19

v15

v8

39

15

v16

v17

Fig. 3. An example of the assignment problem.

Similarly, the perfect assignment problem can be naturally formulated as the following LP
problem:

minimize (or maximize)

z =
∑

(i,j)∈E

cijxij (15)

subject to ∑
(i,j)∈E

xij = 1 for all i ∈ R (16)

∑
(i,j)∈E

xij = 1 for all j ∈ S (17)

0 ≤ xij ≤ 1 for all (i, j) ∈ E (18)

where variables xij have the same meaning as for (11)—(14) above.

In GLPK an undirected bipartite graph G = (R ∪ S,E) is represented as directed graph G =
(V,A), where V = R ∪ S and A = {(i, j) : (i, j) ∈ E}, i.e. every edge (i, j) ∈ E in G corresponds
to arc (i → j) ∈ A in G.

47

2.3.2 glp read asnprob — read assignment problem data in DIMACS format

Synopsis

int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char *fname);

Description

The routine glp_read_asnprob reads the assignment problem data from a text file in DIMACS
format.

The parameter G specifies the graph object, to which the problem data have to be stored. Note
that before reading data the current content of the graph object is completely erased with the
routine glp_erase_graph.

The parameter v_set specifies an offset of the field of type int in the vertex data block, to
which the routine stores the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

If v_set < 0, the node set indicator is not stored.

The parameter a_cost specifies an offset of the field of type double in the arc data block, to
which the routine stores the edge cost cij . If a_cost < 0, the edge cost is not stored.

The character string fname specifies the name of a text file to be read in. (If the file name
name ends with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine
decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

Example. Below here is an example program that read the assignment problem data in DIMACS
format from a text file ‘sample.asn’.

typedef struct

{ /* vertex data block */

...

int set;

...

} v_data;

typedef struct

{ /* arc data block */

...

double cost;

...

} a_data;

int main(void)

{ glp_graph *G;

int ret;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

48

ret = glp_read_asnprob(G, offsetof(v_data, set),

offsetof(a_data, cost), "sample.asn");

if (ret != 0) goto ...

...

}

DIMACS assignment problem format15

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [−231, 231 − 1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line must appear before any
node or arc descriptor lines. It has the following format:

p asn NODES EDGES

The lower-case character p signifies that this is a problem line. The three-character problem
designator asn identifies the file as containing specification information for the assignment problem.
The NODES field contains an integer value specifying the total number of nodes in the graph (i.e. in
both sets R and S). The EDGES field contains an integer value specifying the number of edges in
the graph.

Node descriptors. All node descriptor lines must appear before all edge descriptor lines. The
node descriptor lines lists the nodes in set R only, and all other nodes are assumed to be in set S.
There is one node descriptor line for each such node, with the following format:

n ID

The lower-case character n signifies that this is a node descriptor line. The ID field gives a node
identification number, an integer between 1 and NODES.

Edge descriptors. There is one edge descriptor line for each edge in the graph. Edge descriptor
lines are of the following format:

a SRC DST COST

The lower-case character a signifies that this is an edge descriptor line. For each edge (i, j), where
i ∈ R and j ∈ S, the SRC field gives the identification number of vertex i, and the DST field gives
the identification number of vertex j. Identification numbers are integers between 1 and NODES.
The COST field contains the cost of edge (i, j).

Example. Below here is an example of the data file in DIMACS format corresponding to the
assignment problem shown on Fig 3.

15This material is based on the paper “The First DIMACS International Algorithm Implementation Challenge:
Problem Definitions and Specifications”, which is publically available at http://dimacs.rutgers.edu/Challenges/.

49

http://dimacs.rutgers.edu/Challenges/

c sample.asn

c

c This is an example of the assignment problem data

c in DIMACS format.

c

p asn 17 22

c

n 1

n 2

n 3

n 4

n 5

n 6

n 7

n 8

c

a 1 9 13

a 1 10 21

a 1 12 20

a 2 10 12

a 2 12 8

a 2 13 26

a 3 11 22

a 3 13 11

a 4 9 12

a 4 12 36

a 4 14 25

a 5 11 41

a 5 12 40

a 5 13 11

a 5 14 4

a 5 15 8

a 5 16 35

a 5 17 32

a 6 9 13

a 7 10 19

a 8 10 39

a 8 11 15

c

c eof

50

2.3.3 glp write asnprob — write assignment problem data in DIMACS format

Synopsis

int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char *fname);

Description

The routine glp_write_asnprob writes the assignment problem data to a text file in DIMACS
format.

The parameter G is the graph program object, which specifies the assignment problem instance.

The parameter v_set specifies an offset of the field of type int in the vertex data block, which
contains the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R, and a node having no
outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the edge cost. If a_cost < 0, it is assumed that cij = 1 for all edges.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Note

The routine glp_write_asnprob does not check that the specified graph object correctly rep-
resents a bipartite graph. To make sure that the problem data are correct, use the routine
glp_check_asnprob.

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

2.3.4 glp check asnprob — check correctness of assignment problem data

Synopsis

int glp_check_asnprob(glp_graph *G, int v_set);

Description

The routine glp_check_asnprob checks that the specified graph object G correctly represents
a bipartite graph.

The parameter v_set specifies an offset of the field of type int in the vertex data block, which
contains the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

51

If v_set < 0, it is assumed that a node having no incoming arcs is in set R, and a node having no
outgoing arcs is in set S.

Returns

0 — the data are correct;

1 — the set indicator of some node is 0, however, that node has one or more incoming arcs;

2 — the set indicator of some node is 1, however, that node has one or more outgoing arcs;

3 — the set indicator of some node is invalid (neither 0 nor 1);

4 — some node has both incoming and outgoing arcs.

2.3.5 glp asnprob lp — convert assignment problem to LP

Synopsis

int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names, int v_set,

int a_cost);

Description

The routine glp_asnprob_lp builds LP problem, which corresponds to the specified assignment
problem.

The parameter P is the resultant LP problem object to be built. Note that on entry its current
content is erased with the routine glp_erase_prob.

The parameter form defines which LP formulation should be used:

GLP_ASN_MIN — perfect matching (15)—(18), minimization;

GLP_ASN_MAX — perfect matching (15)—(18), maximization;

GLP_ASN_MMP — maximum weighted matching (11)—(14).

The parameter G is the graph program object, which specifies the assignment problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic names of the graph
object components to assign symbolic names to the LP problem object components. If the flag is
GLP_OFF, no symbolic names are assigned.

The parameter v_set specifies an offset of the field of type int in the vertex data block, which
contains the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R, and a node having no
outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains cij , the edge cost. If a_cost < 0, it is assumed that cij = 1 for all edges.

52

Returns

If the LP problem has been successfully built, the routine glp_asnprob_lp returns zero, other-
wise, non-zero (see the routine glp_check_asnprob).

Example

The example program below reads the assignment problem instance in DIMACS format from
file ‘sample.asn’, converts the instance to LP (11)—(14), and writes the resultant LP in CPLEX
format to file ‘matching.lp’.

#include <stddef.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { double cost; } a_data;

int main(void)

{ glp_graph *G;

glp_prob *P;

G = glp_create_graph(sizeof(v_data), sizeof(a_data));

glp_read_asnprob(G, offsetof(v_data, set),

offsetof(a_data, cost), "sample.asn");

P = glp_create_prob();

glp_asnprob_lp(P, GLP_ASN_MMP, G, GLP_ON,

offsetof(v_data, set), offsetof(a_data, cost));

glp_delete_graph(G);

glp_write_lp(P, NULL, "matching.lp");

glp_delete_prob(P);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing glp_read_asnprob, file
‘matching.lp’ may look like follows:

Maximize

obj: + 20 x(1,12) + 21 x(1,10) + 13 x(1,9) + 26 x(2,13) + 8 x(2,12)

+ 12 x(2,10) + 11 x(3,13) + 22 x(3,11) + 25 x(4,14) + 36 x(4,12)

+ 12 x(4,9) + 32 x(5,17) + 35 x(5,16) + 8 x(5,15) + 4 x(5,14)

+ 11 x(5,13) + 40 x(5,12) + 41 x(5,11) + 13 x(6,9) + 19 x(7,10)

+ 15 x(8,11) + 39 x(8,10)

Subject To

r_1: + x(1,9) + x(1,10) + x(1,12) <= 1

r_2: + x(2,10) + x(2,12) + x(2,13) <= 1

r_3: + x(3,11) + x(3,13) <= 1

r_4: + x(4,9) + x(4,12) + x(4,14) <= 1

r_5: + x(5,11) + x(5,12) + x(5,13) + x(5,14) + x(5,15) + x(5,16)

+ x(5,17) <= 1

r_6: + x(6,9) <= 1

r_7: + x(7,10) <= 1

r_8: + x(8,10) + x(8,11) <= 1

r_9: + x(6,9) + x(4,9) + x(1,9) <= 1

r_10: + x(8,10) + x(7,10) + x(2,10) + x(1,10) <= 1

r_11: + x(8,11) + x(5,11) + x(3,11) <= 1

r_12: + x(5,12) + x(4,12) + x(2,12) + x(1,12) <= 1

r_13: + x(5,13) + x(3,13) + x(2,13) <= 1

53

r_14: + x(5,14) + x(4,14) <= 1

r_15: + x(5,15) <= 1

r_16: + x(5,16) <= 1

r_17: + x(5,17) <= 1

Bounds

0 <= x(1,12) <= 1

0 <= x(1,10) <= 1

0 <= x(1,9) <= 1

0 <= x(2,13) <= 1

0 <= x(2,12) <= 1

0 <= x(2,10) <= 1

0 <= x(3,13) <= 1

0 <= x(3,11) <= 1

0 <= x(4,14) <= 1

0 <= x(4,12) <= 1

0 <= x(4,9) <= 1

0 <= x(5,17) <= 1

0 <= x(5,16) <= 1

0 <= x(5,15) <= 1

0 <= x(5,14) <= 1

0 <= x(5,13) <= 1

0 <= x(5,12) <= 1

0 <= x(5,11) <= 1

0 <= x(6,9) <= 1

0 <= x(7,10) <= 1

0 <= x(8,11) <= 1

0 <= x(8,10) <= 1

End

2.3.6 glp asnprob okalg — solve assignment problem with out-of-kilter
algorithm

Synopsis

int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost,

double *sol, int a_x);

Description

The routine glp_mincost_okalg finds optimal solution to the assignment problem with the
out-of-kilter algorithm.16 Note that this routine requires all the problem data to be integer-valued.

The parameter form defines which LP formulation should be used:

GLP_ASN_MIN — perfect matching (15)—(18), minimization;

GLP_ASN_MAX — perfect matching (15)—(18), maximization;

GLP_ASN_MMP — maximum weighted matching (11)—(14).

16GLPK implementation of the out-of-kilter algorithm is based on the following book: L. R. Ford, Jr., and
D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report R-375-PR (August 1962), Chap. III “Minimal
Cost Flow Problems,” pp. 113-26.

54

The parameter G is the graph program object, which specifies the assignment problem instance.

The parameter v_set specifies an offset of the field of type int in the vertex data block, which
contains the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R, and a node having no
outgoing arcs is in set S.

The parameter a_cost specifies an offset of the field of type double in the arc data block,
which contains cij , the edge cost. This value must be integer in the range [-INT_MAX, +INT_MAX].
If a_cost < 0, it is assumed that cij = 1 for all edges.

The parameter sol specifies a location, to which the routine stores the objective value (that is,
the total cost) found. If sol is NULL, the objective value is not stored.

The parameter a_x specifies an offset of the field of type int in the arc data block, to which
the routine stores xij . If a_x < 0, this value is not stored.

Returns

0 Optimal solution found.

GLP_ENOPFS No (primal) feasible solution exists.

GLP_EDATA Unable to start the search, because the assignment problem data are either incorrect
(this error is detected by the routine glp_check_asnprob), not integer-valued or out
of range.

GLP_ERANGE The search was prematurely terminated because of integer overflow.

GLP_EFAIL An error has been detected in the program logic. (If this code is returned for your
problem instance, please report to <bug-glpk@gnu.org>.)

Comments

Since the out-of-kilter algorithm is designed to find a minimal cost circulation, the routine
glp_asnprob_okalg converts the original graph to a network suitable for this algorithm in the
following way:17

1) it replaces each edge (i, j) by arc (i → j), flow xij through which has zero lower bound
(lij = 0), unity upper bound (uij = 1), and per-unit cost +cij (in case of GLP_ASN_MIN), or −cij
(in case of GLP_ASN_MAX and GLP_ASN_MMP);

2) then it adds one auxiliary feedback node k;

3) for each original node i ∈ R the routine adds auxiliary supply arc (k → i), flow xki through
which is costless (cki = 0) and either fixed at 1 (lki = uki = 1, in case of GLP_ASN_MIN and
GLP_ASN_MAX) or has zero lower bound and unity upper bound (lij = 0, uij = 1, in case of
GLP_ASN_MMP);

17The conversion is performed internally and does not change the original graph program object passed to the
routine.

55

4) similarly, for each original node j ∈ S the routine adds auxiliary demand arc (j → k), flow
xjk through which is costless (cjk = 0) and either fixed at 1 (ljk = ujk = 1, in case of GLP_ASN_MIN
and GLP_ASN_MAX) or has zero lower bound and unity upper bound (ljk = 0, ujk = 1, in case of
GLP_ASN_MMP).

Example

The example program shown below reads the assignment problem instance in DIMACS format
from file ‘sample.asn’, solves it by using the routine glp_asnprob_okalg, and writes the solution
found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { double cost; int x; } e_data;

#define node(v) ((v_data *)((v)->data))

#define edge(e) ((e_data *)((e)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

glp_arc *e;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), sizeof(e_data));

glp_read_asnprob(G, offsetof(v_data, set),

offsetof(e_data, cost), "sample.asn");

ret = glp_asnprob_okalg(GLP_ASN_MMP, G,

offsetof(v_data, set), offsetof(e_data, cost), &sol,

offsetof(e_data, x));

printf("ret = %d; sol = %5g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (e = v->out; e != NULL; e = e->t_next)

printf("edge %2d %2d: x = %d; c = %g\n",

e->tail->i, e->head->i, edge(e)->x, edge(e)->cost);

}

glp_delete_graph(G);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing glp_read_asnprob, the
output may look like follows:

Reading assignment problem data from ‘sample.asn’...

Assignment problem has 8 + 9 = 17 nodes and 22 arcs

38 lines were read

ret = 0; sol = 180

edge 1 12: x = 1; c = 20

edge 1 10: x = 0; c = 21

edge 1 9: x = 0; c = 13

edge 2 13: x = 1; c = 26

56

edge 2 12: x = 0; c = 8

edge 2 10: x = 0; c = 12

edge 3 13: x = 0; c = 11

edge 3 11: x = 1; c = 22

edge 4 14: x = 1; c = 25

edge 4 12: x = 0; c = 36

edge 4 9: x = 0; c = 12

edge 5 17: x = 0; c = 32

edge 5 16: x = 1; c = 35

edge 5 15: x = 0; c = 8

edge 5 14: x = 0; c = 4

edge 5 13: x = 0; c = 11

edge 5 12: x = 0; c = 40

edge 5 11: x = 0; c = 41

edge 6 9: x = 1; c = 13

edge 7 10: x = 0; c = 19

edge 8 11: x = 0; c = 15

edge 8 10: x = 1; c = 39

2.3.7 glp asnprob hall — find bipartite matching of maximum cardinality

Synopsis

int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);

Description

The routine glp_asnprob_hall finds a matching of maximal cardinality in the specified bipartite
graph. It uses a version of the Fortran routine MC21A developed by I. S. Duff18, which implements
Hall’s algorithm.19

The parameter G is a pointer to the graph program object.

The parameter v_set specifies an offset of the field of type int in the vertex data block, which
contains the node set indicator:

0 — the node is in set R;

1 — the node is in set S.

If v_set < 0, it is assumed that a node having no incoming arcs is in set R, and a node having no
outgoing arcs is in set S.

The parameter a_x specifies an offset of the field of type int in the arc data block, to which
the routine stores xij . If a_x < 0, this value is not stored.

Returns

The routine glp_asnprob_hall returns the cardinality of the matching found. However, if the
specified graph is incorrect (as detected by the routine glp_check_asnprob), this routine returns
a negative value.

18I. S. Duff, Algorithm 575: Permutations for zero-free diagonal, ACM Trans. on Math. Softw. 7 (1981),
pp. 387-390.

19M. Hall, “An Algorithm for Distinct Representatives,” Am. Math. Monthly 63 (1956), pp. 716-717.

57

Comments

The same solution may be obtained with the routine glp_asnprob_okalg (for LP formulation
GLP_ASN_MMP and all edge costs equal to 1). However, the routine glp_asnprob_hall is much
faster.

Example

The example program shown below reads the assignment problem instance in DIMACS format
from file ‘sample.asn’, finds a bipartite matching of maximal cardinality by using the routine
glp_asnprob_hall, and writes the solution found to the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { int set; } v_data;

typedef struct { int x; } e_data;

#define node(v) ((v_data *)((v)->data))

#define edge(e) ((e_data *)((e)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

glp_arc *e;

int i, card;

G = glp_create_graph(sizeof(v_data), sizeof(e_data));

glp_read_asnprob(G, offsetof(v_data, set), -1,

"sample.asn");

card = glp_asnprob_hall(G, offsetof(v_data, set),

offsetof(e_data, x));

printf("card = %d\n", card);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

for (e = v->out; e != NULL; e = e->t_next)

printf("edge %2d %2d: x = %d\n",

e->tail->i, e->head->i, edge(e)->x);

}

glp_delete_graph(G);

return 0;

}

If ‘sample.asn’ is the example data file from the subsection describing glp_read_asnprob, the
output may look like follows:

Reading assignment problem data from ‘sample.asn’...

Assignment problem has 8 + 9 = 17 nodes and 22 arcs

38 lines were read

card = 7

edge 1 12: x = 1

edge 1 10: x = 0

edge 1 9: x = 0

edge 2 13: x = 1

edge 2 12: x = 0

58

edge 2 10: x = 0

edge 3 13: x = 0

edge 3 11: x = 1

edge 4 14: x = 1

edge 4 12: x = 0

edge 4 9: x = 0

edge 5 17: x = 1

edge 5 16: x = 0

edge 5 15: x = 0

edge 5 14: x = 0

edge 5 13: x = 0

edge 5 12: x = 0

edge 5 11: x = 0

edge 6 9: x = 1

edge 7 10: x = 1

edge 8 11: x = 0

edge 8 10: x = 0

59

2.4 Critical path problem

2.4.1 Background

The critical path problem (CPP) is stated as follows. Let there be given a project J , which is a
set of jobs (tasks, activities, etc.). Performing each job i ∈ J requires time ti ≥ 0. Besides, over the
set J there is given a precedence relation R ⊆ J×J , where (i, j) ∈ R means that job i immediately
precedes job j, i.e. performing job j cannot start until job i has been completely performed. The
problem is to find starting times xi for each job i ∈ J , which satisfy to the precedence relation and
minimize the total duration (makespan) of the project.

The following is an example of the critical path problem:

Job Desription Time Predecessors

A Excavate 3 —
B Lay foundation 4 A
C Rough plumbing 3 B
D Frame 10 B
E Finish exterior 8 D
F Install HVAC 4 D
G Rough electric 6 D
H Sheet rock 8 C, E, F, G
I Install cabinets 5 H
J Paint 5 H
K Final plumbing 4 I
L Final electric 2 J
M Install flooring 4 K, L

Obviously, the project along with the precedence relation can be represented as a directed graph
G = (J,R) called project network, where each node i ∈ J corresponds to a job, and arc (i → j) ∈ R
means that job i immediately precedes job j.20 The project network for the example above is shown
on Fig. 4.

May note that the project network must be acyclic; otherwise, it would be impossible to satisfy
to the precedence relation for any job that belongs to a cycle.

20There exists another network representation of the critical path problem, where jobs correspond to arcs while
nodes correspond to events introduced to express the precedence relation. That representation, however, is much less
convenient than the one, where jobs are represented as nodes of the network.

60

C|3

!!D
DD

DD
DD

D
I|5 // K|4

""E
EE

EE
EE

E

A|3 // B|4

66lllllllllllllllll

""E
EE

EE
EE

E
E|8 // H|8

=={{{{{{{{

!!C
CC

CC
CC

C
M |4

D|10

<<yyyyyyyy
//

""E
EE

EE
EE

E
F |4

==zzzzzzzz
J |5 // L|2

<<zzzzzzzz

G|6

FF����������������

Fig. 4. An example of the project network.

The critical path problem can be naturally formulated as the following LP problem:

minimize
z (19)

subject to
xi + ti ≤ z for all i ∈ J (20)

xi + ti ≤ xj for all (i, j) ∈ R (21)

xi ≥ 0 for all i ∈ J (22)

The inequality constraints (21), which are active in the optimal solution, define so called critical
path having the following property: the minimal project duration z can be decreased only by
decreasing the times tj for jobs on the critical path, and delaying any critical job delays the entire
project.

2.4.2 glp cpp — solve critical path problem

Synopsis

double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);

Description

The routine glp_cpp solves the critical path problem represented in the form of the project
network.

The parameter G is a pointer to the graph object, which specifies the project network. This
graph must be acyclic. Multiple arcs are allowed being considered as single arcs.

The parameter v_t specifies an offset of the field of type double in the vertex data block, which
contains time ti ≥ 0 needed to perform corresponding job j ∈ J . If v_t < 0, it is assumed that
ti = 1 for all jobs.

The parameter v_es specifies an offset of the field of type double in the vertex data block, to
which the routine stores the earliest start time for corresponding job. If v_es < 0, this time is not
stored.

61

The parameter v_ls specifies an offset of the field of type double in the vertex data block, to
which the routine stores the latest start time for corresponding job. If v_ls < 0, this time is not
stored.

The difference between the latest and earliest start times of some job is called its time reserve.
Delaying a job within its time reserve does not affect the project duration, so if the time reserve is
zero, the corresponding job is critical.

Returns

The routine glp_cpp returns the minimal project duration, i.e. minimal time needed to perform
all jobs in the project.

Example

The example program below solves the critical path problem shown on Fig. 4 by using the
routine glp_cpp and writes the solution found on the standard output.

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double t, es, ls; } v_data;

#define node(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

int i;

double t, es, ef, ls, lf, total;

G = glp_create_graph(sizeof(v_data), 0);

glp_add_vertices(G, 13);

node(G->v[1])->t = 3; /* A: Excavate */

node(G->v[2])->t = 4; /* B: Lay foundation */

node(G->v[3])->t = 3; /* C: Rough plumbing */

node(G->v[4])->t = 10; /* D: Frame */

node(G->v[5])->t = 8; /* E: Finish exterior */

node(G->v[6])->t = 4; /* F: Install HVAC */

node(G->v[7])->t = 6; /* G: Rough elecrtic */

node(G->v[8])->t = 8; /* H: Sheet rock */

node(G->v[9])->t = 5; /* I: Install cabinets */

node(G->v[10])->t = 5; /* J: Paint */

node(G->v[11])->t = 4; /* K: Final plumbing */

node(G->v[12])->t = 2; /* L: Final electric */

node(G->v[13])->t = 4; /* M: Install flooring */

glp_add_arc(G, 1, 2); /* A precedes B */

glp_add_arc(G, 2, 3); /* B precedes C */

glp_add_arc(G, 2, 4); /* B precedes D */

glp_add_arc(G, 4, 5); /* D precedes E */

glp_add_arc(G, 4, 6); /* D precedes F */

glp_add_arc(G, 4, 7); /* D precedes G */

glp_add_arc(G, 3, 8); /* C precedes H */

glp_add_arc(G, 5, 8); /* E precedes H */

glp_add_arc(G, 6, 8); /* F precedes H */

glp_add_arc(G, 7, 8); /* G precedes H */

62

glp_add_arc(G, 8, 9); /* H precedes I */

glp_add_arc(G, 8, 10); /* H precedes J */

glp_add_arc(G, 9, 11); /* I precedes K */

glp_add_arc(G, 10, 12); /* J precedes L */

glp_add_arc(G, 11, 13); /* K precedes M */

glp_add_arc(G, 12, 13); /* L precedes M */

total = glp_cpp(G, offsetof(v_data, t), offsetof(v_data, es),

offsetof(v_data, ls));

printf("Minimal project duration is %.2f\n\n", total);

printf("Job Time ES EF LS LF\n");

printf("--- ------ ------ ------ ------ ------\n");

for (i = 1; i <= G->nv; i++)

{ t = node(G->v[i])->t;

es = node(G->v[i])->es;

ef = es + node(G->v[i])->t;

ls = node(G->v[i])->ls;

lf = ls + node(G->v[i])->t;

printf("%3d %6.2f %s %6.2f %6.2f %6.2f %6.2f\n",

i, t, ls - es < 0.001 ? "*" : " ", es, ef, ls, lf);

}

glp_delete_graph(G);

return 0;

}

The output from the example program shown below includes job number, the time needed to
perform a job, earliest start time (ES), earliest finish time (EF), latest start time (LS), and latest
finish time (LF) for each job in the project. Critical jobs are marked by asterisks.

Minimal project duration is 46.00

Job Time ES EF LS LF

--- ------ ------ ------ ------ ------

1 3.00 * 0.00 3.00 0.00 3.00

2 4.00 * 3.00 7.00 3.00 7.00

3 3.00 7.00 10.00 22.00 25.00

4 10.00 * 7.00 17.00 7.00 17.00

5 8.00 * 17.00 25.00 17.00 25.00

6 4.00 17.00 21.00 21.00 25.00

7 6.00 17.00 23.00 19.00 25.00

8 8.00 * 25.00 33.00 25.00 33.00

9 5.00 * 33.00 38.00 33.00 38.00

10 5.00 33.00 38.00 35.00 40.00

11 4.00 * 38.00 42.00 38.00 42.00

12 2.00 38.00 40.00 40.00 42.00

13 4.00 * 42.00 46.00 42.00 46.00

63

Chapter 3

Graph Optimization API Routines

3.1 Maximum clique problem

3.1.1 Background

The maximum clique problem (MCP) is a classic combinatorial optimization problem. Given
an undirected graph G = (V,E), where V is a set of vertices, and E is a set of edges, this problem
is to find the largest clique C ⊆ G, i.e. the largest induced complete subgraph. A generalization of
this problem is the maximum weight clique problem (MWCP), which is to find a clique C ⊆ G of

the largest weight
∑
v∈C

w(v) → max, where w(v) is a weight of vertex v ∈ V .

An example of the maximum weight clique problem is shown on Fig. 5.

3.1.2 glp wclique exact — find maximum weight clique with exact algorithm

Synopsis

int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set);

Description

The routine glp wclique exact finds a maximum weight clique in the specified undirected
graph with the exact algorithm developed by Patric Österg̊ard.1

The parameter G is the program object, which specifies an undirected graph. Each arc (x → y)
in G is considered as edge (x, y), self-loops are ignored, and multiple edges, if present, are replaced
(internally) by simple edges.

The parameter v wgt specifies an offset of the field of type double in the vertex data block,
which contains a weight of corresponding vertex. Vertex weights must be integer-valued in the
range [0, INT MAX]. If v wgt < 0, it is assumed that all vertices of the graph have the weight 1.

1P. R. J. Österg̊ard, A new algorithm for the maximum-weight clique problem, Nordic J. of Computing, Vol. 8,
No. 4, 2001, pp. 424–36.

64

v1

}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
A

v2

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
A

,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,

v3

kkkk
kkkk

kkkk
kkkk

kkkk
kkkk

kkkk
kkkk

kkkk

}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}

v4

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
A v5

}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}

��
��
��
��
��
��
�

v6 v7

v8

w(v1) = 3
w(v2) = 4
w(v3) = 8
w(v4) = 1
w(v5) = 5
w(v6) = 2
w(v7) = 1
w(v8) = 3

Fig. 5. An example of the maximum weight clique problem.

The parameter sol specifies a location, to which the routine stores the weight of the clique
found (the clique weight is the sum of weights of all vertices included in the clique.) If sol is NULL,
the solution is not stored.

The parameter v set specifies an offset of the field of type int in the vertex data block, to
which the routines stores a vertex flag: 1 means that the corresponding vertex is included in the
clique found, and 0 otherwise. If v set < 0, vertex flags are not stored.

Returns

0 Optimal solution found.

GLP_EDATA Unable to start the search, because some vertex weights are either not integer-valued
or out of range. This code is also returned if the sum of weights of all vertices exceeds
INT MAX.

Notes

1. The routine glp wclique exact finds exact solution. Since both MCP and MWCP problems
are NP-complete, the algorithm may require exponential time in worst cases.

2. Internally the specified graph is converted to an adjacency matrix in dense format. This
requires about |V |2/16 bytes of memory, where |V | is the number of vertices in the graph.

Example

The example program shown below reads a MWCP instance in DIMACS clique/coloring format
from file ‘sample.clq’, finds the clique of largest weight, and writes the solution found on the
standard output.

65

#include <stddef.h>

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

typedef struct { double wgt; int set; } v_data;

#define vertex(v) ((v_data *)((v)->data))

int main(void)

{ glp_graph *G;

glp_vertex *v;

int i, ret;

double sol;

G = glp_create_graph(sizeof(v_data), 0);

glp_read_ccdata(G, offsetof(v_data, wgt), "sample.clq");

ret = glp_wclique_exact(G, offsetof(v_data, wgt), &sol,

offsetof(v_data, set));

printf("ret = %d; sol = %g\n", ret, sol);

for (i = 1; i <= G->nv; i++)

{ v = G->v[i];

printf("vertex %d: weight = %g, flag = %d\n",

i, vertex(v)->wgt, vertex(v)->set);

}

glp_delete_graph(G);

return 0;

}

For the example shown on Fig. 5 the data file may look like follows:

c sample.clq

c

c This is an example of the maximum weight clique

c problem in DIMACS clique/coloring format.

c

p edge 8 16

n 1 3

n 2 4

n 3 8

n 5 5

n 6 2

n 8 3

e 1 4

e 1 5

e 1 6

e 1 8

e 2 3

e 2 6

e 2 7

e 2 8

e 3 4

e 3 6

e 3 7

e 4 5

e 4 8

e 5 7

66

e 5 8

e 6 7

c

c eof

The corresponding output from the example program is the following:

Reading graph from ‘sample.clq’...

Graph has 8 vertices and 16 edges

28 lines were read

ret = 0; sol = 15

vertex 1: weight = 3, flag = 0

vertex 2: weight = 4, flag = 1

vertex 3: weight = 8, flag = 1

vertex 4: weight = 1, flag = 0

vertex 5: weight = 5, flag = 0

vertex 6: weight = 2, flag = 1

vertex 7: weight = 1, flag = 1

vertex 8: weight = 3, flag = 0

67

	Basic Graph API Routines
	Graph program object
	Graph creating and modifying routines
	glp_create_graph — create graph
	glp_set_graph_name — assign (change) graph name
	glp_add_vertices — add new vertices to graph
	glp_set_vertex_name — assign (change) vertex name
	glp_add_arc — add new arc to graph
	glp_del_vertices — delete vertices from graph
	glp_del_arc — delete arc from graph
	glp_erase_graph — erase graph content
	glp_delete_graph — delete graph

	Graph searching routines
	glp_create_v_index — create vertex name index
	glp_find_vertex — find vertex by its name
	glp_delete_v_index — delete vertex name index

	Graph reading/writing routines
	glp_read_graph — read graph from plain text file
	glp_write_graph — write graph to plain text file
	glp_read_ccdata — read graph from text file in DIMACS clique/coloringformat
	glp_write_ccdata — write graph to text file in DIMACS clique/coloringformat

	Graph analysis routines
	glp_weak_comp — find all weakly connected components of graph
	glp_strong_comp — find all strongly connected components of graph
	glp_top_sort — topological sorting of acyclic digraph

	Network optimization API routines
	Minimum cost flow problem
	Background
	glp_read_mincost — read minimum cost flow problem data in DIMACSformat
	glp_write_mincost — write minimum cost flow problem data in DIMACSformat
	glp_mincost_lp — convert minimum cost flow problem to LP
	glp_mincost_okalg — solve minimum cost flow problem with out-of-kilteralgorithm
	glp_mincost_relax4 — solve minimum cost flow problem with relaxationmethod of Bertsekas and Tseng (RELAX-IV)
	glp_netgen — Klingman's network problem generator
	glp_netgen_prob — Klingman's standard network problem instance
	glp_gridgen — grid-like network problem generator

	Maximum flow problem
	Background
	glp_read_maxflow — read maximum flow problem data in DIMACSformat
	glp_write_maxflow — write maximum flow problem data in DIMACSformat
	glp_maxflow_lp — convert maximum flow problem to LP
	glp_maxflow_ffalg — solve maximum flow problem with Ford-Fulkersonalgorithm
	glp_rmfgen — Goldfarb's maximum flow problem generator

	Assignment problem
	Background
	glp_read_asnprob — read assignment problem data in DIMACS format
	glp_write_asnprob — write assignment problem data in DIMACS format
	glp_check_asnprob — check correctness of assignment problem data
	glp_asnprob_lp — convert assignment problem to LP
	glp_asnprob_okalg — solve assignment problem with out-of-kilteralgorithm
	glp_asnprob_hall — find bipartite matching of maximum cardinality

	Critical path problem
	Background
	glp_cpp — solve critical path problem

	Graph Optimization API Routines
	Maximum clique problem
	Background
	glp_wclique_exact — find maximum weight clique with exact algorithm

