
Units Conversion
Edition 2.10 for units Version 2.10

Adrian Mariano

This manual is for GNU Units (version 2.10), which performs units conversions and units
calculations.

Copyright c© 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2011, 2012, 2013, 2014
Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Overview of units . 1

2 Interacting with units . 1

3 Using units Non-Interactively 3

4 Unit Definitions . 4
4.1 English Customary Units . 5

5 Unit Expressions . 6
5.1 Operators . 6
5.2 Sums and Differences of Units . 8
5.3 Numbers as Units . 8
5.4 Built-in Functions . 9
5.5 Previous Result . 10
5.6 Complicated Unit Expressions . 11
5.7 Backwards Compatibility: ‘*’ and ‘-’ . 12

6 Nonlinear Unit Conversions 12
6.1 Temperature Conversions . 12
6.2 Other Nonlinear Units . 13

7 Unit Lists: Conversion to Sums of Units 15

8 Logging Calculations . 19

9 Invoking units . 20

10 Adding Your Own Definitions 25
10.1 Units Data Files . 25
10.2 Defining New Units and Prefixes . 25
10.3 Defining Nonlinear Units . 27
10.4 Defining Piecewise Linear Units . 29
10.5 Defining Unit List Aliases . 30

11 Numeric Output Format . 31
11.1 Format Specification . 31
11.2 Flags . 32
11.3 Field Width . 32
11.4 Precision . 33

ii

12 Localization . 34
12.1 Locale . 34
12.2 Additional Localization . 35

13 Environment Variables . 36

14 Data Files . 37

15 Unicode Support . 38

16 Readline Support . 39

17 Updating Currency Exchange Rates 39

18 Database Command Syntax 39

19 GNU Free Documentation License 40

Index . 48

Units Conversion 1

1 Overview of units

The units program converts quantities expressed in various systems of measurement to their
equivalents in other systems of measurement. Like many similar programs, it can handle
multiplicative scale changes. It can also handle nonlinear conversions such as Fahrenheit
to Celsius;1 see Section 6.1 [Temperature Conversions], page 12. The program can also
perform conversions from and to sums of units, such as converting between meters and feet
plus inches.

Basic operation is simple: you enter the units that you want to convert from and the
units that you want to convert to. You can use the program interactively with prompts, or
you can use it from the command line.

Beyond simple unit conversions, units can be used as a general-purpose scientific cal-
culator that keeps track of units in its calculations. You can form arbitrary complex math-
ematical expressions of dimensions including sums, products, quotients, powers, and even
roots of dimensions. Thus you can ensure accuracy and dimensional consistency when work-
ing with long expressions that involve many different units that may combine in complex
ways; for an illustration, see Section 5.6 [Complicated Unit Expressions], page 11.

The units are defined in an external data file. You can use the extensive data file that
comes with this program, or you can provide your own data file to suit your needs. You
can also use your own data file to supplement the standard data file.

You can change the default behavior of units with various options given on the command
line. See Chapter 9 [Invoking Units], page 20, for a description of the available options.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

Currency exchange rates from www.timegenie.com on 2014-03-05

2860 units, 109 prefixes, 85 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the units you want to convert to. To convert to feet, you
would type feet. If the readline library was compiled in then tab will complete unit
names. See Chapter 16 [Readline Support], page 39, for more information about readline.
To quit the program under Unix, press Ctrl-C or Ctrl-D. Under Windows, press Ctrl-C
or Ctrl-Z; with the latter, you may also need to press Enter.

The result will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The
second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

1 But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T (x + y) =
T (x) + T (y) and this fails for T (x) = ax+ b. This transformation is affine, but not linear.

Units Conversion 2

* 32.808399

/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about 0.03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
0.03048 dekameters. But the number given the other direction is inexact.

If you convert grains to pounds, you will see the following:

You have: grains

You want: pounds

* 0.00014285714

/ 7000

From the second line of the output you can immediately see that a grain is equal to a seven
thousandth of a pound. This is not so obvious from the first line of the output. If you find
the output format confusing, try using the --verbose option:

You have: grain

You want: aeginamina

grain = 0.00010416667 aeginamina

grain = (1 / 9600) aeginamina

If you request a conversion between units that measure reciprocal dimensions, then units

will display the conversion results with an extra note indicating that reciprocal conversion
has been done:

You have: 6 ohms

You want: siemens

reciprocal conversion

* 0.16666667

/ 6

Reciprocal conversion can be suppressed by using the --strict option. As usual, use the
--verbose option to get more comprehensible output:

You have: tex

You want: typp

reciprocal conversion

1 / tex = 496.05465 typp

1 / tex = (1 / 0.0020159069) typp

You have: 20 mph

You want: sec/mile

reciprocal conversion

1 / 20 mph = 180 sec/mile

1 / 20 mph = (1 / 0.0055555556) sec/mile

If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

Units Conversion 3

You have: ergs/hour

You want: fathoms kg^2 / day

conformability error

2.7777778e-11 kg m^2 / sec^3

2.1166667e-05 kg^2 m / sec

If you only want to find the reduced form or definition of a unit, simply press Enter at the
‘You want:’ prompt. Here is an example:

You have: jansky

You want:

Definition: fluxunit = 1e-26 W/m^2 Hz = 1e-26 kg / s^2

The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right.

Some named units are treated as dimensionless in some situations. These units include
the radian and steradian. These units will be treated as equal to 1 in units conversions.
Power is equal to torque times angular velocity. This conversion can only be performed if
the radian is dimensionless.

You have: (14 ft lbf) (12 radians/sec)

You want: watts

* 227.77742

/ 0.0043902509

Named dimensionless units are not treated as dimensionless in other contexts. They cannot
be used as exponents so for example, ‘meter^radian’ is not allowed.

If you want a list of options you can type ? at the ‘You want:’ prompt. The program
will display a list of named units that are conformable with the unit that you entered at
the ‘You have:’ prompt above. Conformable unit combinations will not appear on this list.

Typing help at either prompt displays a short help message. You can also type help

followed by a unit name. This will invoke a pager on the units data base at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit. (You can generally quit out of the page by pressing
‘q’.)

Typing search text will display a list of all of the units whose names contain text as a
substring along with their definitions. This may help in the case where you aren’t sure of
the right unit name.

3 Using units Non-Interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original unit expression, and type the new
units you want. If a units expression contains non-alphanumeric characters, you may need
to protect it from interpretation by the shell using single or double quote characters.

If you type

units "2 liters" quarts

then units will print

Units Conversion 4

* 2.1133764

/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

If the conversion is successful, then units will return success (zero) to the calling en-
vironment. If you enter non-conformable units then units will print a message giving the
reduced form of each unit and it will return failure (nonzero) to the calling environment.

When you invoke units with only one argument, it will print out the definition of the
specified unit. It will return failure if the unit is not defined and success if the unit is
defined.

4 Unit Definitions

The conversion information is read from a units data file that is called definitions.units

and is usually located in the /usr/share/units directory. If you invoke units with the
-V option, it will print the location of this file. The default file includes definitions for all
familiar units, abbreviations and metric prefixes. It also includes many obscure or archaic
units.

Many constants of nature are defined, including these:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
force acceleration of gravity
mole Avogadro’s number
water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit
k Boltzman’s constant
mu0 permeability of vacuum
epsilon0 permittivity of vacuum
G Gravitational constant
mach speed of sound

The standard data file includes atomic masses for all of the elements and numerous other
constants. Also included are the densities of various ingredients used in baking so that
‘2 cups flour_sifted’ can be converted to ‘grams’. This is not an exhaustive list. Consult
the units data file to see the complete list, or to see the definitions that are used.

The ‘pound’ is a unit of mass. To get force, multiply by the force conversion unit ‘force’
or use the shorthand ‘lbf’. (Note that ‘g’ is already taken as the standard abbreviation for
the gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is ‘fluidounce’ or ‘floz’.
When British capacity units differ from their US counterparts, such as the British Imperial
gallon, the unit is defined both ways with ‘br’ and ‘us’ prefixes. Your locale settings will
determine the value of the unprefixed unit. Currency is prefixed with its country name:
‘belgiumfranc’, ‘britainpound’.

When searching for a unit, if the specified string does not appear exactly as a unit
name, then the units program will try to remove a trailing ‘s’, ‘es’. Next units will

Units Conversion 5

replace a trailing ‘ies’ with ‘y’. If that fails, units will check for a prefix. The database
includes all of the standard metric prefixes. Only one prefix is permitted per unit, so
‘micromicrofarad’ will fail. However, prefixes can appear alone with no unit following
them, so ‘micro*microfarad’ will work, as will ‘micro microfarad’.

To find out which units and prefixes are available, read the standard units data file,
which is extensively annotated.

4.1 English Customary Units

English customary units differ in various ways in different regions. In Britain a complex
system of volume measurements featured different gallons for different materials such as a
wine gallon and ale gallon that different by twenty percent. This complexity was swept
away in 1824 by a reform that created an entirely new gallon, the British Imperial gallon
defined as the volume occupied by ten pounds of water. Meanwhile in the USA the gallon
is derived from the 1707 Winchester wine gallon, which is 231 cubic inches. These gallons
differ by about twenty percent. By default if units runs in the ‘en_GB’ locale you will get
the British volume measures. If it runs in the ‘en_US’ locale you will get the US volume
measures. In other locales the default values are the US definitions. If you wish to force
different definitions then set the environment variable UNITS_ENGLISH to either ‘US’ or ‘GB’
to set the desired definitions independent of the locale.

Before 1959, the value of a yard (and other units of measure defined in terms of it) differed
slightly among English-speaking countries. In 1959, Australia, Canada, New Zealand, the
United Kingdom, the United States, and South Africa adopted the Canadian value of 1 yard
= 0.9144 m (exactly), which was approximately halfway between the values used by the UK
and the US; it had the additional advantage of making 1 inch = 2.54 cm (exactly). This
new standard was termed the International Yard. Australia, Canada, and the UK then
defined all customary lengths in terms of the International Yard (Australia did not define
the furlong or rod); because many US land surveys were in terms of the pre-1959 units, the
US continued to define customary surveyors’ units (furlong, chain, rod, and link) in terms
of the previous value for the foot, which was termed the US survey foot. The US defined
a US survey mile as 5280 US survey feet, and defined a statute mile as a US survey mile.
The US values for these units differ from the international values by about 2 ppm.

The units program uses the international values for these units; the US values can
be obtained by using either the ‘US’ or the ‘survey’ prefix. In either case, the simple
familiar relationships among the units are maintained, e.g., 1 ‘furlong’ = 660 ‘ft’, and
1 ‘USfurlong’ = 660 ‘USft’, though the metric equivalents differ slightly between the two
cases. The ‘US’ prefix or the ‘survey’ prefix can also be used to obtain the US survey
mile and the value of the US yard prior to 1959, e.g., ‘USmile’ or ‘surveymile’ (but not
‘USsurveymile’). To get the US value of the statute mile, use either ‘USstatutemile’ or
‘USmile’.

Except for distances that extend over hundreds of miles (such as in the US State Plane
Coordinate System), the differences in the miles are usually insignificant:

You have: 100 surveymile - 100 mile

You want: inch

* 12.672025

/ 0.078913984

Units Conversion 6

The pre-1959 UK values for these units can be obtained with the prefix ‘UK’.

In the US, the acre is officially defined in terms of the US survey foot, but units uses a
definition based on the international foot. If you want the official US acre use ‘USacre’ and
similarly use ‘USacrefoot’ for the official US version of that unit. The difference between
these units is about 4 parts per million.

5 Unit Expressions

5.1 Operators

You can enter more complicated units by combining units with operations such as multi-
plication, division, powers, addition, subtraction, and parentheses for grouping. You can
use the customary symbols for these operators when units is invoked with its default op-
tions. Additionally, units supports some extensions, including high priority multiplication
using a space, and a high priority numerical division operator (‘|’) that can simplify some
expressions.

You multiply units using a space or an asterisk (‘*’). The next example shows both
forms:

You have: arabicfoot * arabictradepound * force

You want: ft lbf

* 0.7296

/ 1.370614

You can divide units using the slash (‘/’) or with ‘per’:

You have: furlongs per fortnight

You want: m/s

* 0.00016630986

/ 6012.8727

You can use parentheses for grouping:

You have: (1/2) kg / (kg/meter)

You want: league

* 0.00010356166

/ 9656.0833

Multiplication using a space has a higher precedence than division using a slash and is eval-
uated left to right; in effect, the first ‘/’ character marks the beginning of the denominator
of a unit expression. This makes it simple to enter a quotient with several terms in the
denominator: ‘J / mol K’. The ‘*’ and ‘/’ operators have the same precedence, and are eval-
uated left to right; if you multiply with ‘*’, you must group the terms in the denominator
with parentheses: ‘J / (mol * K)’.

The higher precedence of the space operator may not always be advantageous. For
example, ‘m/s s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time
cubed. Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to 0.5/meter,
perhaps not what you would intend if you entered that expression. The get a half meter
you would need to use parentheses: ‘(1/2) meter’. The ‘*’ operator is convenient for

Units Conversion 7

multiplying a sequence of quotients. For example, ‘m/s * s/day’ is equivalent to ‘m/day’.
Similarly, you could write ‘1/2 * meter’ to get half a meter.

The units program supports another option for numerical fractions: you can indicate
division of numbers with the vertical bar (‘|’), so if you wanted half a meter you could write
‘1|2 meter’. You cannot use the vertical bar to indicate division of non-numerical units
(e.g., ‘m|s’ results in an error message).

Powers of units can be specified using the ‘^’ character, as shown in the following ex-
ample, or by simple concatenation of a unit and its exponent: ‘cm3’ is equivalent to ‘cm^3’;
if the exponent is more than one digit, the ‘^’ is required. You can also use ‘**’ as an
exponent operator.

You have: cm^3

You want: gallons

* 0.00026417205

/ 3785.4118

Concatenation only works with a single unit name: if you write ‘(m/s)2’, units will treat
it as multiplication by 2. When a unit includes a prefix, exponent operators apply to the
combination, so ‘centimeter3’ gives cubic centimeters. If you separate the prefix from the
unit with any multiplication operator (e.g., ‘centi meter^3’), the prefix is treated as a sep-
arate unit, so the exponent applies only to the unit without the prefix. The second example
is equivalent to ‘centi * (meter^3)’, and gives a hundredth of a cubic meter, not a cubic
centimeter. The units program is limited internally to products of 99 units; accordingly,
expressions like ‘meter^100’ or ‘joule^34’ (represented internally as ‘kg^34 m^68 / s^68’)
will fail.

The ‘|’ operator has the highest precedence, so you can write the square root of two
thirds as ‘2|3^1|2’. The ‘^’ operator has the second highest precedence, and is evaluated
right to left, as usual:

You have: 5 * 2^3^2

You want:

Definition: 2560

With a dimensionless base unit, any dimensionless exponent is meaningful (e.g.,
‘pi^exp(2.371)’). Even though angle is sometimes treated as dimensionless, exponents
cannot have dimensions of angle:

You have: 2^radian

^

Exponent not dimensionless

If the base unit is not dimensionless, the exponent must be a rational number p/q, and
the dimension of the unit must be a power of q, so ‘gallon^2|3’ works but ‘acre^2|3’
fails. An exponent using the slash (‘/’) operator (e.g., ‘acre^(2/3)’) is also acceptable; the
parentheses are needed because the precedence of ‘^’ is higher than that of ‘/’. Since units
cannot represent dimensions with exponents greater than 99, a fully reduced exponent must
have q < 100. When raising a non-dimensionless unit to a power, units attempts to convert
a decimal exponent to a rational number with q < 100. If this is not possible units displays
an error message:

You have: ft^1.234

Base unit not dimensionless; rational exponent required

Units Conversion 8

A decimal exponent must match its rational representation to machine precision, so
‘acre^1.5’ works but ‘gallon^0.666’ does not.

5.2 Sums and Differences of Units

You may sometimes want to add values of different units that are outside the SI. You may
also wish to use units as a calculator that keeps track of units. Sums of conformable units
are written with the ‘+’ character, and differences with the ‘-’ character.

You have: 2 hours + 23 minutes + 32 seconds

You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in

You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft lbf

You want: btu

* 2.5782804

/ 0.38785542

The expressions that are added or subtracted must reduce to identical expressions in prim-
itive units, or an error message will be displayed:

You have: 12 printerspoint - 4 heredium

^

Illegal sum of non-conformable units

As usual, the precedence for ‘+’ and ‘-’ is lower than that of the other operators. A fractional
quantity such as 2 1/2 cups can be given as ‘(2+1|2) cups’; the parentheses are necessary
because multiplication has higher precedence than addition. If you omit the parentheses,
units attempts to add ‘2’ and ‘1|2 cups’, and you get an error message:

You have: 2+1|2 cups

^

Illegal sum or difference of non-conformable units

The expression could also be correctly written as ‘(2+1/2) cups’. If you write ‘2 1|2 cups’
the space is interpreted as multiplication so the result is the same as ‘1 cup’.

The ‘+’ and ‘-’ characters sometimes appears in exponents like ‘3.43e+8’. This leads to
an ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this
can be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved
by always interpreting ‘+’ and ‘-’ as part of an exponent if possible.

5.3 Numbers as Units

For units, numbers are just another kind of unit. They can appear as many times as you
like and in any order in a unit expression. For example, to find the volume of a box that is
2 ft by 3 ft by 12 ft in steres, you could do the following:

Units Conversion 9

You have: 2 ft 3 ft 12 ft

You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard

You want: cents / inch

* 13.888889

/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to ‘dollar^5’.

5.4 Built-in Functions

Several built-in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘ln’, ‘log’, ‘log2’, ‘exp’, ‘acos’,
‘atan’ and ‘asin’. The ‘sin’, ‘cos’, and ‘tan’ functions require either a dimensionless
argument or an argument with dimensions of angle.

You have: sin(30 degrees)

You want:

Definition: 0.5

You have: sin(pi/2)

You want:

Definition: 1

You have: sin(3 kg)

^

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions. These
functions require that the argument have the appropriate root. You can obtain higher roots
by using fractional exponents:

You have: sqrt(acre)

You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m^2 / stefanboltzmann)^(1/4)

You have:

Definition: 289.80882 K

You have: cuberoot(hectare)

^

Unit not a root

Units Conversion 10

5.5 Previous Result

You can insert the result of the previous conversion using the underscore (‘_’). It is useful
when you want to convert the same input to several different units, for example

You have: 2.3 tonrefrigeration

You want: btu/hr

* 27600

/ 3.6231884e-005

You have: _

You want: kW

* 8.0887615

/ 0.12362832

Suppose you want to do some deep frying that requires an oil depth of 2 inches. You have
1/2 gallon of oil, and want to know the largest-diameter pan that will maintain the required
depth. The nonlinear unit ‘circlearea’ gives the radius of the circle (see Section 6.2 [Other
Nonlinear Units], page 13, for a more detailed description) in SI units; you want the diameter
in inches:

You have: 1|2 gallon / 2 in

You want: circlearea

0.10890173 m

You have: 2 _

You want: in

* 8.5749393

/ 0.1166189

In most cases, surrounding white space is optional, so the previous example could have used
‘2_’. If ‘_’ follows a non-numerical unit symbol, however, the space is required:

You have: m_

^

Parse error

When ‘_’ is followed by a digit, the operation is multiplication rather than exponentiation,
so that ‘_2’, is equivalent to ‘_ * 2’ rather than ‘_^2’.

You can use the ‘_’ symbol any number of times; for example,

You have: m

You want:

Definition: 1 m

You have: _ _

You want:

Definition: 1 m^2

Using ‘_’ before a conversion has been performed (e.g., immediately after invocation) gen-
erates an error:

You have: _

^

No previous result; '_' not set

Accordingly, ‘_’ serves no purpose when units is invoked non-interactively.

Units Conversion 11

If units is invoked with the --verbose option (see Chapter 9 [Invoking Units], page 20),
the value of ‘_’ is not expanded:

You have: mile

You want: ft

mile = 5280 ft

mile = (1 / 0.00018939394) ft

You have: _

You want: m

_ = 1609.344 m

_ = (1 / 0.00062137119) m

You can give ‘_’ at the ‘You want:’ prompt, but it usually is not very useful.

5.6 Complicated Unit Expressions

The units program is especially helpful in ensuring accuracy and dimensional consistency
when converting lengthy unit expressions. For example, one form of the Darcy–Weisbach
fluid-flow equation is

ΔP =
8

π2
ρfL

Q2

d5

where ΔP is the pressure drop, ρ is the mass density, f is the (dimensionless) friction factor,
L is the length of the pipe, Q is the volumetric flow rate, and d is the pipe diameter. It
might be desired to have the equation in the form

ΔP = A1ρfL
Q2

d5

that accepted the user’s normal units; for typical units used in the US, the required con-
version could be something like

You have: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

You want: psi

* 43.533969

/ 0.022970568

The parentheses allow individual terms in the expression to be entered naturally, as they
might be read from the formula. Alternatively, the multiplication could be done with the
‘*’ rather than a space; then parentheses are needed only around ‘ft^3/s’ because of its
exponent:

You have: 8/pi^2 * lbm/ft^3 * ft * (ft^3/s)^2 /in^5

You want: psi

* 43.533969

/ 0.022970568

Without parentheses, and using spaces for multiplication, the previous conversion would
need to be entered as

You have: 8 lb ft ft^3 ft^3 / pi^2 ft^3 s^2 in^5

You want: psi

* 43.533969

/ 0.022970568

Units Conversion 12

5.7 Backwards Compatibility: ‘*’ and ‘-’

The original units assigned multiplication a higher precedence than division using the slash.
This differs from the usual precedence rules, which give multiplication and division equal
precedence, and can be confusing for people who think of units as a calculator.

The star operator (‘*’) included in this units program has, by default, the same prece-
dence as division, and hence follows the usual precedence rules. For backwards compatibility
you can invoke units with the --oldstar option. Then ‘*’ has a higher precedence than
division, and the same precedence as multiplication using the space.

Historically, the hyphen (‘-’) has been used in technical publications to indicate products
of units, and the original units program treated it as a multiplication operator. Because
units provides several other ways to obtain unit products, and because ‘-’ is a subtrac-
tion operator in general algebraic expressions, units treats the binary ‘-’ as a subtraction
operator by default. For backwards compatibility use the --product option, which causes
units to treat the binary ‘-’ operator as a product operator. When ‘-’ is a multiplica-
tion operator it has the same precedence as multiplication with a space, giving it a higher
precedence than division.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units

options, if ‘-’ appears after ‘(’ or after ‘+’ then it will act as a negation operator. So you
can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

6 Nonlinear Unit Conversions

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such as temperature.

6.1 Temperature Conversions

Conversions between temperatures are different from linear conversions between tempera-
ture increments—see the example below. The absolute temperature conversions are handled
by units starting with ‘temp’, and you must use functional notation. The temperature-
increment conversions are done using units starting with ‘deg’ and they do not require
functional notation.

You have: tempF(45)

You want: tempC

7.2222222

You have: 45 degF

You want: degC

* 25

/ 0.04

Think of ‘tempF(x)’ not as a function but as a notation that indicates that x should have
units of ‘tempF’ attached to it. See Section 10.3 [Defining Nonlinear Units], page 27. The
first conversion shows that if it’s 45 degrees Fahrenheit outside, it’s 7.2 degrees Celsius. The

Units Conversion 13

second conversion indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius. The conversion from ‘tempF(x)’ is to absolute temperature, so that

You have: tempF(45)

You want: degR

* 504.67

/ 0.0019814929

gives the same result as

You have: tempF(45)

You want: tempR

* 504.67

/ 0.0019814929

But if you convert ‘tempF(x)’ to ‘degC’, the output is probably not what you expect:

You have: tempF(45)

You want: degC

* 280.37222

/ 0.0035666871

The result is the temperature in K, because ‘degC’ is defined as ‘K’, the Kelvin. For consis-
tent results, use the ‘tempX’ units when converting to a temperature rather than converting
a temperature increment.

The ‘tempC()’ and ‘tempF()’ definitions are limited to positive absolute temperatures,
and giving a value that would result in a negative absolute temperature generates an error
message:

You have: tempC(-275)

^

Argument of function outside domain

^

6.2 Other Nonlinear Units

Some other examples of nonlinear units are numerous different ring sizes and wire gauges,
the grit sizes used for abrasives, the decibel scale, shoe size, scales for the density of sugar
(e.g., baume). The standard data file also supplies units for computing the area of a
circle and the volume of a sphere. See the standard units data file for more details. Wire
gauges with multiple zeroes are signified using negative numbers where two zeroes is ‘-1’.
Alternatively, you can use the synonyms ‘g00’, ‘g000’, and so on that are defined in the
standard units data file.

Units Conversion 14

You have: wiregauge(11)

You want: inches

* 0.090742002

/ 11.020255

You have: brwiregauge(g00)

You want: inches

* 0.348

/ 2.8735632

You have: 1 mm

You want: wiregauge

18.201919

You have: grit_P(600)

You want: grit_ansicoated

342.76923

The last example shows the conversion from P graded sand paper, which is the European
standard and may be marked “P600” on the back, to the USA standard.

You can compute the area of a circle using the nonlinear unit, ‘circlearea’. You can
also do this using the circularinch or circleinch. The next example shows two ways to
compute the area of a circle with a five inch radius and one way to compute the volume of
a sphere with a radius of one meter.

You have: circlearea(5 in)

You want: in2

* 78.539816

/ 0.012732395

You have: 10^2 circleinch

You want: in2

* 78.539816

/ 0.012732395

You have: spherevol(meter)

You want: ft3

* 147.92573

/ 0.0067601492

The inverse of a nonlinear conversion is indicated by prefixing a tilde (‘~’) to the nonlinear
unit name:

You have: ~wiregauge(0.090742002 inches)

You want:

Definition: 11

You can give a nonlinear unit definition without an argument or parentheses, and press
Enter at the ‘You want:’ prompt to get the definition of a nonlinear unit; if the definition
is not valid for all real numbers, the range of validity is also given. If the definition requires
specific units this information is also displayed:

Units Conversion 15

You have: tempC

Definition: tempC(x) = x K + stdtemp

defined for x >= -273.15

You have: ~tempC

Definition: ~tempC(tempC) = (tempC +(-stdtemp))/K

defined for tempC >= 0 K

You have: circlearea

Definition: circlearea(r) = pi r^2

r has units m

To see the definition of the inverse use the ‘~’ notation. In this case the parameter in
the functional definition will usually be the name of the unit. Note that the inverse for
‘tempC’ shows that it requires units of ‘K’ in the specification of the allowed range of values.
Nonlinear unit conversions are described in more detail in Section 10.3 [Defining Nonlinear
Units], page 27.

7 Unit Lists: Conversion to Sums of Units

Outside of the SI, it is sometimes desirable to convert a single unit to a sum of units—
for example, feet to feet plus inches. The conversion from sums of units was described in
Section 5.2 [Sums and Differences of Units], page 8, and is a simple matter of adding the
units with the ‘+’ sign:

You have: 12 ft + 3 in + 3|8 in

You want: ft

* 12.28125

/ 0.081424936

Although you can similarly write a sum of units to convert to, the result will not be the
conversion to the units in the sum, but rather the conversion to the particular sum that
you have entered:

You have: 12.28125 ft

You want: ft + in + 1|8 in

* 11.228571

/ 0.089058524

The unit expression given at the ‘You want:’ prompt is equivalent to asking for conversion
to multiples of ‘1 ft + 1 in + 1|8 in’, which is 1.09375 ft, so the conversion in the previous
example is equivalent to

You have: 12.28125 ft

You want: 1.09375 ft

* 11.228571

/ 0.089058524

In converting to a sum of units like miles, feet and inches, you typically want the largest
integral value for the first unit, followed by the largest integral value for the next, and the
remainder converted to the last unit. You can do this conversion easily with units using
a special syntax for lists of units. You must list the desired units in order from largest to
smallest, separated by the semicolon (‘;’) character:

Units Conversion 16

You have: 12.28125 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in

The conversion always gives integer coefficients on the units in the list, except possibly the
last unit when the conversion is not exact:

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3.00096 * 1|8 in

The order in which you list the units is important:

You have: 3 kg

You want: oz;lb

105 oz + 0.051367866 lb

You have: 3 kg

You want: lb;oz

6 lb + 9.8218858 oz

Listing ounces before pounds produces a technically correct result, but not a very useful
one. You must list the units in descending order of size in order to get the most useful
result.

Ending a unit list with the separator ‘;’ has the same effect as repeating the last unit
on the list, so ‘ft;in;1|8 in;’ is equivalent to ‘ft;in;1|8 in;1|8 in’. With the example
above, this gives

You have: 12.28126 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in + 0.00096 * 1|8 in

in effect separating the integer and fractional parts of the coefficient for the last unit. If you
instead prefer to round the last coefficient to an integer you can do this with the --round

(-r) option. With the previous example, the result is

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in (rounded down to nearest 1|8 in)

When you use the -r option, repeating the last unit on the list has no effect (e.g., ‘ft;in;1|8
in;1|8 in’ is equivalent to ‘ft;in;1|8 in’), and hence neither does ending a list with a ‘;’.
With a single unit and the -r option, a terminal ‘;’ does have an effect: it causes units to
treat the single unit as a list and produce a rounded value for the single unit. Without the
extra ‘;’, the -r option has no effect on single unit conversions. This example shows the
output using the -r option:

You have: 12.28126 ft

You want: in

* 147.37512

/ 0.0067854058

You have: 12.28126 ft

You want: in;

147 in (rounded down to nearest in)

Units Conversion 17

Each unit that appears in the list must be conformable with the first unit on the list, and
of course the listed units must also be conformable with the unit that you enter at the
‘You have:’ prompt.

You have: meter

You want: ft;kg

^

conformability error

ft = 0.3048 m

kg = 1 kg

You have: meter

You want: lb;oz

conformability error

1 m

0.45359237 kg

In the first case, units reports the disagreement between units appearing on the list. In
the second case, units reports disagreement between the unit you entered and the desired
conversion. This conformability error is based on the first unit on the unit list.

Other common candidates for conversion to sums of units are angles and time:

You have: 23.437754 deg

You want; deg;arcmin;arcsec

23 deg + 26 arcmin + 15.9144 arcsec

You have: 7.2319 hr

You want: hr;min;sec

7 hr + 13 min + 54.84 sec

In North America, recipes for cooking typically measure ingredients by volume, and use
units that are not always convenient multiples of each other. Suppose that you have a
recipe for 6 and you wish to make a portion for 1. If the recipe calls for 2 1/2 cups of an
ingredient, you might wish to know the measurements in terms of measuring devices you
have available, you could use units and enter

You have: (2+1|2) cup / 6

You want: cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

1|3 cup + 1 tbsp + 1 tsp

By default, if a unit in a list begins with fraction of the form 1|x and its multiplier is
an integer, the fraction is given as the product of the multiplier and the numerator; for
example,

You have: 12.28125 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in

In many cases, such as the example above, this is what is wanted, but sometimes it is not.
For example, a cooking recipe for 6 might call for 5 1/4 cup of an ingredient, but you want
a portion for 2, and your 1-cup measure is not available; you might try

Units Conversion 18

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3|2 cup + 1|4 cup

This result might be fine for a baker who has a 1 1/2-cup measure (and recognizes the
equivalence), but it may not be as useful to someone with more limited set of measures,
who does want to do additional calculations, and only wants to know “How many 1/2-
cup measures to I need to add?” After all, that’s what was actually asked. With the
--show-factor option, the factor will not be combined with a unity numerator, so that
you get

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3 * 1|2 cup + 1|4 cup

A user-specified fractional unit with a numerator other than 1 is never overridden, however—
if a unit list specifies ‘3|4 cup;1|2 cup’, a result equivalent to 1 1/2 cups will always be
shown as ‘2 * 3|4 cup’ whether or not the --show-factor option is given.

Some applications for unit lists may be less obvious. Suppose that you have a postal
scale and wish to ensure that it’s accurate at 1 oz, but have only metric calibration weights.
You might try

You have: 1 oz

You want: 100 g;50 g; 20 g;10 g;5 g;2 g;1 g;

20 g + 5 g + 2 g + 1 g + 0.34952312 * 1 g

You might then place one each of the 20 g, 5 g, 2 g, and 1 g weights on the scale and hope
that it indicates close to

You have: 20 g + 5 g + 2 g + 1 g

You want: oz;

0.98767093 oz

Appending ‘;’ to ‘oz’ forces a one-line display that includes the unit; here the integer part
of the result is zero, so it is not displayed.

A unit list such as

cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

can be tedious to enter. The units program provides shorthand names for some common
combinations:

hms hours, minutes, seconds
dms angle: degrees, minutes, seconds
time years, days, hours, minutes and seconds
usvol US cooking volume: cups and smaller

Using these shorthands, or unit list aliases, you can do the following conversions:

You have: anomalisticyear

You want: time

1 year + 25 min + 3.4653216 sec

You have: 1|6 cup

You want: usvol

2 tbsp + 2 tsp

Units Conversion 19

You cannot combine a unit list alias with other units: it must appear alone at the
‘You want:’ prompt.

You can display the definition of a unit list alias by entering it at the ‘You have:’ prompt:

You have: dms

Definition: unit list, deg;arcmin;arcsec

When you specify compact output with --compact, --terse or -t and perform conversion
to a unit list, units lists the conversion factors for each unit in the list, separated by
semicolons.

You have: year

You want: day;min;sec

365;348;45.974678

Unlike the case of regular output, zeros are included in this output list:

You have: liter

You want: cup;1|2 cup;1|4 cup;tbsp

4;0;0;3.6280454

8 Logging Calculations

The --log option allows you to save the results of calculations in a file; this can be useful
if you need a permanent record of your work. For example, the fluid-flow conversion in
Section 5.6 [Complicated Unit Expressions], page 11, is lengthy, and if you were to use
it in designing a piping system, you might want a record of it for the project file. If the
interactive session

You have: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

You want: psi

* 43.533969

/ 0.022970568

were logged, the log file would contain

From: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

To: psi

* 43.533969

/ 0.022970568

The log includes conformability errors between the units at the ‘You have:’ and ‘You want:’
prompts, but not other errors, including lack of conformability of items in sums or differences
or among items in a unit list. For example, a conversion between zenith angle and elevation
angle could involve

Units Conversion 20

You have: 90 deg - (5 deg + 22 min + 9 sec)

^

Illegal sum or difference of non-conformable units

You have: 90 deg - (5 deg + 22 arcmin + 9 arcsec)

You want: dms

84 deg + 37 arcmin + 51 arcsec

You have: _

You want: deg

* 84.630833

/ 0.011816024

You have:

The log file would contain

From: 90 deg - (5 deg + 22 arcmin + 9 arcsec)

To: deg;arcmin;arcsec

84 deg + 37 arcmin + 51 arcsec

From: _

To: deg

* 84.630833

/ 0.011816024

The initial entry error (forgetting that minutes have dimension of time, and that arcminutes
must be used for dimensions of angle) does not appear in the output. When converting to
a unit list alias, units expands the alias in the log file.

The ‘From:’ and ‘To:’ tags are written to the log file even if the ‘--quiet’ option is
given. If the log file exists when units is invoked, the new results are appended to the log
file.

9 Invoking units

You invoke units like this:

units [options] [from-unit [to-unit]]

If the from-unit and to-unit are omitted, the program will use interactive prompts to de-
termine which conversions to perform. See Chapter 2 [Interactive Use], page 1. If both
from-unit and to-unit are given, units will print the result of that single conversion and
then exit. If only from-unit appears on the command line, units will display the definition
of that unit and exit. Units specified on the command line may need to be quoted to pro-
tect them from shell interpretation and to group them into two arguments. See Chapter 3
[Command Line Use], page 3.

The default behavior of units can be changed by various options given on the command
line. In most cases, the options may be given in either short form (a single ‘-’ followed by a
single character) or long form (‘--’ followed by a word or hyphen-separated words). Short-
form options are cryptic but require less typing; long-form options require more typing but
are more explanatory and may be more mnemonic. With long-form options you need only
enter sufficient characters to uniquely identify the option to the program. For example,
‘--out %f’ works, but ‘--o %f’ fails because units has other long options beginning with
‘o’. However, ‘--q’ works because ‘--quiet’ is the only long option beginning with ‘q’.

Units Conversion 21

Some options require arguments to specify a value (e.g., ‘-d 12’ or ‘--digits 12’).
Short-form options that do not take arguments may be concatenated (e.g., ‘-erS’ is equiv-
alent to ‘-e -r -S’); the last option in such a list may be one that takes an argument
(e.g., ‘-ed 12’). With short-form options, the space between an option and its argument
is optional (e.g., ‘-d12’ is equivalent to ‘-d 12’). Long-form options may not be concate-
nated, and the space between a long-form option and its argument is required. Short-form
and long-form options may be intermixed on the command line. Options may be given
in any order, but when incompatible options (e.g., --output-format and --exponential)
are given in combination, behavior is controlled by the last option given. For example,
‘-o%.12f -e’ gives exponential format with the default eight significant digits).

The following options are available:

-c

--check Check that all units and prefixes defined in the units data file reduce to primitive
units. Print a list of all units that cannot be reduced. Also display some other
diagnostics about suspicious definitions in the units data file. Only definitions
active in the current locale are checked. You should always run units with this
option after modifying a units data file.

--check-verbose

--verbose-check

Like the --check option, this option prints a list of units that cannot be re-
duced. But to help find unit definitions that cause endless loops, it lists the
units as they are checked. If units hangs, then the last unit to be printed has
a bad definition. Only definitions active in the current locale are checked.

-d ndigits

--digits ndigits

Set the number of significant digits in the output to the value specified (which
must be greater than zero). For example, ‘-d 12’ sets the number of significant
digits to 12. With exponential output units displays one digit to the left of
the decimal point2 and eleven digits to the right of the decimal point. On
most systems, the maximum number of internally meaningful digits is 15; if
you specify a greater number than your system’s maximum, units will print a
warning and set the number to the largest meaningful value. To directly set the
maximum value, give an argument of max (e.g., ‘-d max’). Be aware, of course,
that “significant” here refers only to the display of numbers; if results depend
on physical constants not known to this precision, the physically meaningful
precision may be less than that shown. The --digits option conflicts with the
--output-format option.

-e

--exponential

Set the numeric output format to exponential (i.e., scientific notation), like
that used in the Unix units program. The default precision is eight significant

2 This document refers to “decimal point,” but strictly, the radix separates the integer and fractional parts
of a floating-point number; in English-speaking countries, the radix is a point (‘.’), but in most other
countries it is a comma (‘,’).

Units Conversion 22

digits (seven digits to the right of the decimal point); this can be changed with
the --digits option. The --exponential option conflicts with the --output-
format option.

-o format

--output-format format

This option affords complete control over the numeric output format using the
specified format. The format is a single floating point numeric format for the
printf() function in the C programming language. All compilers support the
format types ‘g’ and ‘G’ to specify significant digits, ‘e’ and ‘E’ for scientific
notation, and ‘f’ for fixed-point decimal. The ISO C99 standard introduced
the ‘F’ type for fixed-point decimal and the ‘a’ and ‘A’ types for hexadecimal
floating point; these types are allowed with compilers that support them. The
default format is ‘%.8g’; for greater precision, you could specify ‘-o %.15g’.
See Chapter 11 [Numeric Output Format], page 31, and the documentation
for printf() for more detailed descriptions of the format specification. The
--output-format option affords the greatest control of the output appearance,
but requires at least rudimentary knowledge of the printf() format syntax. If
you don’t want to bother with the printf() syntax, you can specify greater
precision more simply with the --digits option or select exponential format
with --exponential. The --output-format option is incompatible with the
--exponential and --digits options.

-f filename

--file filename

Instruct units to load the units file filename. You can specify up to 25 units
files on the command line. When you use this option, units will load only
the files you list on the command line; it will not load the standard file or your
personal units file unless you explicitly list them. If filename is the empty string
(‘-f ""’), the default units file (or that specified by UNITSFILE) will be loaded
in addition to any others specified with ‘-f’.

-L logfile

--log logfile

Save the results of calculations in the file logfile; this can be useful if it is
important to have a record of unit conversions or other calculations that are to
be used extensively or in a critical activity such as a program or design project.
If logfile exits, the new results are appended to the file. See Chapter 8 [Logging
Calculations], page 19, for a more detailed description and some examples.

-h

--help Print out a summary of the options for units.

-m

--minus Causes ‘-’ to be interpreted as a subtraction operator. This is the default
behavior.

Units Conversion 23

-p

--product

Causes ‘-’ to be interpreted as a multiplication operator when it has two
operands. It will act as a negation operator when it has only one operand:
‘(-3)’. By default ‘-’ is treated as a subtraction operator.

--oldstar

Causes ‘*’ to have the old-style precedence, higher than the precedence of divi-
sion so that ‘1/2*3’ will equal ‘1/6’.

--newstar

Forces ‘*’ to have the new (default) precedence that follows the usual rules
of algebra: the precedence of ‘*’ is the same as the precedence of ‘/’, so that
‘1/2*3’ will equal ‘3/2’.

--compact

Give compact output featuring only the conversion factor. This turns off the
--verbose option.

-q

--quiet

--silent Suppress prompting of the user for units and the display of statistics about the
number of units loaded.

-n

--nolists

Disable conversion to unit lists.

-r

--round When converting to a combination of units given by a unit list, round the value
of the last unit in the list to the nearest integer.

-S

--show-factor

When converting to a combination of units specified in a list, always show a
non-unity factor before a unit that begins with a fraction with a unity denomi-
nator. By default, if the unit in a list begins with fraction of the form 1|x and
its multiplier is an integer other than 1, the fraction is given as the product of
the multiplier and the numerator (e.g., ‘3|8 in’ rather than ‘3 * 1|8 in’). In
some cases, this is not what is wanted; for example, the results for a cooking
recipe might show ‘3 * 1|2 cup’ as ‘3|2 cup’. With the --show-factor op-
tion, a result equivalent to 1.5 cups will display as ‘3 * 1|2 cup’ rather than
‘3|2 cup’. A user-specified fractional unit with a numerator other than 1 is
never overridden, however—if a unit list specifies ‘3|4 cup;1|2 cup’, a result
equivalent to 1 1/2 cups will always be shown as ‘2 * 3|4 cup’ whether or not
the --show-factor option is given.

-s

--strict Suppress conversion of units to their reciprocal units. For example, units will
normally convert hertz to seconds because these units are reciprocals of each
other. The strict option requires that units be strictly conformable to perform
a conversion, and will give an error if you attempt to convert hertz to seconds.

Units Conversion 24

-1

--one-line

Give only one line of output (the forward conversion). Do not print the reverse
conversion. If a reciprocal conversion is performed then units will still print
the “reciprocal conversion” line.

-t

--terse Give terse output when converting units. This option can be used when calling
units from another program so that the output is easy to parse. This op-
tion has the combined effect of these options: --strict --quiet --one-line

--compact. When combined with --version it produces a display showing
only the program name and version number.

-v

--verbose

Give slightly more verbose output when converting units. When combined with
the -c option this gives the same effect as --check-verbose. When combined
with --version produces a more detailed output, equivalent to the --info

option.

-V

--version

Print the program version number, tell whether the readline library has been
included, tell whether UTF-8 support has been included; give the locale, the
location of the default units data file, and the location of the personal units
data file; indicate if the personal units data file does not exist.

When given in combination with the --terse option, the program prints only
the version number and exits.

When given in combination with the --verbose option, the program, the
--version option has the same effect as the --info option below.

-I

--info Print the information given with the --version option, show the pathname
of the units program, show the status of the UNITSFILE and MYUNITSFILE

environment variables, and additional information about how units locates
the related files. On systems running Microsoft Windows, the status of the
UNITSLOCALE environment variable and information about the related locale
map are also given. This option is usually of interest only to developers and
administrators, but it can sometimes be useful for troubleshooting.

Combining the --version and --verbose options has the same effect as giving
--info.

-U

--unitsfile

Print the location of the default units data file and exit; if the file cannot be
found, print “Units data file not found”.

Units Conversion 25

-l locale

--locale locale

Print the information given with the --version option, show the Force a spec-
ified locale such as ‘en_GB’ to get British definitions by default. This over-
rides the locale determined from system settings or environment variables. See
Section 12.1 [Locale], page 34, for a description of locale format.

10 Adding Your Own Definitions

10.1 Units Data Files

The units and prefixes that units can convert are defined in the units data file, typically
/usr/share/units/definitions.units. If you can’t find this file, run units --version

to get information on the file locations for your installation. Although you can extend
or modify this data file if you have appropriate user privileges, it’s usually better to put
extensions in separate files so that the definitions will be preserved if you update units.

You can include additional data files in the units database using the ‘!include’ command
in the standard units data file. For example

!include /usr/local/share/units/local.units

might be appropriate for a site-wide supplemental data file. The location of the ‘!include’
statement in the standard units data file is important; later definitions replace earlier ones,
so any definitions in an included file will override definitions before the ‘!include’ state-
ment in the standard units data file. With normal invocation, no warning is given about
redefinitions; to ensure that you don’t have an unintended redefinition, run units -c after
making changes to any units data file.

If you want to add your own units in addition to or in place of standard or site-wide
supplemental units data files, you can include them in the .units file in your home directory.
If this file exists it is read after the standard units data file, so that any definitions in this
file will replace definitions of the same units in the standard data file or in files included
from the standard data file. This file will not be read if any units files are specified on the
command line. (Under Windows the personal units file is named unitdef.units.) Running
units -V will display the location and name of your personal units file.

The units program first tries to determine your home directory from the HOME envi-
ronment variable. On systems running Microsoft Windows, if HOME does not exist, units
attempts to find your home directory from HOMEDRIVE, HOMEPATH and USERPROFILE. You
can specify an arbitrary file as your personal units data file with the MYUNITSFILE environ-
ment variable; if this variable exists, its value is used without searching your home directory.
The default units data files are described in more detail in Chapter 14 [Data Files], page 37.

10.2 Defining New Units and Prefixes

A unit is specified on a single line by giving its name and an equivalence. Comments start
with a ‘#’ character, which can appear anywhere in a line. The backslash character (‘\’) acts
as a continuation character if it appears as the last character on a line, making it possible
to spread definitions out over several lines if desired. A file can be included by giving the

Units Conversion 26

command ‘!include’ followed by the file’s name. The ‘!’ must be the first character on the
line. The file will be sought in the same directory as the parent file unless you give a full
path. The name of the file to be included cannot contain the comment character ‘#’.

Unit names must not contain any of the operator characters ‘+’, ‘-’, ‘*’, ‘/’, ‘|’, ‘^’, ‘;’,
‘~’, the comment character ‘#’, or parentheses. They cannot begin or end with an underscore
(‘_’), a comma (‘,’) or a decimal point (‘.’). The figure dash (U+2012), typographical minus
(‘−’; U+2212), and en dash (‘–’; U+2013) are converted to the operator ‘-’, so none of these
characters can appear in unit names. Names cannot begin with a digit, and if a name ends in
a digit other than zero, the digit must be preceded by a string beginning with an underscore,
and afterwards consisting only of digits, decimal points, or commas. For example, ‘foo_2’,
‘foo_2,1’, or ‘foo_3.14’ are valid names but ‘foo2’ or ‘foo_a2’ are invalid. You could
define nitrous oxide as

N2O nitrogen 2 + oxygen

but would need to define nitrogen dioxide as

NO_2 nitrogen + oxygen 2

Be careful to define new units in terms of old ones so that a reduction leads to the primitive
units, which are marked with ‘!’ characters. Dimensionless units are indicated by using the
string ‘!dimensionless’ for the unit definition.

When adding new units, be sure to use the -c option to check that the new units reduce
properly. If you create a loop in the units definitions, then units will hang when invoked
with the -c option. You will need to use the --check-verbose option, which prints out
each unit as it is checked. The program will still hang, but the last unit printed will be the
unit that caused the infinite loop.

If you define any units that contain ‘+’ characters, carefully check them because the
-c option will not catch non-conformable sums. Be careful with the ‘-’ operator as well.
When used as a binary operator, the ‘-’ character can perform addition or multiplication
depending on the options used to invoke units. To ensure consistent behavior use ‘-’ only
as a unary negation operator when writing units definitions. To multiply two units leave a
space or use the ‘*’ operator with care, recalling that it has two possible precedence values
and may require parentheses to ensure consistent behavior. To compute the difference of
‘foo’ and ‘bar’ write ‘foo+(-bar)’ or even ‘foo+-bar’.

Here is an example of a short data file that defines some basic units:

m ! # The meter is a primitive unit

sec ! # The second is a primitive unit

rad !dimensionless # A dimensionless primitive unit

micro- 1e-6 # Define a prefix

minute 60 sec # A minute is 60 seconds

hour 60 min # An hour is 60 minutes

inch 0.0254 m # Inch defined in terms of meters

ft 12 inches # The foot defined in terms of inches

mile 5280 ft # And the mile

A unit that ends with a ‘-’ character is a prefix. If a prefix definition contains any ‘/’ charac-
ters, be sure they are protected by parentheses. If you define ‘half- 1/2’ then ‘halfmeter’
would be equivalent to ‘1 / (2 meter)’.

Units Conversion 27

10.3 Defining Nonlinear Units

Some unit conversions of interest are nonlinear; for example, temperature conversions be-
tween the Fahrenheit and Celsius scales cannot be done by simply multiplying by conversion
factors.

When you give a linear unit definition such as ‘inch 2.54 cm’ you are providing in-
formation that units uses to convert values in inches into primitive units of meters. For
nonlinear units, you give a functional definition that provides the same information.

Nonlinear units are represented using a functional notation. It is best to regard this
notation not as a function call but as a way of adding units to a number, much the same
way that writing a linear unit name after a number adds units to that number. Internally,
nonlinear units are defined by a pair of functions that convert to and from linear units in
the database, so that an eventual conversion to primitive units is possible.

Here is an example nonlinear unit definition:

tempF(x) units=[1;K] domain=[-459.67,) range=[0,) \

(x+(-32)) degF + stdtemp ; (tempF+(-stdtemp))/degF + 32

A nonlinear unit definition comprises a unit name, a formal parameter name, two functions,
and optional specifications for units, the domain, and the range (the domain of the inverse
function). The functions tell units how to convert to and from the new unit. To produce
valid results, the arguments of these functions need to have the correct dimensions and be
within the domains for which the functions are defined.

The definition begins with the unit name followed immediately (with no spaces) by
a ‘(’ character. In the parentheses is the name of the formal parameter. Next is an
optional specification of the units required by the functions in the definition. In the example
above, the ‘units=[1;K]’ specification indicates that the ‘tempF’ function requires an input
argument conformable with ‘1’ (i.e., the argument is dimensionless), and that the inverse
function requires an input argument conformable with ‘K’. For normal nonlinear units
definition, the forward function will always take a dimensionless argument; in general, the
inverse function will need units that match the quantity measured by your nonlinear unit.
Specifying the units enables units to perform error checking on function arguments, and
also to assign units to domain and range specifications, which are described later.

Next the function definitions appear. In the example above, the ‘tempF’ function is
defined by

tempF(x) = (x+(-32)) degF + stdtemp

This gives a rule for converting ‘x’ in the units ‘tempF’ to linear units of absolute tempera-
ture, which makes it possible to convert from tempF to other units.

To enable conversions to Fahrenheit, you must give a rule for the inverse conversions.
The inverse will be ‘x(tempF)’ and its definition appears after a ‘;’ character. In our
example, the inverse is

x(tempF) = (tempF+(-stdtemp))/degF + 32

This inverse definition takes an absolute temperature as its argument and converts it to the
Fahrenheit temperature. The inverse can be omitted by leaving out the ‘;’ character and
the inverse definition, but then conversions to the unit will not be possible. If the inverse
definition is omitted, the --check option will display a warning. It is up to you to calculate
and enter the correct inverse function to obtain proper conversions; the --check option

Units Conversion 28

tests the inverse at one point and prints an error if it is not valid there, but this is not a
guarantee that your inverse is correct.

With some definitions, the units may vary. For example, the definition

square(x) x^2

can have any arbitrary units, and can also take dimensionless arguments. In such a case,
you should not specify units. If a definition takes a root of its arguments, the definition is
valid only for units that yield such a root. For example,

squirt(x) sqrt(x)

is valid for a dimensionless argument, and for arguments with even powers of units.

Some definitions may not be valid for all real numbers. In such cases, units can handle
errors better if you specify an appropriate domain and range. You specify the domain and
range as shown below:

baume(d) units=[1;g/cm^3] domain=[0,130.5] range=[1,10] \

(145/(145-d)) g/cm^3 ; (baume+-g/cm^3) 145 / baume

In this example the domain is specified after ‘domain=’ with the endpoints given in brackets.
In accord with mathematical convention, square brackets indicate a closed interval (one that
includes its endpoints), and parentheses indicate an open interval (one that does not include
its endpoints). An interval can be open or closed on one or both ends; an interval that is
unbounded on either end is indicated by omitting the limit on that end. For example, a
quantity to which decibel (dB) is applied may have any value greater than zero, so the
range is indicated by ‘(0,)’:

decibel(x) units=[1;1] range=(0,) 10^(x/10); 10 log(decibel)

If the domain or range is given, the second endpoint must be greater than the first.

The domain and range specifications can appear independently and in any order along
with the units specification. The values for the domain and range endpoints are attached to
the units given in the units specification, and if necessary, the parameter value is adjusted
for comparison with the endpoints. For example, if a definition includes ‘units=[1;ft]’
and ‘range=[3,)’, the range will be taken as 3 ft to infinity. If the function is passed a
parameter of ‘900 mm’, that value will be adjusted to 2.9527559 ft, which is outside the
specified range. If you omit the units specification from the previous example, units can
not tell whether you intend the lower endpoint to be 3 ft or 3 microfurlongs, and can not
adjust the parameter value of 900 mm for comparison. Without units, numerical values
other than zero or plus or minus infinity for domain or range endpoints are meaningless,
and accordingly they are not allowed. If you give other values without units then the
definition will be ignored and you will get an error message.

Although the units, domain, and range specifications are optional, it’s best to give them
when they are applicable; doing so allows units to perform better error checking and give
more helpful error messages. Giving the domain and range also enables the --check option
to find a point in the domain to use for its point check of your inverse definition.

You can make synonyms for nonlinear units by providing both the forward and inverse
functions; inverse functions can be obtained using the ‘~’ operator. So to create a synonym
for ‘tempF’ you could write

fahrenheit(x) units=[1;K] tempF(x); ~tempF(fahrenheit)

Units Conversion 29

This is useful for creating a nonlinear unit definition that differs slightly from an existing
definition without having to repeat the original functions. For example,

dBW(x) units=[1;W] range=[0,) dB(x) W ; ~dB(dBW/W)

If you wish a synonym to refer to an existing nonlinear unit without modification, you can
do so more simply by adding the synonym with appended parentheses as a new unit, with
the existing nonlinear unit—without parentheses—as the definition. So to create a synonym
for ‘tempF’ you could write

fahrenheit() tempF

The definition must be a nonlinear unit; for example, the synonym

fahrenheit() meter

will result in an error message when units starts.

You may occasionally wish to define a function that operates on units. This can be done
using a nonlinear unit definition. For example, the definition below provides conversion
between radius and the area of a circle. This definition requires a length as input and
produces an area as output, as indicated by the ‘units=’ specification. Specifying the range
as the nonnegative numbers can prevent cryptic error messages.

circlearea(r) units=[m;m^2] range=[0,) pi r^2 ; sqrt(circlearea/pi)

10.4 Defining Piecewise Linear Units

Sometimes you may be interested in a piecewise linear unit such as many wire gauges.
Piecewise linear units can be defined by specifying conversions to linear units on a list of
points. Conversion at other points will be done by linear interpolation. A partial definition
of zinc gauge is

zincgauge[in] 1 0.002, 10 0.02, 15 0.04, 19 0.06, 23 0.1

In this example, ‘zincgauge’ is the name of the piecewise linear unit. The definition of such
a unit is indicated by the embedded ‘[’ character. After the bracket, you should indicate
the units to be attached to the numbers in the table. No spaces can appear before the ‘]’
character, so a definition like ‘foo[kg meters]’ is invalid; instead write ‘foo[kg*meters]’.
The definition of the unit consists of a list of pairs optionally separated by commas. This
list defines a function for converting from the piecewise linear unit to linear units. The first
item in each pair is the function argument; the second item is the value of the function at
that argument (in the units specified in brackets). In this example, we define ‘zincgauge’
at five points. For example, we set ‘zincgauge(1)’ equal to ‘0.002 in’. Definitions like
this may be more readable if written using continuation characters as

zincgauge[in] \

1 0.002 \

10 0.02 \

15 0.04 \

19 0.06 \

23 0.1

With the preceding definition, the following conversion can be performed:

Units Conversion 30

You have: zincgauge(10)

You want: in

* 0.02

/ 50

You have: .01 inch

You want: zincgauge

5

If you define a piecewise linear unit that is not strictly monotonic, then the inverse will not
be well defined. If the inverse is requested for such a unit, units will return the smallest
inverse.

After adding nonlinear units definitions, you should normally run units --check to
check for errors. If the ‘units’ keyword is not given, the ‘--check’ option checks a non-
linear unit definition using a dimensionless argument, and then checks using an arbitrary
combination of units, as well as the square and cube of that combination; a warning is given
if any of these tests fail. For example,

Warning: function 'squirt(x)' defined as 'sqrt(x)'

failed for some test inputs:

squirt(7(kg K)^1): Unit not a root

squirt(7(kg K)^3): Unit not a root

Running units --check will print a warning if a non-monotonic piecewise linear unit is
encountered. For example, the relationship between ANSI coated abrasive designation and
mean particle size is non-monotonic in the vicinity of 800 grit:

ansicoated[micron] \

. . .

600 10.55 \

800 11.5 \

1000 9.5 \

Running units --check would give the error message

Table 'ansicoated' lacks unique inverse around entry 800

Although the inverse is not well defined in this region, it’s not really an error. Viewing
such error messages can be tedious, and if there are enough of them, they can distract from
true errors. Error checking for nonlinear unit definitions can be suppressed by giving the
‘noerror’ keyword; for the examples above, this could be done as

squirt(x) noerror domain=[0,) range=[0,) sqrt(x); squirt^2

ansicoated[micron] noerror \

. . .

Use the ‘noerror’ keyword with caution. The safest approach after adding a nonlinear unit
definition is to run units --check and confirm that there are no actual errors before adding
the ‘noerror’ keyword.

10.5 Defining Unit List Aliases

Unit list aliases are treated differently from unit definitions, because they are a data entry
shorthand rather than a true definition for a new unit. A unit list alias definition begins

Units Conversion 31

with ‘!unitlist’ and includes the alias and the definition; for example, the aliases included
in the standard units data file are

!unitlist hms hr;min;sec

!unitlist time year;day;hr;min;sec

!unitlist dms deg;arcmin;arcsec

!unitlist ftin ft;in;1|8 in

!unitlist usvol cup;3|4 cup;2|3 cup;1|2 cup;1|3 cup;1|4 cup;\

tbsp;tsp;1|2 tsp;1|4 tsp;1|8 tsp

Unit list aliases are only for unit lists, so the definition must include a ‘;’. Unit list aliases
can never be combined with units or other unit list aliases, so the definition of ‘time’ shown
above could not have been shortened to ‘year;day;hms’.

As usual, be sure to run units --check to ensure that the units listed in unit list aliases
are conformable.

11 Numeric Output Format

By default, units shows results to eight significant digits. You can change this with the
--exponential, --digits, and --output-format options. The first sets an exponential
format (i.e., scientific notation) like that used in the original Unix units program, the
second allows you to specify a different number of significant digits, and the last allows
you to control the output appearance using the format for the printf() function in the C
programming language. If you only want to change the number of significant digits or specify
exponential format type, use the --digits and --exponential options. The --output-

format option affords the greatest control of the output appearance, but requires at least
rudimentary knowledge of the printf() format syntax. See Chapter 9 [Invoking Units],
page 20, for descriptions of these options.

11.1 Format Specification

The format specification recognized with the --output-format option is a subset of that
for printf(). The format specification has the form %[flags][width][.precision]type; it must
begin with ‘%’, and must end with a floating-point type specifier: ‘g’ or ‘G’ to specify the
number of significant digits, ‘e’ or ‘E’ for scientific notation, and ‘f’ for fixed-point decimal.
The ISO C99 standard added the ‘F’ type for fixed-point decimal and the ‘a’ and ‘A’ types
for hexadecimal floating point; these types are allowed with compilers that support them.
Type length modifiers (e.g., ‘L’ to indicate a long double) are inapplicable and are not
allowed.

The default format for units is ‘%.8g’; for greater precision, you could specify
‘-o %.15g’. The ‘g’ and ‘G’ format types use exponential format whenever the exponent
would be less than −4, so the value 0.000013 displays as ‘1.3e-005’. These types also use
exponential notation when the exponent is greater than or equal to the precision, so with
the default format, the value 5× 107 displays as ‘50000000’ and the value 5× 108 displays
as ‘5e+008’. If you prefer fixed-point display, you might specify ‘-o %.8f’; however, small
numbers will display very few significant digits, and values less than 0.5 × 10−8 will show
nothing but zeros.

Units Conversion 32

The format specification may include one or more optional flags: ‘+’, ‘ ’ (space), ‘#’, ‘-’,
or ‘0’ (the digit zero). The digit-grouping flag ‘'’ (apostrophe) is allowed with compilers
that support it. Flags are followed by an optional value for the minimum field width,
and an optional precision specification that begins with a period (e.g., ‘.6’). The field
width includes the digits, decimal point, the exponent, thousands separators (with the
digit-grouping flag), and the sign if any of these are shown.

11.2 Flags

The ‘+’ flag causes the output to have a sign (‘+’ or ‘-’). The space flag ‘ ’ is similar to
the ‘+’ flag, except that when the value is positive, it is prefixed with a space rather than
a plus sign; this flag is ignored if the ‘+’ flag is also given. The ‘+’ or ‘ ’ flag could be
useful if conversions might include positive and negative results, and you wanted to align
the decimal points in exponential notation. The ‘#’ flag causes the output value to contain
a decimal point in all cases; by default, the output contains a decimal point only if there
are digits (which can be trailing zeros) to the right of the point. With the ‘g’ or ‘G’ types,
the ‘#’ flag also prevents the suppression of trailing zeros. The digit-grouping flag ‘'’ shows
a thousands separator in digits to the left of the decimal point. This can be useful when
displaying large numbers in fixed-point decimal; for example, with the format ‘%f’,

You have: mile

You want: microfurlong

* 8000000.000000

/ 0.000000

the magnitude of the first result may not be immediately obvious without counting the
digits to the left of the decimal point. If the thousands separator is the comma (‘,’), the
output with the format ‘%'f’ might be

You have: mile

You want: microfurlong

* 8,000,000.000000

/ 0.000000

making the magnitude readily apparent. Unfortunately, few compilers support the digit-
grouping flag.

With the ‘-’ flag, the output value is left aligned within the specified field width. If a field
width greater than needed to show the output value is specified, the ‘0’ (zero) flag causes
the output value to be left padded with zeros until the specified field width is reached; for
example, with the format ‘%011.6f’,

You have: troypound

You want: grain

* 5760.000000

/ 0000.000174

The ‘0’ flag has no effect if the ‘-’ (left align) flag is given.

11.3 Field Width

By default, the output value is left aligned and shown with the minimum width necessary
for the specified (or default) precision. If a field width greater than this is specified, the

Units Conversion 33

value shown is right aligned, and padded on the left with enough spaces to provide the
specified field width. A width specification is typically used with fixed-point decimal to
have columns of numbers align at the decimal point; this arguably is less useful with units

than with long columnar output, but it may nonetheless assist in quickly assessing the
relative magnitudes of results. For example, with the format ‘%12.6f’,

You have: km

You want: in

* 39370.078740

/ 0.000025

You have: km

You want: rod

* 198.838782

/ 0.005029

You have: km

You want: furlong

* 4.970970

/ 0.201168

11.4 Precision

The meaning of “precision” depends on the format type. With ‘g’ or ‘G’, it specifies the
number of significant digits (like the --digits option); with ‘e’, ‘E’, ‘f’, or ‘F’, it specifies
the maximum number of digits to be shown after the decimal point.

With the ‘g’ and ‘G’ format types, trailing zeros are suppressed, so the results may
sometimes have fewer digits than the specified precision (as indicated above, the ‘#’ flag
causes trailing zeros to be displayed).

The default precision is 6, so ‘%g’ is equivalent to ‘%.6g’, and would show the output to
six significant digits. Similarly, ‘%e’ or ‘%f’ would show the output with six digits after the
decimal point.

The C printf() function allows a precision of arbitrary size, whether or not all of the
digits are meaningful. With most compilers, the maximum internal precision with units is
15 decimal digits (or 13 hexadecimal digits). With the ‘--digits’ option, you are limited
to the maximum internal precision; with the --output-format option, you may specify a
precision greater than this, but it may not be meaningful. In some cases, specifying excess
precision can result in rounding artifacts. For example, a pound is exactly 7000 grains, but
with the format ‘%.18g’, the output might be

You have: pound

You want: grain

* 6999.9999999999991

/ 0.00014285714285714287

With the format ‘%.25g’ you might get the following:

You have: 1/3

You want:

Definition: 0.333333333333333314829616256247

In this case the displayed value includes a series of digits that represent the underlying binary
floating-point approximation to 1/3 but are not meaningful for the desired computation.

Units Conversion 34

In general, the result with excess precision is system dependent. The precision affects only
the display of numbers; if a result relies on physical constants that are not known to the
specified precision, the number of physically meaningful digits may be less than the number
of digits shown.

See the documentation for printf() for more detailed descriptions of the format speci-
fication.

The --output-format option is incompatible with the --exponential or --digits op-
tions; if the former is given in combination with either of the latter, the format is controlled
by the last option given.

12 Localization

Some units have different values in different locations. The localization feature accommo-
dates this by allowing a units data file to specify definitions that depend on the user’s
locale.

12.1 Locale

A locale is a subset of a user’s environment that indicates the user’s language and country,
and some attendant preferences, such as the formatting of dates. The units program
attempts to determine the locale from the POSIX setlocale function; if this cannot be done,
units examines the environment variables LC_CTYPE and LANG. On POSIX systems, a
locale is of the form language_country, where language is the two-character code from ISO
639-1 and country is the two-character code from ISO 3166-1; language is lower case and
country is upper case. For example, the POSIX locale for the United Kingdom is en_GB.

On systems running Microsoft Windows, the value returned by setlocale() is different
from that on POSIX systems; units attempts to map the Windows value to a POSIX
value by means of a table in the file locale_map.txt in the same directory as the other
data files. The file includes entries for many combinations of language and country, and
can be extended to include other combinations. The locale_map.txt file comprises two
tab-separated columns; each entry is of the form

Windows-locale POSIX-locale

where POSIX-locale is as described above, and Windows-locale typically spells out both
the language and country. For example, the entry for the United States is

English_United States en_US

You can force units to run in a desired locale by using the -l option.

In order to create unit definitions for a particular locale you begin a block of definitions
in a unit datafile with ‘!locale’ followed by a locale name. The ‘!’ must be the first
character on the line. The units program reads the following definitions only if the current
locale matches. You end the block of localized units with ‘!endlocale’. Here is an example,
which defines the British gallon.

!locale en_GB

gallon 4.54609 liter

!endlocale

Units Conversion 35

12.2 Additional Localization

Sometimes the locale isn’t sufficient to determine unit preferences. There could be regional
preferences, or a company could have specific preferences. Though probably uncommon,
such differences could arise with the choice of English customary units outside of English-
speaking countries. To address this, units allows specifying definitions that depend on
environment variable settings. The environment variables can be controled based on the
current locale, or the user can set them to force a particular group of definitions.

A conditional block of definitions in a units data file begins with either ‘!var’ or
‘!varnot’ following by an environment variable name and then a space separated list of
values. The leading ‘!’ must appear in the first column of a units data file, and the con-
ditional block is terminated by ‘!endvar’. Definitions in blocks beginning with ‘!var’ are
executed only if the environment variable is exactly equal to one of the listed values. Def-
initions in blocks beginning with ‘!varnot’ are executed only if the environment variable
does not equal any of the list values.

The inch has long been a customary measure of length in many places. The word comes
from the latin uncia meaning “one twelfth,” referring to its relationship with the foot. By
the 20th century, the inch was officially defined in English-speaking countries relative to
the yard, but until 1959, the yard differed slightly among those countries. In France the
customary inch, which was displaced in 1799 by the meter, had a different length based on
a french foot. These customary definitions could be accommodated as follows:

!var INCH_UNIT usa

yard 3600|3937 m

!endvar

!var INCH_UNIT canada

yard 0.9144 meter

!endvar

!var INCH_UNIT uk

yard 0.91439841 meter

!endvar

!var INCH_UNIT canada uk usa

foot 1|3 yard

inch 1|12 foot

!endvar

!var INCH_UNIT france

foot 144|443.296 m

inch 1|12 foot

line 1|12 inch

!endvar

!varnot INCH_UNIT usa uk france canada

!message Unknown value for INCH_UNIT

!endvar

When units reads the above definitions it will check the environment variable INCH_UNIT

and load only the definitions for the appropriate section. If INCH_UNIT is unset or is not set
to one of the four values listed then units will run the last block. In this case that block

Units Conversion 36

uses the ‘!message’ command to display a warning message. Alternatively that block could
set default values.

In order to create default values that are overridden by user settings the data file can
use the ‘!set’ command, which sets an environment variable only if it is not already set ;
these settings are only for the current units invocation and do not persist. So if the
example above were preceded by ‘!set INCH_UNIT france’ then this would make ‘france’
the default value for INCH_UNIT. If the user had set the variable in the environment before
invoking units, then units would use the user’s value.

To link these settings to the user’s locale you combine the ‘!set’ command with the
‘!locale’ command. If you wanted to combine the above example with suitable locales you
could do by preceding the above definition with the following:

!locale en_US

!set INCH_UNIT usa

!endlocale

!locale en_GB

!set INCH_UNIT uk

!endlocale

!locale en_CA

!set INCH_UNIT canada

!endlocale

!locale fr_FR

!set INCH_UNIT france

!endlocale

!set INCH_UNIT france

These definitions set the overall default for INCH_UNIT to ‘france’ and set default values
for four locales appropriately. The overall default setting comes last so that it only applies
when INCH_UNIT was not set by one of the other commands or by the user.

If the variable given after ‘!var’ or ‘!varnot’ is undefined then units prints an error
message and ignores the definitions that follow. Use ‘!set’ to create defaults to prevent
this situation from arising. The -c option only checks the definitions that are active for the
current environment and locale, so when adding new definitions take care to check that all
cases give rise to a well defined set of definitions.

13 Environment Variables

The units program uses the following environment variables:

HOME Specifies the location of your home directory; it is used by units to
find a personal units data file ‘.units’. On systems running Microsoft
Windows, the file is ‘unitdef.units’, and if HOME does not exist, units

tries to determine your home directory from the HOMEDRIVE and HOMEPATH

environment variables; if these variables do not exist, units finally tries
USERPROFILE—typically C:\Users\username (Windows Vista and Windows 7)
or C:\Documents and Settings\username (Windows XP).

Units Conversion 37

LC_CTYPE, LANG

Checked to determine the locale if units cannot obtain it from the operating
system. Sections of the standard units data file are specific to certain locales.

MYUNITSFILE

Specifies your personal units data file. If this variable exists, units uses its
value rather than searching your home directory for ‘.units’. The personal
units file will not be loaded if any data files are given using the ‘-f’ option.

PAGER Specifies the pager to use for help and for displaying the conformable units.
The help function browses the units database and calls the pager using the
‘+n’n syntax for specifying a line number. The default pager is more; PAGER can
be used to specify alternatives such as less, pg, emacs, or vi.

UNITS_ENGLISH

Set to either ‘US’ or ‘GB’ to choose United States or British volume definitions,
overriding the default from your locale.

UNITSFILE

Specifies the units data file to use (instead of the default). You can only specify
a single units data file using this environment variable. If units data files are
given using the -f option, the file specified by UNITSFILE will be not be loaded
unless the -f option is given with the empty string (‘units -f ""’).

UNITSLOCALEMAP

Windows only; this variable has no effect on Unix-like systems. Specifies the
units locale map file to use (instead of the default). This variable seldom needs
to be set, but you can use it to ensure that the locale map file will be found if
you specify a location for the units data file using either the -f option or the
UNITSFILE environment variable, and that location does not also contain the
locale map file.

14 Data Files

The units program uses two default data files: definitions.units and currency.units.
The program can also use an optional personal units data file .units (unitdef.units under
Windows) located in the user’s home directory. The personal units data file is described in
more detail in Section 10.1 [Units Data Files], page 25.

On Unix-like systems, the data files are typically located in /usr/share/units if units
is provided with the operating system, or in /usr/local/share/units if units is compiled
from the source distribution.

On systems running Microsoft Windows, the files may be in the same locations if Unix-
like commands are available, a Unix-like file structure is present (e.g., C:/usr/local), and
units is compiled from the source distribution. If Unix-like commands are not available,
a more common location is C:\Program Files (x86)\GNU\units (for 64-bit Windows in-
stallations) or C:\Program Files\GNU\units (for 32-bit installations).

If units is obtained from the GNU Win32 Project (http://gnuwin32.sourceforge.
net/), the files are commonly in C:\Program Files\GnuWin32\share\units.

http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/

Units Conversion 38

If the default units data file is not an absolute pathname, units will look for the file
in the directory that contains the units program; if the file is not found there, units will
look in a directory ../share/units relative to the directory with the units program.

You can determine the location of the files by running units --version. Running
units --info will give you additional information about the files, how units will attempt
to find them, and the status of the related environment variables.

15 Unicode Support

The standard units data file is in Unicode, using UTF-8 encoding. Most definitions use only
ASCII characters (i.e., code points U+0000 through U+007F); definitions using non-ASCII
characters appear in blocks beginning with ‘!utf8’ and ending with ‘!endutf8’.

When units starts, it checks the locale to determine the character set. If units is
compiled with Unicode support and definitions; otherwise these definitions are ignored.
When Unicode support is active, units will check every line of all of the units data files for
invalid or non-printing UTF-8 sequences; if such sequences occur, units ignores the entire
line. In addition to checking validity, units determines the display width of non-ASCII
characters to ensure proper positioning of the pointer in some error messages and to align
columns for the ‘search’ and ‘?’ commands.

At present, units does not support Unicode under Microsoft Windows. The UTF-16
and UTF-32 encodings are not supported on any systems.

If definitions that contain non-ASCII characters are added to a units data file, those
definitions should be enclosed within ‘!utf8’ . . . ‘!endutf8’ to ensure that they are only
loaded when Unicode support is available. As usual, the ‘!’ must appear as the first char-
acter on the line. As discussed in Section 10.1 [Units Data Files], page 25, it’s usually best
to put such definitions in supplemental data files linked by an ‘!include’ command or in a
personal units data file.

When Unicode support is not active, units makes no assumptions about character
encoding, except that characters in the range 00–7F hexadecimal correspond to ASCII en-
coding. Non-ASCII characters are simply sequences of bytes, and have no special meanings;
for definitions in supplementary units data files, you can use any encoding consistent with
this assumption. For example, if you wish to use non-ASCII characters in definitions when
running units under Windows, you can use a character set such as Windows “ANSI” (code
page 1252 in the US and Western Europe). You can even use UTF-8, though some mes-
sages may be improperly aligned, and units will not detect invalid UTF-8 sequences. If you
use UTF-8 encoding when Unicode support is not active, you should place any definitions
with non-ASCII characters outside ‘!utf8’ . . . ‘!endutf8’ blocks—otherwise, they will be
ignored.

Typeset material other than code examples usually uses the Unicode minus (U+2212)
rather than the ASCII hyphen-minus operator (U+002D) used in units; the figure dash
(U+2012) and en dash (U+2013) are also occasionally used. To allow such material to be
copied and pasted for interactive use or in units data files, units converts these characters
to U+002D before further processing. Because of this, none of these characters can appear
in unit names.

Units Conversion 39

16 Readline Support

If the readline package has been compiled in, then when units is used interactively,
numerous command line editing features are available. To check if your version of units
includes readline, invoke the program with the --version option.

For complete information about readline, consult the documentation for the readline
package. Without any configuration, units will allow editing in the style of emacs. Of
particular use with units are the completion commands.

If you type a few characters and then hit ESC followed by ? then units will display a
list of all the units that start with the characters typed. For example, if you type metr and
then request completion, you will see something like this:

You have: metr

metre metriccup metrichorsepower metrictenth

metretes metricfifth metricounce metricton

metriccarat metricgrain metricquart metricyarncount

You have: metr

If there is a unique way to complete a unitname, you can hit the TAB key and units

will provide the rest of the unit name. If units beeps, it means that there is no unique
completion. Pressing the TAB key a second time will print the list of all completions.

17 Updating Currency Exchange Rates

The units program includes currency exchange rates and prices for some precious
metals in the database. Of course, these values change over time, sometimes very
rapidly, and units cannot provide real time values. To update the exchange rates
run the units_cur, which rewrites the files containing the currency rates, typically
/usr/share/units/currency.units. This program requires python and the unidecode

package, and must be run with suitable permissions to write the file. To keep the
rates updated automatically, run it using a cron job on a Unix-like system, or a similar
scheduling program on a different system. Currency exchange rates are taken from Time
Genie (http://www.timegenie.com) and precious metals pricing from Packetizer (www.
packetizer.com). These sites update once per day, so there is no benefit in running the
update script more often than daily. You can run units_cur with a filename specified on
the command line and it will write the data to that file. If you give ‘-’ for the file it will
write to standard output.

18 Database Command Syntax

unit definition

Define a regular unit.

prefix- definition

Define a prefix.

http://www.timegenie.com
www.packetizer.com
www.packetizer.com

Units Conversion 40

funcname(var) noerror units=[in-units,out-units] domain=[x1,x2]

range=[y1,y2] definition(var) ; inverse(funcname)

Define a nonlinear unit or unit function. The four optional keywords noerror,
units=, range= and domain= can appear in any order. The definition of the
inverse is optional.

tabname[out-units] noerror pair-list

Define a piecewise linear unit. The pair list gives the points on the table listed
in ascending order. The noerror keyword is optional.

!endlocale

End a block of definitions beginning with ‘!locale’

!endutf8 End a block of definitions begun with ‘!utf8’

!endvar End a block of definitions begun with ‘!var’ or ‘!varnot’

!include file

Include the specified file.

!locale value

Load the following definitions only of the locale is set to value.

!message text

Display text when the database is read unless the quiet option (-q) is enabled.

!set variable value

Sets the environment variable, variable, to the specified value only if it is not
already set.

!unitlist alias definition

Define a unit list alias.

!utf8 Load the following definitions only if units is running with UTF-8 enabled.

!var envar value-list

Load the block of definitions that follows only if the environment variable envar
is set to one of the values listed in the space-separated value list. If envar is
not set, units prints an error message and ignores the block of definitions.

!varnot envar value-list

Load the block of definitions that follows only if the environment variable envar
is set to value that is not listed in the space-separated value list. If envar is not
set, units prints an error message and ignores the block of definitions.

19 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

http://fsf.org/

Units Conversion 41

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

Units Conversion 42

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

Units Conversion 43

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Units Conversion 44

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

Units Conversion 45

added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the

Units Conversion 46

electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free

http://www.gnu.org/copyleft/

Units Conversion 47

Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Units Conversion 48

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

!
‘!’ to indicate primitive units 25
‘!endlocale’ . 34
‘!endutf8’ . 38
‘!include’ . 25
‘!locale’ . 34
‘!unitlist’ . 30
‘!utf8’ . 38

*
‘*’ operator . 6
‘**’ operator . 7

+
‘+’ operator . 8

-
‘-’ as multiplication operator 12
‘-’ as subtraction operator . 8
--check (option for units) . 21
--check-verbose (option for units) 21
--compact (option for units) 23
--digits (option for units) 21
--exponential (option for units) 21
--file (option for units) . 22

--help (option for units) . 22
--info (option for units) . 24
--locale (option for units) 25
--log (option for units) . 22
--minus (option for units) . 22
--newstar (option for units) 23
--oldstar (option for units) 23
--one-line (option for units) 24
--output-format (option for units) 22
--product (option for units) 23
--quiet (option for units) . 23
--silent (option for units) 23
--strict (option for units) 23
--terse (option for units) . 24
--unitsfile (option for units) 24
--verbose (option for units) 24
--verbose-check (option for units) 21
--version (option for units) 24
-1 (option for units) . 24
-c (option for units) . 21
-d (option for units) . 21
-e (option for units) . 21
-f (option for units) . 22
-h (option for units) . 22
-I (option for units) . 24
-l (option for units) . 25
-L (option for units) . 22
-m (option for units) . 22

Units Conversion 49

-o (option for units) . 22
-p (option for units) . 23
-q (option for units) . 23
-s (option for units) . 23
-t (option for units) . 24
-U (option for units) . 24
-v (option for units) . 24
-V (option for units) . 24

?
‘?’ for unit completion with readline 39
‘?’ to show conformable units 3

‘_’ to use result of previous conversion 10

|
‘|’ operator . 6

A
abrasive grit size . 14
addition of units . 8
additional units data files . 25

B
backwards compatibility . 12
British Imperial measure . 4

C
circle, area of . 14
command, ‘!’ to indicate primitive units 25
command, ‘!endlocale’ . 34
command, ‘!endutf8’ . 38
command, ‘!endvar’ . 34
command, ‘!include’ . 25
command, ‘!locale’ . 34
command, ‘!message’ . 34
command, ‘!set’ . 34
command, ‘!unitlist’ . 30
command, ‘!utf8’ . 38
command, ‘!var’ . 34
command, ‘!varnot’ . 34
command-line options . 20
command-line unit conversion 3
commands in units database 39
compatibility . 12
compatibility with earlier versions 12
completion, unit, using ‘?’ (readline only) 39
conformable units, ‘?’ to show 3
currency, updating . 39

D
Darcy–Weisbach equation . 11
data files . 37
data files, additional . 25
database syntax summary . 39
defining nonlinear units . 27
defining piecewise linear units 29
defining prefixes . 25
defining unit list aliases . 30
defining units . 25
defining units with ‘-’ . 12
differences of units . 8
dimensionless units . 3
dimensionless units, defining 26
division of numbers . 6
division of units . 6
domain, nonlinear unit definitions 28

E
environment dependent definitions 34
environment variable, HOME 36
environment variable, LANG 37
environment variable, LC CTYPE 37
environment variable, MYUNITSFILE 25, 37
environment variable, PAGER 37
environment variable, UNITS ENGLISH 37
environment variable, UNITSFILE 37
environment variable, UNITSLOCALEMAP . . . 37
environment variables . 36
exchange rates, updating . 39
exponent operator . 7

F
files, data . 37
flags, output format . 32
format specification, output . 31
fractions, numerical . 6
functions of units . 29
functions, built in . 9

H
help . 3, 37
HOME environment variable 36
hyphen as multiplication operator 12

I
Imperial measure . 4
include files . 26
including additional units data files 25
incompatible units . 2
interactive use . 1
international mile . 5
international yard . 5

Units Conversion 50

invoking units . 20

L
LANG environment variable 37
LC CTYPE environment variable 37
length measure, English customary 5
length measure, UK . 5
linear interpolation . 29
locale . 34
locale_map.txt . 34
localization . 34
log file . 19
logging calculations . 19

M
measure, Imperial . 4
mile, international . 5
minus (‘-’) operator, subtraction 8
multiplication of units . 6
multiplication, hyphen . 12
MYUNITSFILE environment variable 25, 37

N
non-conformable units . 2
non-interactive unit conversion 3
nonlinear unit conversions 12, 27
nonlinear units, defining . 27
nonlinear units, other . 13
numbers as units . 8
numeric output format . 31
numerical fractions . 6

O
operator precedence . 6
operator, (‘**’) . 7
operator, caret (‘^’) . 7
operator, hyphen (‘-’) as multiplication 12
operator, hyphen (‘-’) as subtraction 8
operator, minus (‘-’) . 8
operator, ‘per’ . 6
operator, plus (‘+’) . 8
operator, slash (‘/’) . 6
operator, solidus (‘/’) . 6
operator, space . 6
operator, star (‘*’) . 6
operator, vertical bar (‘|’) . 6
operators . 6
output field width . 32
output format . 31
output format flags . 32
output format specification . 31
output precision . 33

P
PAGER environment variable 37
parentheses . 6, 7, 8, 11, 26, 27
‘per’ operator . 6
personal units data file . 25
piecewise linear units . 29
plus (‘+’) operator . 8
powers . 7
precision, output . 33
prefixes . 5
prefixes and exponents . 7
prefixes, definition of . 25
previous result . 10
primitive units . 25
products of units . 6

Q
quotients of units . 6

R
range, nonlinear unit definitions 28
readline, use with units . 39
reciprocal conversion . 2
roots . 9

S
setlocale function . 34
slash (‘/’) operator . 6
solidus (‘/’) operator . 6
sphere, volume of . 14
square roots . 9
star (‘*’) operator . 6
State Plane Coordinate System, US 5
strict conversion . 2
subtraction of units . 8
sums and differences of units . 8
sums of units . 8, 15
survey foot, US . 5
survey measure, US . 5
survey mile, US . 5
syntax of units database . 39

T
temperature conversions . 12

U
Unicode support . 38
unit completion using ‘?’ (readline only) 39
unit definitions . 4
unit expressions . 6
unit expressions, complicated 11
unit list aliases, defining . 30

Units Conversion 51

unit lists . 15
unit name completion . 39
units data file, personal . 25
units data files, additional . 25
units definitions, adding . 25
units definitions, changing . 25
units functions . 29
units quotients . 6
units, definition of . 25
units, lookup method . 4
units, piecewise linear . 29
units, primitive . 25
units, sums and differences . 8
units, sums of . 15
UNITS ENGLISH environment variable 37
UNITSFILE environment variable 37
UNITSLOCALEMAP environment variable 37
US State Plane Coordinate System 5

US survey foot . 5
US survey measure . 5
US survey mile . 5
UTF-8 . 38

V
verbose output . 2
vertical bar (‘|’) operator . 6
volume measure, English customary 5

W
wire gauge . 13

Y
yard, international . 5

	Overview of units
	Interacting with units
	Using units Non-Interactively
	Unit Definitions
	English Customary Units

	Unit Expressions
	Operators
	Sums and Differences of Units
	Numbers as Units
	Built-in Functions
	Previous Result
	Complicated Unit Expressions
	Backwards Compatibility: * and -

	Nonlinear Unit Conversions
	Temperature Conversions
	Other Nonlinear Units

	Unit Lists: Conversion to Sums of Units
	Logging Calculations
	Invoking units
	Adding Your Own Definitions
	Units Data Files
	Defining New Units and Prefixes
	Defining Nonlinear Units
	Defining Piecewise Linear Units
	Defining Unit List Aliases

	Numeric Output Format
	Format Specification
	Flags
	Field Width
	Precision

	Localization
	Locale
	Additional Localization

	Environment Variables
	Data Files
	Unicode Support
	Readline Support
	Updating Currency Exchange Rates
	Database Command Syntax
	GNU Free Documentation License
	Index

