
Debugging with DDD
User’s Guide and Reference Manual

First Edition, for DDD Version 3.3.12-rc2
Last updated 15 July, 2006

Andreas Zeller

Debugging with DDD
User’s Guide and Reference Manual

Copyright c© 2004 Universität des Saarlandes
Lehrstuhl Softwaretechnik
Postfach 15 11 50
66041 Saarbrücken
GERMANY

Distributed by
Free Software Foundation, Inc.
59 Temple Place – Suite 330
Boston, MA 02111-1307
USA

ddd and this manual are available via
the ddd www page.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”; See Appendix I
[Documentation License], page 205, for details.
Send questions, comments, suggestions, etc. to ddd@gnu.org.
Send bug reports to bug-ddd@gnu.org.

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

i

Short Contents

Summary of DDD . 1

1 A Sample DDD Session . 7

2 Getting In and Out of DDD . 17

3 The DDD Windows . 43

4 Navigating through the Code . 75

5 Stopping the Program . 83

6 Running the Program . 93

7 Examining Data . 107

8 Machine-Level Debugging . 143

9 Changing the Program . 147

10 The Command-Line Interface . 149

Appendix A Application Defaults . 161

Appendix B Bugs and How To Report Them . 171

Appendix C Configuration Notes . 177

Appendix D Dirty Tricks . 185

Appendix E Extending DDD . 187

Appendix F Frequently Answered Questions . 189

Appendix G GNU General Public License . 191

Appendix H Help and Assistance . 203

Appendix I GNU Free Documentation License . 205

Label Index . 211

Key Index . 215

Command Index . 217

Resource Index . 219

File Index . 223

Concept Index . 225

ii Debugging with DDD

iii

Table of Contents

Summary of DDD . 1
About this Manual . 2
Typographic conventions . 2
Free software . 3
Getting DDD . 3
Contributors to DDD . 4
History of DDD . 4

1 A Sample DDD Session . 7
1.1 Sample Program . 16

2 Getting In and Out of DDD . 17
2.1 Invoking DDD . 17

2.1.1 Choosing an Inferior Debugger . 17
2.1.2 DDD Options . 18
2.1.3 X Options . 26
2.1.4 Inferior Debugger Options . 26

2.1.4.1 GDB Options . 26
2.1.4.2 DBX and Ladebug Options 27
2.1.4.3 XDB Options . 27
2.1.4.4 JDB Options . 27
2.1.4.5 Bash Options . 29
2.1.4.6 GNU Make Options . 29
2.1.4.7 Perl Options . 30
2.1.4.8 PYDB Options . 30

2.1.5 Multiple DDD Instances . 30
2.1.6 X warnings . 30

2.2 Quitting DDD . 31
2.3 Persistent Sessions . 31

2.3.1 Saving Sessions . 31
2.3.2 Resuming Sessions . 33
2.3.3 Deleting Sessions . 34
2.3.4 Customizing Sessions . 34

2.4 Remote Debugging . 34
2.4.1 Running DDD on a Remote Host . 34
2.4.2 Using DDD with a Remote Inferior Debugger 35

2.4.2.1 Customizing Remote Debugging 35
2.4.3 Debugging a Remote Program . 36

2.5 Customizing Interaction with the Inferior Debugger 37
2.5.1 Invoking an Inferior Debugger . 37
2.5.2 Initializing the Inferior Debugger . 37

2.5.2.1 Bash Initialization . 37

iv Debugging with DDD

2.5.2.2 DBX Initialization . 38
2.5.2.3 GDB Initialization . 38
2.5.2.4 JDB Initialization . 39
2.5.2.5 GNU Make Initialization 39
2.5.2.6 Perl Initialization . 39
2.5.2.7 PYDB Initialization . 40
2.5.2.8 XDB Initialization . 40
2.5.2.9 Finding a Place to Start . 40
2.5.2.10 Opening the Selection . 41

2.5.3 Communication with the Inferior Debugger 41

3 The DDD Windows . 43
3.1 The Menu Bar . 43

3.1.1 The File Menu . 44
3.1.2 The Edit Menu . 45
3.1.3 The View Menu . 46
3.1.4 The Program Menu . 47
3.1.5 The Commands Menu . 48
3.1.6 The Status Menu . 49
3.1.7 The Source Menu . 49
3.1.8 The Data Menu . 50
3.1.9 The Maintenance Menu . 51
3.1.10 The Help Menu . 52
3.1.11 Customizing the Menu Bar . 52

3.1.11.1 Auto-Raise Menus . 53
3.1.11.2 Customizing the Edit Menu 53

3.2 The Tool Bar . 54
3.2.1 Customizing the Tool Bar . 56

3.3 The Command Tool . 57
3.3.1 Customizing the Command Tool . 59

3.3.1.1 Disabling the Command Tool 59
3.3.2 Command Tool Position . 60

3.3.2.1 Customizing Tool Decoration 61
3.4 Getting Help . 61
3.5 Undoing and Redoing Commands . 62
3.6 Customizing DDD . 62

3.6.1 How Customizing DDD Works . 62
3.6.1.1 Resources . 62
3.6.1.2 Changing Resources . 63
3.6.1.3 Saving Options . 63

3.6.2 Customizing DDD Help . 63
3.6.2.1 Button Tips . 63
3.6.2.2 Tip of the day . 64
3.6.2.3 Help Helpers . 65

3.6.3 Customizing Undo . 66
3.6.4 Customizing the DDD Windows . 66

3.6.4.1 Splash Screen . 66
3.6.4.2 Window Layout . 67

v

3.6.4.3 Customizing Fonts . 69
3.6.4.4 Toggling Windows . 72
3.6.4.5 Text Fields . 72
3.6.4.6 Icons . 72
3.6.4.7 Adding Buttons . 73
3.6.4.8 More Customizations . 73

3.6.5 Debugger Settings . 73

4 Navigating through the Code . 75
4.1 Compiling for Debugging . 75
4.2 Opening Files . 75

4.2.1 Opening Programs . 75
4.2.2 Opening Core Dumps . 76
4.2.3 Opening Source Files . 76
4.2.4 Filtering Files . 77

4.3 Looking up Items . 77
4.3.1 Looking up Definitions . 77
4.3.2 Textual Search . 78
4.3.3 Looking up Previous Locations . 78
4.3.4 Specifying Source Directories . 78

4.4 Customizing the Source Window . 79
4.4.1 Customizing Glyphs . 80
4.4.2 Customizing Searching . 81
4.4.3 Customizing Source Appearance . 81
4.4.4 Customizing Source Scrolling . 82
4.4.5 Customizing Source Lookup . 82
4.4.6 Customizing File Filtering . 82

5 Stopping the Program . 83
5.1 Breakpoints . 83

5.1.1 Setting Breakpoints . 83
5.1.1.1 Setting Breakpoints by Location 83
5.1.1.2 Setting Breakpoints by Name 84
5.1.1.3 Setting Regexp Breakpoints 84

5.1.2 Deleting Breakpoints . 84
5.1.3 Disabling Breakpoints . 85
5.1.4 Temporary Breakpoints . 85
5.1.5 Editing Breakpoint Properties . 86
5.1.6 Breakpoint Conditions . 86
5.1.7 Breakpoint Ignore Counts . 87
5.1.8 Breakpoint Commands . 87
5.1.9 Moving and Copying Breakpoints . 88
5.1.10 Looking up Breakpoints . 88
5.1.11 Editing all Breakpoints . 88
5.1.12 Hardware-Assisted Breakpoints . 89

5.2 Watchpoints . 89
5.2.1 Setting Watchpoints . 90
5.2.2 Editing Watchpoint Properties . 90

vi Debugging with DDD

5.2.3 Editing all Watchpoints . 90
5.2.4 Deleting Watchpoints . 90

5.3 Interrupting . 90
5.4 Stopping X Programs . 91

5.4.1 Customizing Grab Checking . 91

6 Running the Program . 93
6.1 Starting Program Execution . 93

6.1.1 Your Program’s Arguments . 94
6.1.2 Your Program’s Environment . 94
6.1.3 Your Program’s Working Directory 94
6.1.4 Your Program’s Input and Output . 94

6.2 Using the Execution Window . 95
6.2.1 Customizing the Execution Window 96

6.3 Attaching to a Running Process . 96
6.3.1 Customizing Attaching to Processes 97

6.4 Program Stops . 98
6.5 Resuming Execution . 98

6.5.1 Continuing . 98
6.5.2 Stepping one Line . 98
6.5.3 Continuing to the Next Line . 98
6.5.4 Continuing Until Here . 99
6.5.5 Continuing Until a Greater Line is Reached 99
6.5.6 Continuing Until Function Returns 99

6.6 Continuing at a Different Address . 99
6.7 Examining the Stack . 100

6.7.1 Stack Frames . 100
6.7.2 Backtraces . 101
6.7.3 Selecting a Frame . 102

6.8 “Undoing” Program Execution . 102
6.9 Examining Threads . 103
6.10 Handling Signals . 104
6.11 Killing the Program . 106

7 Examining Data . 107
7.1 Showing Simple Values using Value Tips . 107
7.2 Printing Simple Values in the Debugger Console 108
7.3 Displaying Complex Values in the Data Window 109

7.3.1 Display Basics . 109
7.3.1.1 Creating Single Displays 109
7.3.1.2 Selecting Displays . 110
7.3.1.3 Showing and Hiding Details 111
7.3.1.4 Rotating Displays . 112
7.3.1.5 Displaying Local Variables 113
7.3.1.6 Displaying Program Status 114
7.3.1.7 Refreshing the Data Window 115
7.3.1.8 Display Placement . 115
7.3.1.9 Clustering Displays . 116

vii

7.3.1.10 Creating Multiple Displays 117
7.3.1.11 Editing all Displays . 117
7.3.1.12 Deleting Displays . 119

7.3.2 Arrays . 120
7.3.2.1 Array Slices . 120
7.3.2.2 Repeated Values . 120
7.3.2.3 Arrays as Tables . 121

7.3.3 Assignment to Variables . 122
7.3.4 Examining Structures . 122

7.3.4.1 Displaying Dependent Values 122
7.3.4.2 Dereferencing Pointers . 123
7.3.4.3 Shared Structures . 123
7.3.4.4 Display Shortcuts . 125

7.3.5 Customizing Displays . 127
7.3.5.1 Using Data Themes . 127
7.3.5.2 Applying Data Themes to Several Values . . 129
7.3.5.3 Editing Themes . 130
7.3.5.4 Writing Data Themes . 130
7.3.5.5 Display Resources . 131
7.3.5.6 VSL Resources . 131

7.3.6 Layouting the Graph . 132
7.3.6.1 Moving Displays . 132
7.3.6.2 Scrolling Data . 133
7.3.6.3 Aligning Displays . 133
7.3.6.4 Automatic Layout . 133
7.3.6.5 Rotating the Graph . 134

7.3.7 Printing the Graph . 134
7.4 Plotting Values . 136

7.4.1 Plotting Arrays . 136
7.4.2 Changing the Plot Appearance . 137
7.4.3 Plotting Scalars and Composites . 137
7.4.4 Plotting Display Histories . 138
7.4.5 Printing Plots . 138
7.4.6 Entering Plotting Commands . 139
7.4.7 Exporting Plot Data . 139
7.4.8 Animating Plots . 139
7.4.9 Customizing Plots . 140

7.4.9.1 Gnuplot Invocation . 140
7.4.9.2 Gnuplot Settings . 140

7.5 Examining Memory . 141

8 Machine-Level Debugging . 143
8.1 Examining Machine Code . 143
8.2 Machine Code Execution . 144
8.3 Examining Registers . 144
8.4 Customizing Machine Code . 145

viii Debugging with DDD

9 Changing the Program . 147
9.1 Editing Source Code . 147

9.1.1 Customizing Editing . 147
9.1.2 In-Place Editing . 147

9.2 Recompiling . 148
9.3 Patching . 148

10 The Command-Line Interface . 149
10.1 Entering Commands . 149

10.1.1 Command Completion . 149
10.1.2 Command History . 150
10.1.3 Typing in the Source Window . 151

10.2 Entering Commands at the TTY . 152
10.3 Integrating DDD . 152

10.3.1 Using DDD with Emacs . 152
10.3.2 Using DDD with XEmacs . 152
10.3.3 Using DDD with xxgdb . 153

10.4 Defining Buttons . 153
10.4.1 Customizing Buttons . 154

10.5 Defining Commands . 156
10.5.1 Defining Simple Commands using GDB 157
10.5.2 Defining Argument Commands using GDB 158
10.5.3 Defining Commands using Other Debuggers 159

Appendix A Application Defaults . 161
A.1 Actions . 161

A.1.1 General Actions . 161
A.1.2 Data Display Actions . 161
A.1.3 Debugger Console Actions . 164
A.1.4 Source Window Actions . 165

A.2 Images . 166

Appendix B Bugs and How To Report Them 171
B.1 Where to Send Bug Reports . 171
B.2 Is it a DDD Bug? . 171
B.3 How to Report Bugs . 171
B.4 What to Include in a Bug Report . 172
B.5 Getting Diagnostics . 172

B.5.1 Logging . 172
B.5.1.1 Disabling Logging . 173

B.5.2 Debugging DDD . 173
B.5.3 Customizing Diagnostics . 173

ix

Appendix C Configuration Notes . 177
C.1 Using DDD with GDB . 177

C.1.1 Using DDD with WDB . 177
C.1.2 Using DDD with WindRiver GDB (Tornado) 177

C.2 Using DDD with Bash . 180
C.3 Using DDD with DBX . 180
C.4 Using DDD with Ladebug . 180
C.5 Using DDD with JDB . 181
C.6 Using DDD with GNU Make . 181
C.7 Using DDD with Perl . 181
C.8 Using DDD with Python . 181
C.9 Using DDD with XDB . 182
C.10 Using DDD with LessTif . 182

Appendix D Dirty Tricks . 185

Appendix E Extending DDD . 187

Appendix F Frequently Answered Questions 189

Appendix G GNU General Public License 191

Appendix H Help and Assistance . 203

Appendix I GNU Free Documentation License 205
ADDENDUM: How to use this License for your documents 210

Label Index . 211

Key Index . 215

Command Index . 217

Resource Index . 219

File Index . 223

Concept Index . 225

x Debugging with DDD

Summary of DDD 1

Summary of DDD

The purpose of a debugger such as ddd is to allow you to see what is going on “inside” another
program while it executes—or what another program was doing at the moment it crashed.

ddd can do four main kinds of things (plus other things in support of these) to help you catch
bugs in the act:

• Start your program, specifying anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened, when your program has stopped.
• Change things in your program, so you can experiment with correcting the effects of one bug

and go on to learn about another.

Technically speaking, ddd is a front-end to a command-line debugger (called inferior debugger,
because it lies at the layer beneath ddd). ddd supports the following inferior debuggers:

• To debug executable binaries, you can use ddd with gdb, dbx, Ladebug, or xdb.
− gdb, the gnu debugger, is the recommended inferior debugger for ddd. gdb supports

native executables binaries originally written in C, C++, Java, Modula-2, Modula-3, Pas-
cal, Chill, Ada, and FORTRAN. (see section “Using gdb with Different Languages” in
Debugging with gdb, for information on language support in gdb.)

− As an alternative to gdb, you can use ddd with the dbx debugger, as found on several
unix systems. Most dbx incarnations offer fewer features than gdb, and some of the
more advanced dbx features may not be supported by ddd. However, using dbx may be
useful if gdb does not understand or fully support the debugging information as generated
by your compiler.

− As an alternative to gdb and dbx, you can use ddd with Ladebug, as found on Com-
paq and DEC systems. Ladebug offers fewer features than gdb, and some of the more
advanced Ladebug features may not be supported by ddd. However, using Ladebug may
be useful if gdb or dbx do not understand or fully support the debugging information as
generated by your compiler.1

− As another alternative to gdb, you can use ddd with the xdb debugger, as found on
hp-ux systems.2.

• To debug Java byte code programs, you can use ddd with jdb, the Java debugger, as of jdk
1.1 and later. (ddd has been tested with jdk 1.1 and jdk 1.2.)

•
• To debug Bash programs, you need a version Bash that supports extended debugging support;

see http://bashdb.sourceforge.net. It important to make sure you get the right
version of the debugger that matches your version of Bash. For bash version 2.05b, you need a
patched version of bash as well as the debugger for bash.

• To debug GNU Make Makefiles, you need a version GNU Make that supports extended debug-
ging support. To get this enhanced version see http://bashdb.sourceforge.net/remake.

1 Within ddd (and this manual), Ladebug is considered a dbx variant. Hence, everything said for dbx also
applies to Ladebug, unless stated otherwise.

2 xdb will no longer be maintained in future ddd releases. Use a recent gdb version instead.

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net/remake

2 Debugging with DDD

• To debug Perl programs, you can use ddd with the Perl debugger, as of Perl 5.003 and later.
•

To debug Python programs, you need an extended version of the python debugger called pydb.
To get this, see http://bashdb.sourceforge.net/pydb.

See Section 2.1.1 [Choosing an Inferior Debugger], page 17, for choosing the appropriate infe-
rior debugger. See Chapter 1 [Sample Session], page 7, for getting a first impression of ddd.

About this Manual

This manual comes in several formats:
• The Info format is used for browsing on character devices; it comes without pictures. You

should have a local copy installed, which you can browse via Emacs, the stand-alone info
program, or from ddd via ‘Help⇒ ddd Reference’.
The ddd source distribution ‘ddd-3.3.12-rc2.tar.gz’ contains this manual as pre-
formatted info files; you can also download them from
the ddd www page.

• The PostScript format is used for printing on paper; it comes with pictures as well.
The ddd source distribution ‘ddd-3.3.12-rc2.tar.gz’ contains this manual as pre-
formatted PostScript file; you can also download it from
the ddd www page.

• The PDF format is used for printing on paper as well as for online browsing; it comes with
pictures as well.
The ddd source distribution ‘ddd-3.3.12-rc2.tar.gz’ contains this manual as pre-
formatted PDF file; you can also download it from
the ddd www page.

• The HTML format is used for browsing on bitmap devices; it includes several pictures. You
can view it using a HTML browser, typically from a local copy.
A pre-formatted HTML version of this manual comes in a separate ddd package
‘ddd-3.3.12-rc2-html-manual.tar.gz’; you can browse and download it via
the ddd www page.

The manual itself is written in TEXinfo format; its source code ‘ddd.texi’ is contained in the
ddd source distribution ‘ddd-3.3.12-rc2.tar.gz’.

The picture sources come in a separate package ‘ddd-3.3.12-rc2-pics.tar.gz’; you
need this package only if you want to re-create the PostScript, HTML, or PDF versions.

Typographic conventions

〈Ctrl+A〉 The name for a key on the keyboard (or multiple keys pressed simultaneously)

run A sequence of characters to be typed on the keyboard.

‘~/.ddd/init’
A file.

‘Help’ A graphical control element, such as a button or menu item.

http://bashdb.sourceforge.net/pydb
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/

Summary of DDD 3

‘File⇒ Open Program’
A sequence of menu items, starting at the top-level menu bar.

argc - 1 Program code or debugger command.

‘-g’ A command-line option.

$ System prompt.

(gdb) Debugger prompt.

_ Cursor position.

version A metasyntactic variable; something that stands for another piece of text.

definition A definition.

caution Emphasis.

A warning Strong emphasis.

ddd An acronym.

Here’s an example. ‘break location’ is a typed command at the ‘(gdb) ’ prompt; the meta-
syntactic variable ‘location’ would be replaced by the actual location. ‘_’ is the cursor position after
entering the command.

(gdb) break location
Breakpoint number at location
(gdb) _

Free software

ddd is free; this means that everyone is free to use it and free to redistribute it on a free basis.
ddd is not in the public domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating citizen would want to
do. What is not allowed is to try to prevent others from further sharing any version of ddd that
they might get from you. The precise conditions are found in the gnu General Public License that
comes with ddd; See Appendix G [License], page 191, for details.

The easiest way to get a copy of ddd is from someone else who has it. You need not ask for
permission to do so, or tell any one else; just copy it.

Getting DDD

If you have access to the Internet, you can get the latest version of ddd from the anonymous ftp
server ‘ftp.gnu.org’ in the directory ‘/gnu/ddd’. This should contain the following files:

‘‘ddd-version.tar.gz’’
The ddd source distribution. This should be all you need.

‘‘ddd-version-html-manual.tar.gz’’
The ddd manual in HTML format. You need this only if you want to install a local
copy of the ddd manual in HTML format.

4 Debugging with DDD

‘‘ddd-version-pics.tar.gz’’
Sources of images included in the ddd manual. You need this only if you want to
recreate the ddd manual.

ddd can also be found at numerous other archive sites around the world; check the file
‘ANNOUNCE’ in a ddd distribution for the latest known list.

Contributors to DDD

Dorothea Lütkehaus and Andreas Zeller were the original authors of ddd. Many others have
contributed to its development. The files ‘ChangeLog’ and ‘THANKS’ in the ddd distribution
approximates a blow-by-blow account.

History of DDD

The history of ddd is a story of code recycling. The oldest parts of ddd were written in 1990,
when Andreas Zeller designed vsl, a box-based visual structure language for visualizing data and
program structures. The vsl interpreter and the Box library became part of Andreas’ Diploma
Thesis, a graphical syntax editor based on the Programming System Generator psg.

In 1992, the vsl and Box libraries were recycled for the nora project. For nora, an experi-
mental inference-based software development tool set, Andreas wrote a graph editor (based on vsl
and the Box libraries) and facilities for inter-process knowledge exchange. Based on these tools,
Dorothea Lütkehaus (now Dorothea Krabiell) realized ddd as her Diploma Thesis, 1994.

The original ddd had no source window; this was added by Dorothea during the winter of
1994–1995. In the first quarter of 1995, finally, Andreas completed ddd by adding command and
execution windows, extensions for dbx and remote debugging as well as configuration support for
several architectures. Since then, Andreas has further maintained and extended ddd, based on the
comments and suggestions of several ddd users around the world. See the comments in the ddd
source for details.

Major ddd events:

April, 1995 ddd 0.9: First ddd beta release.

May, 1995 ddd 1.0: First public ddd release.

December, 1995
ddd 1.4: Machine-level debugging, glyphs, Emacs integration.

October, 1996
ddd 2.0: Color displays, xdb support, generic dbx support, command tool.

May, 1997 ddd 2.1: Alias detection, button tips, status displays.

November, 1997
ddd 2.2: Sessions, display shortcuts.

June, 1998 ddd 3.0: Icon tool bar, Java support, jdb support.

December, 1998
ddd 3.1: Data plotting, Perl support, Python support, Undo/Redo.

Summary of DDD 5

January, 2000
ddd 3.2: New manual, Readline support, Ladebug support.

January, 2001
ddd 3.3: Data themes, JDB 1.2 support, VxWorks support.

November, 2002
ddd 3.3.2: Bash support.

March, 2003
ddd 3.3.3: Better Bash support. Compiles using modern tools thanks to Daniel Schep-
ler.

Dec, 2005 ddd 3.3.12-test: GNU Make support added.

Feb, 2006 ddd 3.3.12-test3: Modernize Python debugging

6 Debugging with DDD

Chapter 1: A Sample DDD Session 7

1 A Sample DDD Session

You can use this manual at your leisure to read all about ddd. However, a handful of features
are enough to get started using the debugger. This chapter illustrates those features.

The sample program ‘sample.c’ (see Section 1.1 [Sample Program], page 16) exhibits the fol-
lowing bug. Normally, sample should sort and print its arguments numerically, as in the following
example:

$./sample 8 7 5 4 1 3
1 3 4 5 7 8
$ _

However, with certain arguments, this goes wrong:
$./sample 8000 7000 5000 1000 4000
1000 1913 4000 5000 7000
$ _

Although the output is sorted and contains the right number of arguments, some arguments are
missing and replaced by bogus numbers; here, 8000 is missing and replaced by 1913.1

Let us use ddd to see what is going on. First, you must compile ‘sample.c’ for debugging
(see Section 4.1 [Compiling for Debugging], page 75), giving the ‘-g’ flag while compiling:

$ gcc -g -o sample sample.c
$ _

Now, you can invoke ddd (see Chapter 2 [Invocation], page 17) on the sample executable:
$ ddd sample

1 Actual numbers and behavior on your system may vary.

8 Debugging with DDD

After a few seconds, ddd comes up. The Source Window contains the source of your debugged
program; use the Scroll Bar to scroll through the file.

Source Window

Debugger Console

Status Line

Scroll Bar

Command Tool

Initial DDD Window

Argument Field

The Debugger Console (at the bottom) contains ddd version information as well as a gdb
prompt.1

GNU DDD Version 3.3.12-rc2, by Dorothea Lütkehaus and Andreas Zeller.
Copyright c© 1995-1999 Technische Universität Braunschweig, Germany.
Copyright c© 1999-2001 Universität Passau, Germany.
Copyright c© 2001-2004 Universität des Saarlandes, Germany.
Reading symbols from sample...done.
(gdb) _

The first thing to do now is to place a Breakpoint (see Section 5.1 [Breakpoints], page 83),
making sample stop at a location you are interested in. Click on the blank space left to the
initialization of a. The Argument field ‘():’ now contains the location (‘sample.c:31’). Now,
click on ‘Break’ to create a breakpoint at the location in ‘()’. You see a little red stop sign appear
in line 31.

1 Re-invoke ddd with ‘--gdb’, if you do not see a ‘(gdb)’ prompt here (see Section 2.1.1 [Choosing an
Inferior Debugger], page 17)

Chapter 1: A Sample DDD Session 9

The next thing to do is to actually execute the program, such that you can examine its behavior
(see Chapter 6 [Running], page 93). Select ‘Program⇒ Run’ to execute the program; the ‘Run
Program’ dialog appears.

Running the Program

Arguments

Breakpoint

Click here to run

In ‘Run with Arguments’, you can now enter arguments for the sample program. Enter the
arguments resulting in erroneous behavior here—that is, ‘8000 7000 5000 1000 4000’. Click
on ‘Run’ to start execution with the arguments you just entered.

gdb now starts sample. Execution stops after a few moments as the breakpoint is reached.
This is reported in the debugger console.

(gdb) break sample.c:31
Breakpoint 1 at 0x8048666: file sample.c, line 31.
(gdb) run 8000 7000 5000 1000 4000
Starting program: sample 8000 7000 5000 1000 4000

Breakpoint 1, main (argc=6, argv=0xbffff918) at sample.c:31
(gdb) _

The current execution line is indicated by a green arrow.
⇒ a = (int *)malloc((argc - 1) * sizeof(int));

You can now examine the variable values. To examine a simple variable, you can simply move
the mouse pointer on its name and leave it there. After a second, a small window with the variable
value pops up (see Section 7.1 [Value Tips], page 107). Try this with ‘argc’ to see its value (6).
The local variable ‘a’ is not yet initialized; you’ll probably see 0x0 or some other invalid pointer
value.

10 Debugging with DDD

To execute the current line, click on the ‘Next’ button on the command tool. The arrow ad-
vances to the following line. Now, point again on ‘a’ to see that the value has changed and that ‘a’
has actually been initialized.

Viewing Values in DDD

Execution Position

Value Tip

To examine the individual values of the ‘a’ array, enter ‘a[0]’ in the argument field (you can
clear it beforehand by clicking on ‘():’) and then click on the ‘Print’ button. This prints the
current value of ‘()’ in the debugger console (see Section 7.2 [Printing Values], page 108). In our
case, you’ll get

(gdb) print a[0]
$1 = 0
(gdb) _

or some other value (note that ‘a’ has only been allocated, but the contents have not yet been
initialized).

To see all members of ‘a’ at once, you must use a special gdb operator. Since ‘a’ has been
allocated dynamically, gdb does not know its size; you must specify it explicitly using the ‘@’
operator (see Section 7.3.2.1 [Array Slices], page 120). Enter ‘a[0]@(argc - 1)’ in the argument
field and click on the ‘Print’ button. You get the first argc - 1 elements of ‘a’, or

(gdb) print a[0]@(argc - 1)
$2 = {0, 0, 0, 0, 0}
(gdb) _

Chapter 1: A Sample DDD Session 11

Rather than using ‘Print’ at each stop to see the current value of ‘a’, you can also display
‘a’, such that its is automatically displayed. With ‘a[0]@(argc - 1)’ still being shown in the
argument field, click on ‘Display’. The contents of ‘a’ are now shown in a new window, the Data
Window. Click on ‘Rotate’ to rotate the array horizontally.

Data Window

Display Button

Data Window

Now comes the assignment of ‘a’’s members:
⇒ for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

You can now click on ‘Next’ and ‘Next’ again to see how the individual members of ‘a’ are
being assigned. Changed members are highlighted.

To resume execution of the loop, use the ‘Until’ button. This makes gdb execute the program
until a line greater than the current is reached. Click on ‘Until’ until you end at the call of
‘shell_sort’ in

⇒ shell_sort(a, argc);

At this point, ‘a’’s contents should be ‘8000 7000 5000 1000 4000’. Click again on ‘Next’
to step over the call to ‘shell_sort’. ddd ends in

⇒ for (i = 0; i < argc - 1; i++)
printf("%d ", a[i]);

and you see that after ‘shell_sort’ has finished, the contents of ‘a’ are ‘1000, 1913, 4000,
5000, 7000’—that is, ‘shell_sort’ has somehow garbled the contents of ‘a’.

To find out what has happened, execute the program once again. This time, you do not skip
through the initialization, but jump directly into the ‘shell_sort’ call. Delete the old breakpoint
by selecting it and clicking on ‘Clear’. Then, create a new breakpoint in line 35 before the call to
‘shell_sort’. To execute the program once again, select ‘Program⇒ Run Again’.

Once more, ddd ends up before the call to ‘shell_sort’:

12 Debugging with DDD

⇒ shell_sort(a, argc);

This time, you want to examine closer what ‘shell_sort’ is doing. Click on ‘Step’ to step
into the call to ‘shell_sort’. This leaves your program in the first executable line, or

⇒ int h = 1;

while the debugger console tells us the function just entered:
(gdb) step
shell_sort (a=0x8049878, size=6) at sample.c:9
(gdb) _

This output that shows the function where ‘sample’ is now suspended (and its arguments)
is called a stack frame display. It shows a summary of the stack. You can use ‘Status⇒
Backtrace’ to see where you are in the stack as a whole; selecting a line (or clicking on ‘Up’ and
‘Down’) will let you move through the stack. Note how the ‘a’ display disappears when its frame
is left.

Backtrace

The DDD Backtrace

Let us now check whether ‘shell_sort’’s arguments are correct. After returning to the lowest
frame, enter ‘a[0]@size’ in the argument field and click on ‘Print’:

(gdb) print a[0] @ size
$4 = {8000, 7000, 5000, 1000, 4000, 1913}
(gdb) _

Surprise! Where does this additional value 1913 come from? The answer is simple: The array
size as passed in ‘size’ to ‘shell_sort’ is too large by one—1913 is a bogus value which
happens to reside in memory after ‘a’. And this last value is being sorted in as well.

To see whether this is actually the problem cause, you can now assign the correct value to ‘size’
(see Section 7.3.3 [Assignment], page 122). Select ‘size’ in the source code and click on ‘Set’.
A dialog pops up where you can edit the variable value.

Chapter 1: A Sample DDD Session 13

Select variable in the source

Set Button

Edit value

Setting a Value

Change the value of ‘size’ to 5 and click on ‘OK’. Then, click on ‘Finish’ to resume execu-
tion of the ‘shell_sort’ function:

(gdb) set variable size = 5
(gdb) finish
Run till exit from #0 shell_sort (a=0x8049878, size=5) at sample.c:9
0x80486ed in main (argc=6, argv=0xbffff918) at sample.c:35
(gdb) _

14 Debugging with DDD

Success! The ‘a’ display now contains the correct values ‘1000, 4000, 5000, 7000,
8000’.

Changed values

Changed Values after Setting

You can verify that these values are actually printed to standard output by further executing the
program. Click on ‘Cont’ to continue execution.

(gdb) cont
1000 4000 5000 7000 8000

Program exited normally.
(gdb) _

The message ‘Program exited normally.’ is from gdb; it indicates that the sample
program has finished executing.

Having found the problem cause, you can now fix the source code. Click on ‘Edit’ to edit
‘sample.c’, and change the line

shell_sort(a, argc);

to the correct invocation
shell_sort(a, argc - 1);

You can now recompile sample
$ gcc -g -o sample sample.c
$ _

and verify (via ‘Program⇒ Run Again’) that sample works fine now.
(gdb) run
‘sample’ has changed; re-reading symbols.
Reading in symbols...done.
Starting program: sample 8000 7000 5000 1000 4000

Chapter 1: A Sample DDD Session 15

1000 4000 5000 7000 8000

Program exited normally.
(gdb) _

All is done; the program works fine now. You can end this ddd session with ‘Program⇒
Exit’ or Ctrl+Q.

16 Debugging with DDD

1.1 Sample Program

Here’s the source ‘sample.c’ of the sample program.� �
/* sample.c -- Sample C program to be debugged with ddd
*/

#include <stdio.h>
#include <stdlib.h>

static void shell_sort(int a[], int size)
{

int i, j;
int h = 1;
do {

h = h * 3 + 1;
} while (h <= size);
do {

h /= 3;
for (i = h; i < size; i++)
{

int v = a[i];
for (j = i; j >= h && a[j - h] > v; j -= h)

a[j] = a[j - h];
if (i != j)

a[j] = v;
}

} while (h != 1);
}

int main(int argc, char *argv[])
{

int *a;
int i;

a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

shell_sort(a, argc);

for (i = 0; i < argc - 1; i++)
printf("%d ", a[i]);

printf("\n");

free(a);
return 0;

}
 	

Chapter 2: Getting In and Out of DDD 17

2 Getting In and Out of DDD

This chapter discusses how to start ddd, and how to get out of it. The essentials are:
• Type ‘ddd’ to start ddd (see Section 2.1 [Invoking], page 17).
• Use ‘File⇒ Exit’ or Ctrl+Q to exit (see Section 2.2 [Quitting], page 31).

2.1 Invoking DDD

Normally, you can run ddd by invoking the program ddd.
You can also run ddd with a variety of arguments and options, to specify more of your debug-

ging environment at the outset.
The most usual way to start ddd is with one argument, specifying an executable program:

ddd program
If you use gdb, dbx, Ladebug, or xdb as inferior debuggers, you can also start with both an
executable program and a core file specified:

ddd program core
You can, instead, specify a process ID as a second argument, if you want to debug a running

process:
ddd program 1234

would attach ddd to process 1234 (unless you also have a file named ‘1234’; ddd does check for
a core file first).

You can further control ddd by invoking it with specific options. To get a list of ddd options,
invoke ddd as

ddd --help

Most important are the options to specify the inferior debugger (see Section 2.1.1 [Choosing an
Inferior Debugger], page 17), but you can also customize several aspects of ddd upon invocation
(see Section 2.1.2 [Options], page 18).

ddd also understands the usual X options such as ‘-display’ or ‘-geometry’. See Sec-
tion 2.1.3 [X Options], page 26, for details.

All arguments and options that are not understood by ddd are passed to the inferior debug-
ger; See Section 2.1.4 [Inferior Debugger Options], page 26, for a survey. To pass an option to
the inferior debugger that conflicts with an X option, or with a ddd option listed here, use the
‘--debugger’ option (see Section 2.1.2 [Options], page 18).

2.1.1 Choosing an Inferior Debugger

The most frequently required options are those to choose a specific inferior debugger.
Normally, the inferior debugger is determined by the program to analyze:
• If the program requires a specific interpreter, such as Bash, Java, GNU Make, Perl, or Python,

then you should use a Bash, jdb, GNU Make, Perl, pydb, Bash, or inferior debugger.
Use

ddd --bash program
ddd --interpreter=’path-to-debugger-bash --debugger’ program

18 Debugging with DDD

ddd --jdb program
ddd --make program
ddd --interpreter=’path-to-debugger-make --debugger’ program
ddd --perl program
ddd --pydb program

to run ddd with jdb, pydb, Perl, Bash, or GNU Make as an inferior debugger.
• If the program is an executable binary, you should use dbx, gdb, Ladebug, or xdb. In general,

gdb (or its HP variant, wdb) provides the most functionality of these debuggers.
Use

ddd --dbx program
ddd --gdb program
ddd --ladebug program
ddd --wdb program
ddd --xdb program

to run ddd with gdb, wdb, dbx, Ladebug, or xdb as inferior debugger.

If you invoke ddd without any of these options, but give a program to analyze, then ddd will
automatically determine the inferior debugger:
• If program is a Python program, a Perl script, or a Java class, ddd will invoke the appropriate

debugger.
• If program is an executable binary, ddd will invoke its default debugger for executables (usu-

ally gdb).

See Section 2.5 [Customizing Debugger Interaction], page 37, for more details on determining
the inferior debugger.

2.1.2 DDD Options

You can further control how ddd starts up using the following options. All options may be
abbreviated, as long as they are unambiguous; single dashes ‘-’ instead of double dashes ‘--’ may
also be used. Almost all options control a specific ddd resource or resource class (see Section 3.6
[Customizing], page 62).

‘--attach-windows’
Attach the source and data windows to the debugger console, creating one single big
ddd window. This is the default setting.
Giving this option is equivalent to setting the ddd ‘Separate’ resource class to
‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--attach-source-window’
Attach only the source window to the debugger console.
Giving this option is equivalent to setting the ddd ‘separateSourceWindow’
resource to ‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--attach-data-window’
Attach only the source window to the debugger console.
Giving this option is equivalent to setting the ddd ‘separateDataWindow’ re-
source to ‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

Chapter 2: Getting In and Out of DDD 19

‘--automatic-debugger’
Determine the inferior debugger automatically from the given arguments.
Giving this option is equivalent to setting the ddd ‘autoDebugger’ resource to
‘on’. See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--button-tips’
Enable button tips.
Giving this option is equivalent to setting the ddd ‘buttonTips’ resource to ‘on’.
See Section 3.6.2 [Customizing Help], page 63, for details.

‘--configuration’
Print the ddd configuration settings on standard output and exit.
Giving this option is equivalent to setting the ddd ‘showConfiguration’ resource
to ‘on’. See Section B.5 [Diagnostics], page 172, for details.

‘--check-configuration’
Check the ddd environment (in particular, the X configuration), report any possible
problem causes and exit.
Giving this option is equivalent to setting the ddd ‘checkConfiguration’ re-
source to ‘on’. See Section B.5 [Diagnostics], page 172, for details.

‘--data-window’
Open the data window upon start-up.
Giving this option is equivalent to setting the ddd ‘openDataWindow’ resource to
‘on’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

‘--dbx’ Run dbx as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘dbx’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--debugger name’
Invoke the inferior debugger name. This is useful if you have several debugger versions
around, or if the inferior debugger cannot be invoked under its usual name (i.e. gdb,
wdb, dbx, xdb, jdb, pydb, or perl).
This option can also be used to pass options to the inferior debugger that would oth-
erwise conflict with ddd options. For instance, to pass the option ‘-d directory’ to
xdb, use:

ddd --debugger "xdb -d directory"
If you use the ‘--debugger’ option, be sure that the type of inferior debugger
is specified as well. That is, use one of the options ‘--gdb’, ‘--dbx’, ‘--xdb’,
‘--jdb’, ‘--pydb’, or ‘--perl’ (unless the default setting works fine).
Giving this option is equivalent to setting the ddd ‘debuggerCommand’ resource
to name. See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--debugger-console’
Open the debugger console upon start-up.
Giving this option is equivalent to setting the ddd ‘openDebuggerConsole’ re-
source to ‘on’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

20 Debugging with DDD

‘--disassemble’
Disassemble the source code. See also the ‘--no-disassemble’ option, below.
Giving this option is equivalent to setting the ddd ‘disassemble’ resource to ‘on’.
See Section 4.4 [Customizing Source], page 79, for details.

‘--exec-window’
Run the debugged program in a specially created execution window. This is useful
for programs that have special terminal requirements not provided by the debugger
window, as raw keyboard processing or terminal control sequences. See Section 6.2
[Using the Execution Window], page 95, for details.
Giving this option is equivalent to setting the ddd ‘separateExecWindow’ re-
source to ‘on’. See Section 6.2.1 [Customizing the Execution Window], page 96, for
details.

‘--font fontname’
‘-fn fontname’

Use fontname as default font.
Giving this option is equivalent to setting the ddd ‘defaultFont’ resource to
‘fontname’. See Section 3.6.4.3 [Customizing Fonts], page 69, for details.

‘--fonts’
Show the font definitions used by ddd on standard output.
Giving this option is equivalent to setting the ddd ‘showFonts’ resource to ‘on’.
See Section B.5 [Diagnostics], page 172, for details.

‘--fontsize size’
Set the default font size to size (in 1/10 points). To make ddd use 12-point fonts, say
‘--fontsize 120’.
Giving this option is equivalent to setting the ddd ‘FontSize’ resource class to
‘size’. See Section 3.6.4.3 [Customizing Fonts], page 69, for details.

‘--fullname’
‘-f’ Enable the tty interface, taking additional debugger commands from standard input

and forwarding debugger output on standard output. Current positions are issued in
gdb ‘-fullname’ format suitable for debugger front-ends. By default, both the
debugger console and source window are disabled. See Section 10.2 [TTY mode],
page 152, for a discussion.
Giving this option is equivalent to setting the ddd ‘TTYMode’ resource class to ‘on’.
See Section 10.2 [TTY mode], page 152, for details.

‘--gdb’ Run gdb as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘gdb’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--glyphs’
Display the current execution position and breakpoints as glyphs. See also the
‘--no-glyphs’ option, below.
Giving this option is equivalent to setting the ddd ‘displayGlyphs’ resource to
‘on’. See Section 4.4 [Customizing Source], page 79, for details.

Chapter 2: Getting In and Out of DDD 21

‘--help’
‘-h’
‘-?’ Give a list of frequently used options. Show options of the inferior debugger as well.

Giving this option is equivalent to setting the ddd ‘showInvocation’ resource to
‘on’. See Section B.5 [Diagnostics], page 172, for details.

‘--host hostname’
‘--host username@hostname’

Invoke the inferior debugger directly on the remote host hostname. If username is
given and the ‘--login’ option is not used, use username as remote user name. See
Section 2.4.2 [Remote Debugger], page 35, for details.
Giving this option is equivalent to setting the ddd ‘debuggerHost’ resource to
hostname. See Section 2.4.2 [Remote Debugger], page 35, for details.

‘--jdb’ Run jdb as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘jdb’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--ladebug’
Run Ladebug as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to
‘ladebug’. See Section 2.5 [Customizing Debugger Interaction], page 37, for
details.

‘--lesstif-hacks’
Equivalent to ‘--lesstif-version 999’. Deprecated.
Giving this option is equivalent to setting the ddd ‘lessTifVersion’ resource to
999. See Section C.10 [LessTif], page 182, for details.

‘--lesstif-version version’
Enable some hacks to make ddd run properly with LessTif. See Section C.10 [Less-
Tif], page 182, for a discussion.
Giving this option is equivalent to setting the ddd ‘lessTifVersion’ resource to
version. See Section C.10 [LessTif], page 182, for details.

‘--license’
Print the ddd license on standard output and exit.
Giving this option is equivalent to setting the ddd ‘showLicense’ resource to on.
See Section B.5 [Diagnostics], page 172, for details.

‘--login username’
‘-l username’

Use username as remote user name. See Section 2.4.2 [Remote Debugger], page 35,
for details.
Giving this option is equivalent to setting the ddd ‘debuggerHostLogin’ resource
to username. See Section 2.4.2 [Remote Debugger], page 35, for details.

‘--maintenance’
Enable the top-level ‘Maintenance’ menu with options for debugging ddd. See
Section 3.1.9 [Maintenance Menu], page 51, for details.

22 Debugging with DDD

Giving this option is equivalent to setting the ddd ‘maintenance’ resource to on.
See Section 3.1.9 [Maintenance Menu], page 51, for details.

‘--manual’
Print the ddd manual on standard output and exit.
Giving this option is equivalent to setting the ddd ‘showManual’ resource to on.
See Section B.5 [Diagnostics], page 172, for details.

‘--news’ Print the ddd news on standard output and exit.
Giving this option is equivalent to setting the ddd ‘showNews’ resource to on. See
Section B.5 [Diagnostics], page 172, for details.

‘--no-button-tips’
Disable button tips.
Giving this option is equivalent to setting the ddd ‘buttonTips’ resource to ‘off’.
See Section 3.6.2 [Customizing Help], page 63, for details.

‘--no-data-window’
Do not open the data window upon start-up.
Giving this option is equivalent to setting the ddd ‘openDataWindow’ resource to
‘off’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

‘--no-debugger-console’
Do not open the debugger console upon start-up.
Giving this option is equivalent to setting the ddd ‘openDebuggerConsole’ re-
source to ‘off’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

‘--no-disassemble’
Do not disassemble the source code.
Giving this option is equivalent to setting the ddd ‘disassemble’ resource to
‘off’. See Section 4.4 [Customizing Source], page 79, for details.

‘--no-exec-window’
Do not run the debugged program in a specially created execution window; use the
debugger console instead. Useful for programs that have little terminal input/output,
or for remote debugging. See Section 6.2 [Using the Execution Window], page 95, for
details.
Giving this option is equivalent to setting the ddd ‘separateExecWindow’ re-
source to ‘off’. See Section 6.2.1 [Customizing the Execution Window], page 96, for
details.

‘--no-glyphs’
Do not use glyphs; display the current execution position and breakpoints as text char-
acters.
Giving this option is equivalent to setting the ddd ‘displayGlyphs’ resource to
‘off’. See Section 4.4 [Customizing Source], page 79, for details.

‘--no-lesstif-hacks’
Equivalent to ‘--lesstif-version 1000’. Deprecated.
Giving this option is equivalent to setting the ddd ‘lessTifVersion’ resource to
1000. See Section C.10 [LessTif], page 182, for details.

Chapter 2: Getting In and Out of DDD 23

‘--no-maintenance’
Do not enable the top-level ‘Maintenance’ menu with options for debugging ddd.
This is the default. See Section 3.1.9 [Maintenance Menu], page 51, for details.

Giving this option is equivalent to setting the ddd ‘maintenance’ resource to off.
See Section 3.1.9 [Maintenance Menu], page 51, for details.

‘--no-source-window’
Do not open the source window upon start-up.

Giving this option is equivalent to setting the ddd ‘openSourceWindow’ resource
to ‘off’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

‘--no-value-tips’
Disable value tips.

Giving this option is equivalent to setting the ddd ‘valueTips’ resource to ‘off’.
See Section 7.1 [Value Tips], page 107, for details.

‘--nw’ Do not use the X window interface. Start the inferior debugger on the local host.

‘--perl’ Run Perl as inferior debugger.

Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘perl’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--pydb’ Run pydb as inferior debugger.

Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘pydb’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--panned-graph-editor’
Use an Athena panner to scroll the data window. Most people prefer panners on
scroll bars, since panners allow two-dimensional scrolling. However, the panner is
off by default, since some M*tif implementations do not work well with Athena
widgets. See Section 7.3.5.5 [Display Resources], page 131, for details; see also
‘--scrolled-graph-editor’, below.

Giving this option is equivalent to setting the ddd ‘pannedGraphEditor’ resource
to ‘on’. See Section 7.3.5.5 [Display Resources], page 131, for details.

‘--play-log log-file’
Recapitulate a previous ddd session.

ddd --play-log log-file

invokes ddd as inferior debugger, simulating the inferior debugger given in log-file
(see below). This is useful for debugging ddd.

Giving this option is equivalent to setting the ddd ‘playLog’ resource to ‘on’. See
Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--PLAY log-file’
Simulate an inferior debugger. log-file is a ‘~/.ddd/log’ file as generated by some
previous ddd session (see Section B.5.1 [Logging], page 172). When a command is
entered, scan log-file for this command and re-issue the logged reply; if the command
is not found, do nothing. This is used by the ‘--play’ option.

24 Debugging with DDD

‘--rhost hostname’
‘--rhost username@hostname’

Run the inferior debugger interactively on the remote host hostname. If username is
given and the ‘--login’ option is not used, use username as remote user name. See
Section 2.4.2 [Remote Debugger], page 35, for details.
Giving this option is equivalent to setting the ddd ‘debuggerRHost’ resource to
hostname. See Section 2.4.2 [Remote Debugger], page 35, for details.

‘--scrolled-graph-editor’
Use M*tif scroll bars to scroll the data window. This is the default in most ddd
configurations. See Section 7.3.5.5 [Display Resources], page 131, for details; see
also ‘--panned-graph-editor’, above.
Giving this option is equivalent to setting the ddd ‘pannedGraphEditor’ resource
to ‘off’. See Section 7.3.5.5 [Display Resources], page 131, for details.

‘--separate-windows’
‘--separate’

Separate the console, source and data windows. See also the ‘--attach’ options,
above.
Giving this option is equivalent to setting the ddd ‘Separate’ resource class to
‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--session session’
Load session upon start-up. See Section 2.3.2 [Resuming Sessions], page 33, for
details.
Giving this option is equivalent to setting the ddd ‘session’ resource to session.
See Section 2.3.2 [Resuming Sessions], page 33, for details.

‘--source-window’
Open the source window upon start-up.
Giving this option is equivalent to setting the ddd ‘openSourceWindow’ resource
to ‘on’. See Section 3.6.4.4 [Toggling Windows], page 72, for details.

‘--status-at-bottom’
Place the status line at the bottom of the source window.
Giving this option is equivalent to setting the ddd ‘statusAtBottom’ resource to
‘on’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--status-at-top’
Place the status line at the top of the source window.
Giving this option is equivalent to setting the ddd ‘statusAtBottom’ resource to
‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--sync-debugger’
Do not process X events while the debugger is busy. This may result in slightly better
performance on single-processor systems.
Giving this option is equivalent to setting the ddd ‘synchronousDebugger’ re-
source to ‘on’. See Section 2.5 [Customizing Debugger Interaction], page 37, for
details.

Chapter 2: Getting In and Out of DDD 25

‘--toolbars-at-bottom’
Place the toolbars at the bottom of the respective window.
Giving this option is equivalent to setting the ddd ‘toolbarsAtBottom’ resource
to ‘on’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--toolbars-at-top’
Place the toolbars at the top of the respective window.
Giving this option is equivalent to setting the ddd ‘toolbarsAtBottom’ resource
to ‘off’. See Section 3.6.4.2 [Window Layout], page 67, for details.

‘--trace’
Show the interaction between ddd and the inferior debugger on standard error. This is
useful for debugging ddd. If ‘--trace’ is not specified, this information is written
into ‘~/.ddd/log’ (‘~’ stands for your home directory), such that you can also do
a post-mortem debugging. See Section B.5.1 [Logging], page 172, for details about
logging.
Giving this option is equivalent to setting the ddd ‘trace’ resource to on. See Sec-
tion B.5 [Diagnostics], page 172, for details.

‘--tty’
‘-t’ Enable tty interface, taking additional debugger commands from standard input and

forwarding debugger output on standard output. Current positions are issued in a for-
mat readable for humans. By default, the debugger console is disabled.
Giving this option is equivalent to setting the ddd ‘ttyMode’ resource to ‘on’. See
Section 10.2 [TTY mode], page 152, for details.

‘--value-tips’
Enable value tips.
Giving this option is equivalent to setting the ddd ‘valueTips’ resource to ‘on’.
See Section 7.1 [Value Tips], page 107, for details.

‘--version’
‘-v’ Print the ddd version on standard output and exit.

Giving this option is equivalent to setting the ddd ‘showVersion’ resource to ‘on’.
See Section B.5 [Diagnostics], page 172, for details.

‘--vsl-library library’
Load the vsl library library instead of using the ddd built-in library. This is useful
for customizing display shapes and fonts.
Giving this option is equivalent to setting the ddd ‘vslLibrary’ resource to library.
See Section 7.3.5.6 [VSL Resources], page 131, for details.

‘--vsl-path path ’
Search vsl libraries in path (a colon-separated directory list).
Giving this option is equivalent to setting the ddd ‘vslPath’ resource to path. See
Section 7.3.5.6 [VSL Resources], page 131, for details.

‘--vsl-help’
Show a list of further options controlling the vsl interpreter. These options are in-
tended for debugging purposes and are subject to change without further notice.

26 Debugging with DDD

‘--wdb’ Run wdb as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘wdb’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

‘--xdb’ Run xdb as inferior debugger.
Giving this option is equivalent to setting the ddd ‘debugger’ resource to ‘xdb’.
See Section 2.5 [Customizing Debugger Interaction], page 37, for details.

2.1.3 X Options

ddd also understands the following X options. Note that these options only take a single dash
‘-’.

‘-display display’
Use the X server display. By default, display is taken from the DISPLAY environment
variable.

‘-geometry geometry’
Specify the initial size and location of the debugger console.

‘-iconic’
Start ddd iconified.

‘-name name’
Give ddd the name name.

‘-selectionTimeout timeout’
Specify the timeout in milliseconds within which two communicating applications
must respond to one another for a selection request.

‘-title name’
Give the ddd window the title name.

‘-xrm resourcestring’
Specify a resource name and value to override any defaults.

2.1.4 Inferior Debugger Options

All options that ddd does not recognize are passed to the inferior debugger. This section lists
the most useful options of the different inferior debuggers supported by ddd. In case these options
do not work as expected, please lookup the appropriate reference.

2.1.4.1 GDB Options

These gdb options are useful when using ddd with gdb as inferior debugger. Single dashes
‘-’ instead of double dashes ‘--’ may also be used.

‘-b baudrate’
Set serial port baud rate used for remote debugging.

‘--cd dir’ Change current directory to dir.

‘--command file’
Execute gdb commands from file.

Chapter 2: Getting In and Out of DDD 27

‘--core corefile’
Analyze the core dump corefile.

‘--directory dir’
‘-d dir’ Add directory to the path to search for source files.

‘--exec execfile’
Use execfile as the executable.

‘--mapped’
Use mapped symbol files if supported on this system.

‘--nx’

‘-n’ Do not read ‘.gdbinit’ file.

‘--readnow’
Fully read symbol files on first access.

‘--se file’
Use file as symbol file and executable file.

‘--symbols symfile’
Read symbols from symfile.

See section “Invoking GDB” in Debugging with GDB , for further options that can be used with
gdb.

2.1.4.2 DBX and Ladebug Options

dbx variants differ widely in their options, so we cannot give a list here. Check out the dbx(1)
and ladebug(1) manual pages.

2.1.4.3 XDB Options

These xdb options are useful when using ddd with xdb as inferior debugger.

‘-d dir’ Specify dir as an alternate directory where source files are located.

‘-P process-id ’
Specify the process ID of an existing process the user wants to debug.

‘-l library’
Pre-load information about the shared library library. ‘-l ALL’ means always pre-
load shared library information.

‘-S num’ Set the size of the string cache to num bytes (default is 1024, which is also the mini-
mum).

‘-s’ Enable debugging of shared libraries.

Further options can be found in the xdb(1) manual page.

2.1.4.4 JDB Options

28 Debugging with DDD

JDB as of JDK 1.2

The following jdb options are useful when using ddd with jdb (from jdk 1.2) as inferior
debugger.

‘-attach address’
attach to a running virtual machine (VM) at address using standard connector

‘-listen address’
wait for a running VM to connect at address using standard connector

‘-listenany’
wait for a running VM to connect at any available address using standard connector

‘-launch’
launch VM immediately instead of waiting for ‘run’ command

These jdb options are forwarded to the debuggee:

‘-verbose[:class|gc|jni]’
‘-v’ Turn on verbose mode.

‘-Dname=value’
Set the system property name to value.

‘-classpath path ’
List directories in which to look for classes. path is a list of directories separated by
colons.

‘-X option’
Non-standard target VM option

JDB as of JDK 1.1

The following jdb options are useful when using ddd with jdb (from jdk 1.1) as inferior
debugger.

‘-host hostname’
host machine of interpreter to attach to

‘-password psswd ’
password of interpreter to attach to (from ‘-debug’)

These jdb options are forwarded to the debuggee:

‘-verbose’
‘-v’ Turn on verbose mode.

‘-debug’ Enable remote Java debugging,

‘-noasyncgc’
Don’t allow asynchronous garbage collection.

‘-verbosegc’
Print a message when garbage collection occurs.

Chapter 2: Getting In and Out of DDD 29

‘-noclassgc’
Disable class garbage collection.

‘-checksource’
‘-cs’ Check if source is newer when loading classes.

‘-ss number’
Set the maximum native stack size for any thread.

‘-oss number’
Set the maximum Java stack size for any thread.

‘-ms number’
Set the initial Java heap size.

‘-mx number’
Set the maximum Java heap size.

‘-Dname=value’
Set the system property name to value.

‘-classpath path ’
List directories in which to look for classes. path is a list of directories separated by
colons.

‘-prof’
‘-prof:file’

Output profiling data to ‘./java.prof’. If file is given, write the data to ‘./file’.

‘-verify’
Verify all classes when read in.

‘-verifyremote’
Verify classes read in over the network (default).

‘-noverify’
Do not verify any class.

‘-dbgtrace’
Print info for debugging jdb.

Further options can be found in the jdb documentation.

2.1.4.5 Bash Options

If you have the proper bash installed, the option needed to specify debugging support is
‘--debugger’. If your bash doesn’t understand this option you need to pick up a version of bash
that does from http://bashdb.sourceforge.net. Other options can be found from the
on-line documentation at http://bashdb.sourceforge.net/bashdb.html

2.1.4.6 GNU Make Options

If you have the proper make installed (for now it is probably called remake), the option needed
to specify debugging support is ‘--debugger’. You can pick up a debugger-enabled version from
http://bashdb.sourceforge.net/remake. Other options can be found from the on-line
documentation at http://bashdb.sourceforge.net/remake/mdb.html

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net/bashdb.html
http://bashdb.sourceforge.net/remake
http://bashdb.sourceforge.net/remake/mdb.html

30 Debugging with DDD

2.1.4.7 Perl Options

The most important Perl option to use with ddd is ‘-w’; it enables several important warnings.
For further options, see the perlrun(1) manual page.

2.1.4.8 PYDB Options

An older version of pydb used to come with ddd. That is no longer the case. Pick up the newer
version of pydb from http://bashdb.sourceforge.net/pydb. For a list of useful pydb
options, check out the pydb documentation, http://bashdb.sourceforge.net/pydb/pydb/lib/index.html.

2.1.5 Multiple DDD Instances

If you have multiple ddd instances running, they share common preferences and history files.
This means that changes applied to one instance may get lost when being overwritten by the other in-
stance. ddd has two means to protect you against unwanted losses. The first means is an automatic
reloading of changed options, controlled by the following resource (see Section 3.6 [Customizing],
page 62):

ResourcecheckOptions (class CheckOptions)
Every n seconds, where n is the value of this resource, ddd checks whether the options file
has changed. Default is 30, which means that every 30 seconds, ddd checks for the options
file. Setting this resource to 0 disables checking for changed option files.

Normally, automatic reloading of options should already suffice. If you need stronger protection,
ddd also provides a warning against multiple instances. This warning is disabled by default, If you
want to be warned about multiple ddd invocations sharing the same preferences and history files,
enable ‘Edit⇒ Preferences⇒ Warn if Multiple ddd Instances are Running’.

This setting is tied to the following resource (see Section 3.6 [Customizing], page 62):

ResourcewarnIfLocked (class WarnIfLocked)
Whether to warn if multiple ddd instances are running (‘on’) or not (‘off’, default).

2.1.6 X warnings

If you are bothered by X warnings, you can suppress them by setting ‘Edit⇒ Preferences
⇒ General⇒ Suppress X warnings’.

This setting is tied to the following resource (see Section 3.6 [Customizing], page 62):

ResourcesuppressWarnings (class SuppressWarnings)
If ‘on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or M*tif configuration. By default, this is ‘off’.

http://bashdb.sourceforge.net/pydb
http://bashdb.sourceforge.net/pydb/pydb/lib/index.html

Chapter 2: Getting In and Out of DDD 31

2.2 Quitting DDD

To exit ddd, select ‘File⇒ Exit’. You may also type the quit command at the debugger
prompt or press 〈Ctrl+Q〉. gdb and xdb also accept the q command or an end-of-file character
(usually 〈Ctrl+D〉). Closing the last ddd window will also exit ddd.

An interrupt (〈ESC〉 or ‘Interrupt’) does not exit from ddd, but rather terminates the action
of any debugger command that is in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger does not allow it to take effect until
a time when it is safe.

In case an ordinary interrupt does not succeed, you can also use an abort (〈Ctrl+\〉 or ‘Abort’),
which sends a SIGABRT signal to the inferior debugger. Use this in emergencies only; the inferior
debugger may be left inconsistent or even exit after a SIGABRT signal.

As a last resort (if ddd hangs, for example), you may also interrupt ddd itself using an interrupt
signal (SIGINT). This can be done by typing the interrupt character (usually 〈Ctrl+C〉) in the shell
ddd was started from, or by using the unix ‘kill’ command. An interrupt signal interrupts any
ddd action; the inferior debugger is interrupted as well. Since this interrupt signal can result in
internal inconsistencies, use this as a last resort in emergencies only; save your work as soon as
possible and restart ddd.

2.3 Persistent Sessions

If you want to interrupt your current ddd session, you can save the entire the entire ddd state
as session on disk and resume later.

2.3.1 Saving Sessions

To save a session, select ‘File⇒ Save Session As’. You will be asked for a symbolic
session name session.

If your program is running (see Chapter 6 [Running], page 93), or if you have opened a core
file (see Section 4.2.2 [Opening Core Dumps], page 76), ddd can also include a core file in the
session such that the debuggee data will be restored when re-opening it. To get a core file, ddd
typically must kill the debuggee. This means that you cannot resume program execution after
saving a session. Depending on your architecture, other options for getting a core file may also be
available.

Including a core dump is necessary for restoring memory contents and the current execution
position. To include a core dump, enable ‘Include Core Dump’.

32 Debugging with DDD

Program Data

Set to save

Saving a Session

Default session

Saved sessions

Click to save

After clicking on ‘Save’, the session is saved in ‘~/.ddd/sessions/session’.

Here’s a list of the items whose state is saved in a session:

• The state of the debugged program, as a core file.1

• All breakpoints and watchpoints (see Chapter 5 [Stopping], page 83).

• All signal settings (see Section 6.10 [Signals], page 104).

• All displays (see Section 7.3 [Displaying Values], page 109).2

• All ddd options (see Section 3.6.1.3 [Saving Options], page 63).

• All debugger settings (see Section 3.6.5 [Debugger Settings], page 73).

• All user-defined buttons (see Section 10.4 [Defining Buttons], page 153).

• All user-defined commands (see Section 10.5 [Defining Commands], page 156).

• The positions and sizes of ddd windows.

• The command history (see Section 10.1.2 [Command History], page 150).

After saving the current state as a session, the session becomes active. This means that ddd
state will be saved as session defaults:

• User options will be saved in ‘~/.ddd/sessions/session/init’ instead of
‘~/.ddd/init’. See Section 3.6.1.3 [Saving Options], page 63, for details.

• The ddd command history will be saved in ‘~/.ddd/sessions/session/history’ in-
stead of ‘~/.ddd/history’. See Section 10.1.2 [Command History], page 150, for details.

To make the current session inactive, open the default session named ‘[None]’. See Sec-
tion 2.3.2 [Resuming Sessions], page 33, for details on opening sessions.

1 Only if a core file is included.
2 If a core file is not to be included in the session, ddd data displays are saved as deferred; that is, they

will be restored as soon as program execution reaches the scope in which they were created. See Sec-
tion 7.3.1.1 [Creating Single Displays], page 109, for details.

Chapter 2: Getting In and Out of DDD 33

2.3.2 Resuming Sessions

To resume a previously saved session, select ‘File⇒ Open Session’ and choose a session
name from the list. After clicking on ‘Open’, the entire ddd state will be restored from the given
session.

The session named ‘[None]’ is the default session which is active when starting ddd. To save
options for default sessions, choose the default session before exiting ddd. See Section 3.6.1.3
[Saving Options], page 63, for details.

Click to open

Saved sessions

Opening a Session

Default session

If a the restored session includes a core dump, the program being debugged will be in the same
state at the time the session was saved; in particular, you can examine the program data. However,
you will not be able to resume program execution since the process and its environment (open
files, resources, etc.) no longer exist. However, you can restart the program, re-using the restored
breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source
tab width. This way, you can maintain a different set of definitions for each session.

You can also specify a session to open when starting ddd. To invoke ddd with a session session,
use

ddd --session session

There is also a shortcut that opens the session session and invokes the inferior debugger on an
executable named session (in case session cannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be
overridden by the options saved in the session.

34 Debugging with DDD

You can also use an X session manager such as xsm to save and restore ddd sessions.3 When
being shut down by a session manager, ddd saves its state under the name specified by the session
manager; resuming the X session makes ddd reload its saved state.

2.3.3 Deleting Sessions

To delete sessions that are no longer needed, select ‘File⇒ Open Session’ or ‘File⇒
Save Session’. Select the sessions you want to delete and click on ‘Delete’.

The default session ‘[None]’ cannot be deleted.

2.3.4 Customizing Sessions

You can change the place where ddd saves its sessions by setting the environment variable
DDD_SESSIONS to the name of a directory. Default is ‘~/.ddd/sessions/’.

Where applicable, ddd supports a gcore command to obtain core files of the running program.
You can enter its path via ‘Edit⇒ Preferences⇒ Helpers⇒ Get Core File’. Leave
the value empty if you have no gcore or similar command.

This setting is tied to the following resource (see Section 3.6 [Customizing], page 62):

ResourcegetCoreCommand (class GetCoreCommand)
A command to get a core dump of a running process (typically, gcore) ‘@FILE@’ is re-
placed by the base name of the file to create; ‘@PID@’ is replaced by the process id. The
output must be written to ‘@FILE@.@PID@’.

Leave the value empty if you have no gcore or similar command.

2.4 Remote Debugging

You can have each of ddd, the inferior debugger, and the debugged program run on different
machines.

2.4.1 Running DDD on a Remote Host

You can run ddd on a remote host, using your current host as X display. On the remote host,
invoke ddd as

ddd -display display

where display is the name of the X server to connect to (for instance, ‘hostname:0.0’, where
hostname is your host).

Instead of specifying ‘-display display’, you can also set the DISPLAY environment variable
to display.

3 Requires X11R6 or later.

Chapter 2: Getting In and Out of DDD 35

2.4.2 Using DDD with a Remote Inferior Debugger

In order to run the inferior debugger on a remote host, you need ‘remsh’ (called ‘rsh’ on BSD
systems) access on the remote host.

To run the debugger on a remote host hostname, invoke ddd as
ddd --host hostname remote-program

If your remote username differs from the local username, use
ddd --host hostname --login username remote-program

or
ddd --host username@hostname remote-program

instead.
There are a few caveats in remote mode:
• The remote debugger is started in your remote home directory. Hence, you must specify an ab-

solute path name for remote-program (or a path name relative to your remote home directory).
Same applies to remote core files. Also, be sure to specify a remote process id when debugging
a running program.

• The remote debugger is started non-interactively. Some dbx versions have trouble with this.
If you do not get a prompt from the remote debugger, use the ‘--rhost’ option instead of
‘--host’. This will invoke the remote debugger via an interactive shell on the remote host,
which may lead to better results.
Note: using ‘--rhost’, ddd invokes the inferior debugger as soon as a shell prompt appears.
The first output on the remote host ending in a space character or ‘>’ and not followed by a
newline is assumed to be a shell prompt. If necessary, adjust your shell prompt on the remote
host.

• To run the remote program, ddd invokes an ‘xterm’ terminal emulator on the remote
host, giving your current ‘DISPLAY’ environment variable as address. If the remote host
cannot invoke ‘xterm’, or does not have access to your X display, start ddd with the
‘--no-exec-window’ option. The program input/output will then go through the ddd
debugger console.

• In remote mode, all sources are loaded from the remote host; file dialogs scan remote directo-
ries. This may result in somewhat slower operation than normal.

• To help you find problems due to remote execution, run ddd with the ‘--trace’ option. This
prints the shell commands issued by ddd on standard error.

See Section 2.4.2.1 [Customizing Remote Debugging], page 35, for customizing remote mode.

2.4.2.1 Customizing Remote Debugging

When having the inferior debugger run on a remote host (see Section 2.4 [Remote Debugging],
page 34), all commands to access the inferior debugger as well as its files must be run remotely.
This is controlled by the following resources (see Section 3.6 [Customizing], page 62):

ResourcershCommand (class RshCommand)
The remote shell command to invoke tty-based commands on remote hosts. Usually,
remsh, rsh, ssh, or on.

36 Debugging with DDD

ResourcelistCoreCommand (class listCoreCommand)
The command to list all core files on the remote host. The string ‘@MASK@’ is replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep ’.*:.*core.*’ | cut -d: -f1

ResourcelistDirCommand (class listDirCommand)
The command to list all directories on the remote host. The string ‘@MASK@’ is replaced by
a file filter. The default setting is:

Ddd*listDirCommand: \
file @MASK@ | grep ’.*:.*directory.*’ | cut -d: -f1

ResourcelistExecCommand (class listExecCommand)
The command to list all executable files on the remote host. The string ‘@MASK@’ is replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \
file @MASK@ | grep ’.*:.*exec.*’ \

| grep -v ’.*:.*script.*’ \
| cut -d: -f1 | grep -v ’.*\.o$’

ResourcelistSourceCommand (class listSourceCommand)
The command to list all source files on the remote host. The string ‘@MASK@’ is replaced by
a file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep ’.*:.*text.*’ | cut -d: -f1

2.4.3 Debugging a Remote Program

The gdb debugger allows you to run the debugged program on a remote machine (called remote
target), while gdb runs on the local machine.

See section “Remote Debugging” in Debugging with gdb, for details. Basically, the following
steps are required:

• Transfer the executable to the remote target.

• Start gdbserver on the remote target.

• Start ddd using gdb on the local machine, and load the same executable using the gdb file
command.

• Attach to the remote ‘gdbserver’ using the gdb target remote command.

The local ‘.gdbinit’ file is useful for setting up directory search paths, etc.

Of course, you can also combine ddd remote mode and gdb remote mode, running ddd, gdb,
and the debugged program each on a different machine.

Chapter 2: Getting In and Out of DDD 37

2.5 Customizing Interaction with the Inferior Debugger

These settings control the interaction of ddd with its inferior debugger.

2.5.1 Invoking an Inferior Debugger

To choose the default inferior debugger, select ‘Edit⇒ Preferences⇒ Startup⇒
Debugger Type’. You can

• have ddd determine the appropriate inferior debugger automatically from its command-line
arguments. Set ‘Determine Automatically from Arguments’ to enable.

• have ddd start the debugger of your choice, as specified in ‘Debugger Type’.

The following ddd resources control the invocation of the inferior debugger (see Section 3.6
[Customizing], page 62).

ResourceautoDebugger (class AutoDebugger)
If this is ‘on’ (default), ddd will attempt to determine the debugger type from its arguments,
possibly overriding the ‘debugger’ resource (see below). If this is ‘off’, ddd will invoke
the debugger specified by the ‘debugger’ resource regardless of ddd arguments.

Resourcedebugger (class Debugger)
The type of the inferior debugger to invoke (‘bash’ ‘dbx’, ‘gdb’, ‘jdb’, ‘ladebug’,
‘make’, ‘perl’, ‘pydb’, or ‘xdb’).

This resource is usually set through the ‘--bash’, ‘--dbx’, ‘--gdb’, ‘--jdb’,
‘--ladebug’, ‘--make’, ‘--perl’, ‘--pydb’, and ‘--xdb’, options; See Section 2.1.2
[Options], page 18, for details.

ResourcedebuggerCommand (class DebuggerCommand)
The name under which the inferior debugger is to be invoked. If this string is empty (default),
the debugger type (‘debugger’ resource) is used.

This resource is usually set through the ‘--debugger’ option; See Section 2.1.2 [Options],
page 18, for details.

2.5.2 Initializing the Inferior Debugger

ddd uses a number of resources to initialize the inferior debugger (see Section 3.6 [Customiz-
ing], page 62).

2.5.2.1 Bash Initialization

ResourcebashInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to the Bash
debugger. By default, it is empty.

This resource may be used to customize the Bash debugger.

38 Debugging with DDD

Resourcebash (class Settings)
This string contains a list of newline-separated commands that are also initially sent to the
Bash debugger. By default, it is empty.

This resource is used by ddd to save and restore Bash debugger settings.

2.5.2.2 DBX Initialization

ResourcedbxInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to dbx. By
default, it is empty.

Do not use this resource to customize dbx; instead, use a personal ‘~/.dbxinit’ or
‘~/.dbxrc’ file. See your dbx documentation for details.

ResourcedbxSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to dbx.
By default, it is empty.

2.5.2.3 GDB Initialization

ResourcegdbInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to gdb.
As a side-effect, all settings specified in this resource are considered fixed and cannot be
changed through the gdb settings panel, unless preceded by white space. By default, the
‘gdbInitCommands’ resource contains some settings vital to ddd:

Ddd*gdbInitCommands: \
set height 0\n\
set width 0\n\
set verbose off\n\
set prompt (gdb) \n

While the ‘set height’, ‘set width’, and ‘set prompt’ settings are fixed, the ‘set
verbose’ settings can be changed through the gdb settings panel (although being reset
upon each new ddd invocation).

Do not use this resource to customize gdb; instead, use a personal ‘~/.gdbinit’ file. See
your gdb documentation for details.

ResourcegdbSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to gdb.
Its default value is

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

Chapter 2: Getting In and Out of DDD 39

ResourcesourceInitCommands (class SourceInitCommands)
If ‘on’ (default), ddd writes all gdb initialization commands into a temporary file and makes
gdb read this file, rather than sending each initialization command separately. This results in
faster startup (especially if you have several user-defined commands). If ‘off’, ddd makes
gdb process each command separately.

2.5.2.4 JDB Initialization

ResourcejdbInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to jdb. This
resource may be used to customize jdb. By default, it is empty.

ResourcejdbSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to jdb.
By default, it is empty.

This resource is used by ddd to save and restore jdb settings.

2.5.2.5 GNU Make Initialization

ResourcemakeInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to the Bash
debugger. By default, it is empty.

This resource may be used to customize GNU Make debugging.

Resourcebash (class Settings)
This string contains a list of newline-separated commands that are also initially sent to the
GNU Make debugger. By default, it is empty.

This resource is used by ddd to save and restore GNU Make debugger settings.

2.5.2.6 Perl Initialization

ResourceperlInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to the Perl
debugger. By default, it is empty.

This resource may be used to customize the Perl debugger.

ResourceperlSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to the
Perl debugger. By default, it is empty.

This resource is used by ddd to save and restore Perl debugger settings.

40 Debugging with DDD

2.5.2.7 PYDB Initialization

ResourcepydbInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to pydb. By
default, it is empty.

This resource may be used to customize pydb.

ResourcepydbSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to pydb.
By default, it is empty.

This resource is used by ddd to save and restore pydb settings.

2.5.2.8 XDB Initialization

ResourcexdbInitCommands (class InitCommands)
This string contains a list of newline-separated commands that are initially sent to xdb. By
default, it is empty.

Do not use this resource to customize dbx; instead, use a personal ‘~/.xdbrc’ file. See
your xdb documentation for details.

ResourcexdbSettings (class Settings)
This string contains a list of newline-separated commands that are also initially sent to xdb.
By default, it is empty.

2.5.2.9 Finding a Place to Start

ResourceinitSymbols (class InitSymbols)
When loading an executable, ddd queries the inferior debugger for the initial source
location—typically the main function. If this location is not found, ddd tries other symbols
from this newline-separated list. The default value makes ddd look for a variety of main
functions (especially FORTRAN main functions):

main\n\
MAIN\n\
main_\n\
MAIN_\n\
main__\n\
MAIN__\n\
_main\n\
_MAIN\n\
__main\n\
__MAIN

Chapter 2: Getting In and Out of DDD 41

2.5.2.10 Opening the Selection

ResourceopenSelection (class OpenSelection)
If this is ‘on’, ddd invoked without argument checks whether the current selection or clip-
board contains the file name or URL of an executable program. If this is so, ddd will auto-
matically open this program for debugging. If this resource is ‘off’ (default), ddd invoked
without arguments will always start without a debugged program.

2.5.3 Communication with the Inferior Debugger

The following resources control the communication with the inferior debugger.

ResourceblockTTYInput (class BlockTTYInput)
Whether ddd should block when reading data from the inferior debugger via the pseudo-tty
interface. Most unix systems except gnu/Linux require this; set it to ‘on’. On gnu/Linux,
set it to ‘off’. The value ‘auto’ (default) will always select the “best” choice (that is, the
best choice known to the ddd developers).

ResourcebufferGDBOutput (class BufferGDBOutput)
If this is ‘on’, all output from the inferior debugger is buffered until a debugger prompt ap-
pears. This makes it easier for ddd to parse the output, but has the drawback that interaction
with a running debuggee in the debugger console is not possible. If ‘off’, output is shown
as soon as it arrives, enabling interaction, but making it harder for ddd to parse the output.
If ‘auto’ (default), output is buffered if and only if the execution window is open, which
redirects debuggee output and thus enables interaction. See Section 6.2 [Using the Execution
Window], page 95, for details.

ResourcecontInterruptDelay (class InterruptDelay)
The time (in ms) to wait before automatically interrupting a ‘cont’ command. ddd cannot
interrupt a ‘cont’ command immediately, because this may disturb the status change of the
process. Default is 200.

ResourcedisplayTimeout (class DisplayTimeout)
The time (in ms) to wait for the inferior debugger to finish a partial display information.
Default is 2000.

ResourcepositionTimeout (class PositionTimeout)
The time (in ms) to wait for the inferior debugger to finish a partial position information.
Default is 500.

ResourcequestionTimeout (class QuestionTimeout)
The time (in seconds) to wait for the inferior debugger to reply. Default is 10.

ResourcerunInterruptDelay (class InterruptDelay)
The time (in ms) to wait before automatically interrupting a ‘run’ command. ddd cannot
interrupt a ‘cont’ command immediately, because this may disturb process creation. Default
is 2000.

42 Debugging with DDD

ResourcestopAndContinue (class StopAndContinue)
If ‘on’ (default), debugger commands interrupt program execution, resuming execution after
the command has completed. This only happens if the last debugger command was either a
‘run’ or a ‘continue’ command. If ‘off’, debugger commands do not interrupt program
execution.

ResourcesynchronousDebugger (class SynchronousDebugger)
If ‘on’, X events are not processed while the debugger is busy. This may result in slightly
better performance on single-processor systems. See Section 2.1.2 [Options], page 18, for
the ‘--sync-debugger’ option.

ResourceterminateOnEOF (class TerminateOnEOF)
If ‘on’, ddd terminates the inferior debugger when ddd detects an EOF condition (that is,
as soon as the inferior debugger closes its output channel). This was the default behavior in
ddd 2.x and earlier. If ‘off’ (default), ddd takes no special action.

ResourceuseTTYCommand (class UseTTYCommand)
If ‘on’, use the gdb tty command for redirecting input/output to the separate execution
window. If ‘off’, use explicit redirection through shell redirection operators ‘<’ and ‘>’.
The default is ‘off’ (explicit redirection), since on some systems, the tty command does
not work properly on some gdb versions.

Chapter 3: The DDD Windows 43

3 The DDD Windows

ddd is composed of three main windows. From top to bottom, we have:

• The Data Window shows the current data of the debugged program. See Section 7.3 [Display-
ing Values], page 109, for details.

• The Source Window shows the current source code of the debugged program. See Chapter 4
[Navigating], page 75, for details.

• The Debugger Console accepts debugger commands and shows debugger messages. See Chap-
ter 10 [Commands], page 149, for details.

Machine Code Window

Data Window

Menu Bar

Source Window

Tool Bar

Debugger Console

Status Line

Panner

Command Tool

Scroll Bar

Resize Sash

Value Tip

Busy Indicator

The DDD Layout using Stacked Windows

Besides these three main windows, there are some other optional windows:

• The Command Tool offers buttons for frequently used commands. It is usually placed on the
source window. See Section 3.3 [Command Tool], page 57, for details.

• The Machine Code Window shows the current machine code. It is usually placed beneath the
current source. See Section 8.1 [Machine Code], page 143, for details.

• The Execution Window shows the input and output of the debugged program. See Section 6.2
[Using the Execution Window], page 95, for details.

3.1 The Menu Bar

The ddd Menu Bar gives you access to all ddd functions.

File Perform file-related operations such as selecting programs, processes, and sessions,
printing graphs, recompiling, as well as exiting ddd.

44 Debugging with DDD

Edit Perform standard editing operations, such as cutting, copying, pasting, and killing
selected text. Also allows editing ddd options and preferences.

View Allows accessing the individual ddd windows.

Program Perform operations related to the program being debugged, such as starting and stop-
ping the program.

Commands
Perform operations related to ddd commands, such as accessing the command history
or defining new commands.

Status Examine the program status, such as the stack traces, registers, or threads.

Source Perform source-related operations such as looking up items or editing breakpoints.

Data Perform data-related operations such as editing displays or layouting the display graph.

Maintenance
Perform operations that are useful for debugging ddd. By default, this menu is dis-
abled.

Help Give help on ddd usage.

There are two ways of selecting an item from a pull-down menu:
• Select an item in the menu bar by moving the cursor over it and click mouse button 1. Then

move the cursor over the menu item you want to choose and click left again.
• Select an item in the menu bar by moving the cursor over it and click and hold mouse button 1.

With the mouse button depressed, move the cursor over the menu item you want, then release
it to make your selection.

The menus can also be torn off (i.e. turned into a persistent window) by selecting the dashed
line at the top.

If a command in the pull-down menu is not applicable in a given situation, the command is
disabled and its name appears faded. You cannot invoke items that are faded. For example, many
commands on the ‘Edit’ menu appear faded until you select text on which they are to operate;
after you select a block of text, edit commands are enabled.

3.1.1 The File Menu

The ‘File’ menu contains file-related operations such as selecting programs, processes, and
sessions, printing graphs, recompiling, as well as exiting ddd.

Open Program
Open Class

Open a program or class to be debugged (〈Ctrl+O〉). See Section 4.2.1 [Opening Pro-
grams], page 75, for details.

Open Recent
Re-open a recently opened program to be debugged. See Section 4.2.1 [Opening Pro-
grams], page 75, for details.

Open Core Dump
Open a core dump for the currently debugged program. See Section 4.2.2 [Opening
Core Dumps], page 76, for details.

Chapter 3: The DDD Windows 45

Open Source
Open a source file of the currently debugged program. See Section 4.2.3 [Opening
Source Files], page 76, for details.

Open Session
Resume a previously saved ddd session (〈Ctrl+N〉). See Section 2.3.2 [Resuming Ses-
sions], page 33, for details.

Save Session As
Save the current ddd session such that you can resume it later (〈Ctrl+S〉). See Sec-
tion 2.3.1 [Saving Sessions], page 31, for details.

Attach to Process
Attach to a running process of the debugged program. See Section 6.3 [Attaching to a
Process], page 96, for details.

Detach Process
Detach from the running process. See Section 6.3 [Attaching to a Process], page 96,
for details.

Print Graph
Print the current graph on a printer. See Section 7.3.7 [Printing the Graph], page 134,
for details.

Change Directory
Change the working directory of your program. See Section 6.1.3 [Working Direc-
tory], page 94, for details.

Make Run the make program (〈Ctrl+M〉). See Section 9.2 [Recompiling], page 148, for
details.

Close Close this ddd window (〈Ctrl+W〉). See Section 2.2 [Quitting], page 31, for details.

Restart Restart ddd.

Exit Exit ddd (〈Ctrl+Q〉). See Section 2.2 [Quitting], page 31, for details.

3.1.2 The Edit Menu

The ‘Edit’ menu contains standard editing operations, such as cutting, copying, pasting, and
killing selected text. Also allows editing ddd options and preferences.

Undo Undo the most recent action (〈Ctrl+Z〉). Almost all commands can be undone this way.
See Section 3.5 [Undo and Redo], page 62, for details.

Redo Redo the action most recently undone (〈Ctrl+Y〉). Every command undone can be
redone this way. See Section 3.5 [Undo and Redo], page 62, for details.

Cut Removes the selected text block from the current text area and makes it the X clipboard
selection (〈Ctrl+X〉 or 〈Shift+Del〉; See Section 3.1.11.2 [Customizing the Edit Menu],
page 53, for details). Before executing this command, you have to select a region in a
text area—either with the mouse or with the usual text selection keys.
This item can also be applied to displays (see Section 7.3.1.12 [Deleting Displays],
page 119).

46 Debugging with DDD

Copy Makes a selected text block the X clipboard selection (〈Ctrl+C〉 or 〈Ctrl+Ins〉; See Sec-
tion 3.1.11.2 [Customizing the Edit Menu], page 53, for details). You can select text
by selecting a text region with the usual text selection keys or with the mouse. See
Section 3.1.11.2 [Customizing the Edit Menu], page 53, for changing the default ac-
celerator.
This item can also be applied to displays (see Section 7.3.1.12 [Deleting Displays],
page 119).

Paste Inserts the current value of the X clipboard selection in the most recently selected
text area (〈Ctrl+V〉 or 〈Shift+Ins〉; See Section 3.1.11.2 [Customizing the Edit Menu],
page 53, for details). You can paste in text you have placed in the clipboard using
‘Copy’ or ‘Cut’. You can also use ‘Paste’ to insert text that was pasted into the
clipboard from other applications.

Clear Clears the most recently selected text area (〈Ctrl+U〉).

Delete Removes the selected text block from the most recently selected text area, but does not
make it the X clipboard selection.
This item can also be applied to displays (see Section 7.3.1.12 [Deleting Displays],
page 119).

Select All
Selects all characters from the most recently selected text area (〈Ctrl+A〉 or or
〈Ctrl+Shift+A〉; see Section 3.1.11.2 [Customizing the Edit Menu], page 53, for
details).

Preferences
Allows you to customize ddd interactively. See Section 3.6 [Customizing], page 62,
for details.

Debugger Settings
Allows you to customize the inferior debugger. See Section 3.6.5 [Debugger Settings],
page 73, for details.

Save Options
If set, all preferences and settings will be saved for the next ddd invocation. See
Section 3.6.1.3 [Saving Options], page 63, for details.

3.1.3 The View Menu

The ‘View’ menu allows accessing the individual ddd windows.

Command Tool
Open and recenter the command tool (〈Alt+8〉). See Section 3.3 [Command Tool],
page 57, for details.

Execution Window
Open the separate execution window (〈Alt+9〉). See Section 6.2 [Using the Execution
Window], page 95, for details.

Debugger Console
Open the debugger console (〈Alt+1〉). See Chapter 10 [Commands], page 149, for
details.

Chapter 3: The DDD Windows 47

Source Window
Open the source window (〈Alt+2〉). See Chapter 4 [Navigating], page 75, for details.

Data Window
Open the data window (〈Alt+3〉). See Section 7.3 [Displaying Values], page 109, for
details.

Machine Code Window
Show machine code (〈Alt+4〉). See Section 8.1 [Machine Code], page 143, for details.

3.1.4 The Program Menu

The ‘Program’ menu performs operations related to the program being debugged, such as
starting and stopping the program.

Most of these operations are also found on the command tool (see Section 3.3 [Command Tool],
page 57).

Run Start program execution, prompting for program arguments (〈F2〉). See Section 6.1
[Starting Program Execution], page 93, for details.

Run Again
Start program execution with the most recently used arguments (〈F3〉). See Section 6.1
[Starting Program Execution], page 93, for details.

Run in Execution Window
If enabled, start next program execution in separate execution window. See Section 6.2
[Using the Execution Window], page 95, for details.

Step Continue running your program until control reaches a different source line, then stop
it and return control to ddd (〈F5〉). See Section 6.5 [Resuming Execution], page 98,
for details.

Step Instruction
Execute one machine instruction, then stop and return to ddd (〈Shift+F5〉). See Sec-
tion 8.2 [Machine Code Execution], page 144, for details.

Next Continue to the next source line in the current (innermost) stack frame (〈F6〉). This is
similar to ‘Step’, but function calls that appear within the line of code are executed
without stopping. See Section 6.5 [Resuming Execution], page 98, for details.

Next Instruction
Execute one machine instruction, but if it is a function call, proceed until the function
returns (〈Shift+F6〉). See Section 8.2 [Machine Code Execution], page 144, for details.

Until Continue running until a source line past the current line, in the current stack frame, is
reached (〈F7〉). See Section 6.5 [Resuming Execution], page 98, for details.

Finish Continue running until just after function in the selected stack frame returns (〈F8〉).
Print the returned value (if any). See Section 6.5 [Resuming Execution], page 98, for
details.

Continue
Resume program execution, at the address where your program last stopped (〈F9〉); any
breakpoints set at that address are bypassed. See Section 6.5 [Resuming Execution],
page 98, for details.

48 Debugging with DDD

Continue Without Signal
Continue execution without giving a signal (〈Shift+F9〉). This is useful when your pro-
gram stopped on account of a signal and would ordinary see the signal when resumed
with ‘Continue’. See Section 6.10 [Signals], page 104, for details.

Kill Kill the process of the debugged program (〈F4〉). See Section 6.11 [Killing the Pro-
gram], page 106, for details.

Interrupt
Interrupt program execution (〈Esc〉 or 〈Ctrl+C〉; see Section 3.1.11.2 [Customizing the
Edit Menu], page 53, for details). This is equivalent to sending an interrupt signal to
the process. See Section 5.3 [Interrupting], page 90, for details.

Abort Abort program execution (and maybe debugger execution, too; 〈Ctrl+\〉). This is equiv-
alent to sending a SIGABRT signal to the process. See Section 2.2 [Quitting], page 31,
for details.

3.1.5 The Commands Menu

The ‘Commands’ menu performs operations related to ddd commands, such as accessing the
command history or defining new commands.

Most of these items are not meant to be actually executed via the menu; instead, they serve as
reminder for the equivalent keyboard commands.

Command History
View the command history. See Section 10.1.2 [Command History], page 150, for
details.

Previous
Show the previous command from the command history (〈Up〉). See Section 10.1.2
[Command History], page 150, for details.

Next Show the next command from the command history (〈Down〉). See Section 10.1.2
[Command History], page 150, for details.

Find Backward
Do an incremental search backward through the command history (〈Ctrl+B〉). See Sec-
tion 10.1.2 [Command History], page 150, for details.

Find Forward
Do an incremental search forward through the command history (〈Ctrl+F〉). See Sec-
tion 10.1.2 [Command History], page 150, for details.

Quit Search
Quit incremental search through the command history (〈Esc〉). See Section 10.1.2
[Command History], page 150, for details.

Complete
Complete the current command in the debugger console (〈Tab〉). See Section 10.1
[Entering Commands], page 149, for details.

Apply Apply the current command in the debugger console (〈Apply〉). See Section 10.1 [En-
tering Commands], page 149, for details.

Chapter 3: The DDD Windows 49

Clear Line
Clear the current command line in the debugger console (〈Ctrl+U〉). See Section 10.1
[Entering Commands], page 149, for details.

Clear Window
Clear the debugger console (〈Shift+Ctrl+U〉). See Section 10.1 [Entering Commands],
page 149, for details.

Define Command
Define a new debugger command. See Section 10.5 [Defining Commands], page 156,
for details.

Edit Buttons
Customize ddd buttons. See Section 10.4 [Defining Buttons], page 153, for details.

3.1.6 The Status Menu

The ‘Status’ menu lets you examine the program status, such as the stack traces, registers, or
threads.

Backtrace
View the current backtrace. See Section 6.7.2 [Backtraces], page 101, for a discussion.

Registers
View the current register contents. See Section 8.3 [Registers], page 144, for details.

Threads View the current threads. See Section 6.9 [Threads], page 103, for details.

Signals View and edit the current signal handling. See Section 6.10 [Signals], page 104, for
details.

Up Select the stack frame (i.e. the function) that called this one (〈Ctrl+Up〉). This advances
toward the outermost frame, to higher frame numbers, to frames that have existed
longer. See Section 6.7 [Stack], page 100, for details.

Down Select the stack frame (i.e. the function) that was called by this one (〈Ctrl+Down〉).
This advances toward the innermost frame, to lower frame numbers, to frames that
were created more recently. See Section 6.7 [Stack], page 100, for details.

3.1.7 The Source Menu

The ‘Source’ menu performs source-related operations such as looking up items or editing
breakpoints.

Breakpoints
Edit all Breakpoints. See Section 5.1.11 [Editing all Breakpoints], page 88, for details.

Lookup ()
Look up the argument ‘()’ in the source code (〈Ctrl+/〉). See Section 4.3.1 [Looking
up Definitions], page 77, for details.

Find >> ()
Look up the next occurrence of the argument ‘()’ in the current source code (〈Ctrl+.〉).
See Section 4.3.2 [Textual Search], page 78, for details.

50 Debugging with DDD

Find << ()
Look up the previous occurrence of the argument ‘()’ in the current source code
(〈Ctrl+,〉). See Section 4.3.2 [Textual Search], page 78, for details.

Find Words Only
If enabled, find only complete words (〈Alt+W〉). See Section 4.3.2 [Textual Search],
page 78, for details.

Find Case Sensitive
If enabled, find is case-sensitive (〈Alt+I〉). See Section 4.3.2 [Textual Search], page 78,
for details.

Display Line Numbers
If enabled, prefix source lines with their line number (〈Alt+N〉). See Section 4.4 [Cus-
tomizing Source], page 79, for details.

Display Machine Code
If enabled, show machine code (〈Alt+4〉). See Section 8.1 [Machine Code], page 143,
for details.

Edit Source
Invoke an editor for the current source file (〈Shift+Ctrl+V〉). See Section 9.1 [Editing
Source Code], page 147, for details.

Reload Source
Reload the current source file (〈Shift+Ctrl+L〉). See Section 9.1 [Editing Source Code],
page 147, for details.

3.1.8 The Data Menu

The ‘Data’ menu performs data-related operations such as editing displays or layouting the
display graph.

Displays
Invoke the Display Editor. See Section 7.3.1.11 [Editing all Displays], page 117, for
details.

Watchpoints
Edit all Watchpoints. See Section 5.2.3 [Editing all Watchpoints], page 90, for details.

Memory View a memory dump. See Section 7.5 [Examining Memory], page 141, for details.

Print () Print the value of ‘()’ in the debugger console (〈Ctrl+=〉). See Section 7.2 [Printing
Values], page 108, for details.

Display ()
Display the value of ‘()’ in the data window (〈Ctrl+-〉). See Section 7.3 [Displaying
Values], page 109, for details.

Detect Aliases
If enabled, detect shared data structures (〈Alt+A〉). See Section 7.3.4.3 [Shared Struc-
tures], page 123, for a discussion.

Chapter 3: The DDD Windows 51

Display Local Variables
Show all local variables in a display (〈Alt+L〉). See Section 7.3.1.5 [Displaying Local
Variables], page 113, for details.

Display Arguments
Show all arguments of the current function in a display (〈Alt+U〉). See Section 7.3.1.5
[Displaying Local Variables], page 113, for details.

Status Displays
Show current debugging information in a display. See Section 7.3.1.6 [Displaying
Program Status], page 114, for details.

Align on Grid
Align all displays on the grid (〈Alt+G〉). See Section 7.3.6.3 [Aligning Displays],
page 133, for a discussion.

Rotate Graph
Rotate the graph by 90 degrees (〈Alt+R〉). See Section 7.3.6.5 [Rotating the Graph],
page 134, for details.

Layout Graph
Layout the graph (〈Alt+Y〉). See Section 7.3.6 [Layouting the Graph], page 132, for
details.

Refresh Update all values in the data window (〈Ctrl+L〉). See Section 7.3.1.7 [Refreshing the
Data Window], page 115, for details.

3.1.9 The Maintenance Menu

The ‘Maintenance’ menu performs operations that are useful for debugging ddd.

By default, this menu is disabled; it is enabled by specifically requesting it at ddd invocation
(via the ‘--maintenance’ option; see Section 2.1.2 [Options], page 18). It is also enabled when
ddd gets a fatal signal.

Debug ddd
Invoke a debugger (typically, gdb) and attach it to this ddd process (〈F12〉). This is
useful only if you are a ddd maintainer.

Dump Core Now
Make this ddd process dump core. This can also be achieved by sending ddd a
SIGUSR1 signal.

Tic Tac Toe
Invoke a Tic Tac Toe game. You must try to get three stop signs in a row, while
preventing ddd from doing so with its skulls. Click on ‘New Game’ to restart.

When ddd Crashes
Select what to do when ddd gets a fatal signal.

Debug ddd
Invoke a debugger on the ddd core dump when ddd crashes. This is
useful only if you are a ddd maintainer.

52 Debugging with DDD

Dump Core
Just dump core when ddd crashes; don’t invoke a debugger. This is
the default setting, as the core dump may contain important information
required for debugging ddd.

Do Nothing
Do not dump core or invoke a debugger when ddd crashes.

Remove Menu
Make this menu inaccessible again.

3.1.10 The Help Menu

The ‘Help’ menu gives help on ddd usage. See Section 3.4 [Getting Help], page 61, for a
discussion on how to get help within ddd.

Overview
Explains the most important concepts of ddd help.

On Item Lets you click on an item to get help on it.

On Window
Gives you help on this ddd window.

What Now?
Gives a hint on what to do next.

Tip of the Day
Shows the current tip of the day.

ddd Reference
Shows the ddd Manual.

ddd News Shows what’s new in this ddd release.

Debugger Reference
Shows the on-line documentation for the inferior debugger.

ddd License
Shows the ddd License (see Appendix G [License], page 191).

ddd www Page
Invokes a www browser for the ddd www page.

About ddd
Shows version and copyright information.

3.1.11 Customizing the Menu Bar

The Menu Bar can be customized in various ways (see Section 3.6 [Customizing], page 62).

Chapter 3: The DDD Windows 53

3.1.11.1 Auto-Raise Menus

You can cause pull-down menus to be raised automatically.

ResourceautoRaiseMenu (class AutoRaiseMenu)
If ‘on’ (default), ddd will always keep the pull down menu on top of the ddd main window.
If this setting interferes with your window manager, or if your window manager does not
auto-raise windows, set this resource to ‘off’.

ResourceautoRaiseMenuDelay (class AutoRaiseMenuDelay)
The time (in ms) during which an initial auto-raised window blocks further auto-raises. This
is done to prevent two overlapping auto-raised windows from entering an auto-raise loop.
Default is 100.

3.1.11.2 Customizing the Edit Menu

In the Menu Bar, the ‘Edit’ Menu can be customized in various ways. Use ‘Edit⇒
Preferences⇒ Startup’ to customize these keys.

The 〈Ctrl+C〉 key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting binds 〈Ctrl+C〉 to the Copy operation, as specified by the KDE style guide.
In this setting, use 〈ESC〉 to interrupt the debuggee.

Interrupt

This (default) setting binds 〈Ctrl+C〉 to the Interrupt operation, as used in several unix command-
line programs. In this setting, use 〈Ctrl+Ins〉 to copy text to the clipboard.

The 〈Ctrl+A〉 key can be bound to different actions, too.

Select All
This (default) setting binds 〈Ctrl+A〉 to the ‘Select All’ operation, as specified by
the KDE style guide. In this setting, use 〈Home〉 to move the cursor to the beginning of
a line.

Beginning of Line
This setting binds 〈Ctrl+A〉 to the ‘Beginning of Line’ operation, as used in sev-
eral unix text-editing programs. In this setting, use 〈Ctrl+Shift+A〉 to select all text.

Here are the related ddd resources:

ResourcecutCopyPasteBindings (class BindingStyle)
Controls the key bindings for clipboard operations.

• If this is ‘Motif’ (default), Cut/Copy/Paste is on 〈Shift+Del〉/〈Ctrl+Ins〉/〈Shift+Ins〉. This
is conformant to the M*tif style guide.

• If this is ‘KDE’, Cut/Copy/Paste is on 〈Ctrl+X〉/〈Ctrl+C〉/〈Ctrl+V〉. This is conformant
to the KDE style guide. Note that this means that 〈Ctrl+C〉 no longer interrupts the
debuggee; use 〈ESC〉 instead.

54 Debugging with DDD

ResourceselectAllBindings (class BindingStyle)
Controls the key bindings for the ‘Select All’ operation.

• If this is ‘Motif’, Select All is on 〈Shift+Ctrl+A〉.
• If this is ‘KDE’ (default), Select All is on 〈Ctrl+A〉. This is conformant to the KDE style

guide. Note that this means that 〈Ctrl+A〉 no longer moves the cursor to the beginning of
a line; use 〈Home〉 instead.

3.2 The Tool Bar

Some ddd commands require an argument. This argument is specified in the argument field,
labeled ‘():’. Basically, there are four ways to set arguments:

• You can key in the argument manually.
• You can paste the current selection into the argument field (typically using mouse button
2). To clear old contents beforehand, click on the ‘():’ label.

• You can select an item from the source and data windows. This will automatically copy the
item to the argument field.

• You can select a previously used argument from the drop-down menu at the right of the argu-
ment field.

Using gdb and Perl, the argument field provides a completion mechanism. You can enter the
first few characters of an item an press the 〈TAB〉 key to complete it. Pressing 〈TAB〉 again shows
alternative completions.

After having entered an argument, you can select one of the buttons on the right. Most of these
buttons also have menus associated with them; this is indicated by a small arrow in the upper right
corner. Pressing and holding mouse button 1 on such a button will pop up a menu with further
operations.

Get Previous Arguments

Data CommandsLookup Commands Breakpoint Commands

Enter Argument

The Tool Bar

These are the buttons of the tool bar. Note that not all buttons may be inactive, depending on the
current state and the capabilities of the inferior debugger.

Lookup

Look up the argument ‘()’ in the source code. See Section 4.3.1 [Looking up Defini-
tions], page 77, for details.

Find >>

Chapter 3: The DDD Windows 55

Look up the next occurrence of the argument ‘()’ in the current source code. See
Section 4.3.2 [Textual Search], page 78, for details.

Break/Clear
Toggle a breakpoint (see Section 5.1 [Breakpoints], page 83) at the location ‘()’.

Break If there is no breakpoint at ‘()’, then this button is labeled ‘Break’.
Clicking on ‘Break’ sets a breakpoint at the location ‘()’. See Sec-
tion 5.1.1 [Setting Breakpoints], page 83, for details.

Clear If there already is a breakpoint at ‘()’, then this button is labeled
‘Clear’. Clicking on ‘Clear’ clears (deletes) the breakpoint at the
location ‘()’. See Section 5.1.2 [Deleting Breakpoints], page 84, for
details.

Watch/Unwatch
Toggle a watchpoint (see Section 5.2 [Watchpoints], page 89) on the expression ‘()’.

Watch If ‘()’ is not being watched, then this button is labeled ‘Watch’. Click-
ing on ‘Watch’ creates a watchpoint on the expression ‘()’. See Sec-
tion 5.2.1 [Setting Watchpoints], page 90, for details.

Unwatch If ‘()’ is being watched, then this button is labeled ‘Unwatch’. Clicking
on ‘Unwatch’ clears (deletes) the watchpoint on ‘()’. See Section 5.2.4
[Deleting Watchpoints], page 90, for details.

Print

Print the value of ‘()’ in the debugger console. See Section 7.2 [Printing Values],
page 108, for details.

Display

Display the value of ‘()’ in the data window. See Section 7.3 [Displaying Values],
page 109, for details.

Plot

Plot ‘()’ in a plot window. See Section 7.4 [Plotting Values], page 136, for details.

Show/Hide
Toggle details of the selected display(s). See Section 7.3.1.3 [Showing and Hiding
Details], page 111, for a discussion.

Rotate

Rotate the selected display(s). See Section 7.3.1.4 [Rotating Displays], page 112, for
details.

Set

Set (change) the value of ‘()’. See Section 7.3.3 [Assignment], page 122, for details.

Undisp

Undisplay (delete) the selected display(s). See Section 7.3.1.12 [Deleting Displays],
page 119, for details.

56 Debugging with DDD

3.2.1 Customizing the Tool Bar

The ddd tool bar buttons can appear in a variety of styles, customized via ‘Edit⇒
Preferences⇒ Startup’.

Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving
space) or only captions.

Tool Bar Appearance

No captions, no images

Captions only, non−flat

Images only, flat

Captions, images, flat, color

If you choose to have neither images nor captions, tool bar buttons are labeled like other buttons,
as in ddd 2.x. Note that this implies that in the stacked window configuration, the common tool bar
cannot be displayed; it is replaced by two separate tool bars, as in ddd 2.x.

If you enable ‘Flat’ buttons (default), the border of tool bar buttons will appear only if the
mouse pointer is over them. This latest-and-greatest gui invention can be disabled, such that the
button border is always shown.

If you enable ‘Color’ buttons, tool bar images will be colored when entered. If ddd was built
using M*tif 2.0 and later, you can also choose a third setting, where buttons appear in color all the
time.

Here are the related resources (see Section 3.6 [Customizing], page 62):

ResourceactiveButtonColorKey (class ColorKey)
The xpm color key to use for the images of active buttons (entered or armed). ‘c’ means
color, ‘g’ (default) means grey, and ‘m’ means monochrome.

Chapter 3: The DDD Windows 57

ResourcebuttonCaptions (class ButtonCaptions)
Whether the tool bar buttons should be shown using captions (‘on’, default) or not (‘off’).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See also ‘buttonImages’, below.

ResourcebuttonCaptionGeometry (class ButtonCaptionGeometry)
The geometry of the caption subimage within the button icons. Default is ‘29x7+0-0’.

ResourcebuttonImages (class ButtonImages)
Whether the tool bar buttons should be shown using images (‘on’, default) or not (‘off’).
If neither captions nor images are enabled, tool bar buttons are shown using ordinary labels.
See also ‘buttonCaptions’, above.

ResourcebuttonImageGeometry (class ButtonImageGeometry)
The geometry of the image within the button icon. Default is ‘25x21+2+0’.

ResourcebuttonColorKey (class ColorKey)
The xpm color key to use for the images of inactive buttons (non-entered or insensitive). ‘c’
means color, ‘g’ (default) means grey, and ‘m’ means monochrome.

ResourceflatToolbarButtons (class FlatButtons)
If ‘on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icon. If ‘off’, the 3-D border is
shown all the time.

ResourceflatDialogButtons (class FlatButtons)
If ‘on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—
the 3-D border only shows up when the pointer is over the icon. If ‘off’, the 3-D border is
shown all the time.

3.3 The Command Tool

The command tool is a small window that gives you access to the most frequently used ddd
commands. It can be moved around on top of the ddd windows, but it can also be placed besides
them.

By default, the command tool sticks to the ddd source window: Whenever you move the ddd
source window, the command tool follows such that the distance between source window and com-
mand tool remains the same. By default, the command tool is also auto-raised, such that it stays on
top of other ddd windows.

The command tool can be configured to appear as a command tool bar above the source window;
see ‘Edit⇒ Preferences⇒ Source⇒ Tool Buttons Location’ for details.

Whenever you save ddd state, ddd also saves the distance between command tool and source
window, such that you can select your own individual command tool placement. To move the
command tool to its saved position, use ‘View⇒ Command Tool’.

58 Debugging with DDD

Start debugged program

Interrupt debugged program

Step program one line (step into calls)

Step program one line (step over calls)

Edit source file

Select stack frame that called this one

Continue program after breakpoint

Step one instruction (step into calls)

Step one instruction (step over calls)

Select stack frame called by this one

Kill execution of debugged program

Invoke the make program

Continue until frame returns

The Command Tool

Continue until program reaches next line

Undo previous action Redo next action

These are the buttons of the command tool. Note that not all buttons may be inactive, depending
on the current state and the capabilities of the inferior debugger.

Run Start program execution. When you click this button, your program will begin to exe-
cute immediately. See Section 6.1 [Starting Program Execution], page 93, for details.

Interrupt
Interrupt program execution. This is equivalent to sending an interrupt signal to the
process. See Section 5.3 [Interrupting], page 90, for details.

Step Continue running your program until control reaches a different source line, then stop
it and return control to ddd. See Section 6.5 [Resuming Execution], page 98, for
details.

Stepi Execute one machine instruction, then stop and return to ddd. See Section 8.2 [Ma-
chine Code Execution], page 144, for details.

Next Continue to the next source line in the current (innermost) stack frame. This is similar
to ‘Step’, but function calls that appear within the line of code are executed without
stopping. See Section 6.5 [Resuming Execution], page 98, for details.

Nexti Execute one machine instruction, but if it is a function call, proceed until the function
returns. See Section 8.2 [Machine Code Execution], page 144, for details.

Until Continue running until a source line past the current line, in the current stack frame, is
reached. See Section 6.5 [Resuming Execution], page 98, for details.

Finish Continue running until just after function in the selected stack frame returns. Print the
returned value (if any). See Section 6.5 [Resuming Execution], page 98, for details.

Chapter 3: The DDD Windows 59

Cont Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed. See Section 6.5 [Resuming Execution],
page 98, for details.

Kill Kill the process of the debugged program. See Section 6.11 [Killing the Program],
page 106, for details.

Up Select the stack frame (i.e. the function) that called this one. This advances toward
the outermost frame, to higher frame numbers, to frames that have existed longer. See
Section 6.7 [Stack], page 100, for details.

Down Select the stack frame (i.e. the function) that was called by this one. This advances
toward the innermost frame, to lower frame numbers, to frames that were created more
recently. See Section 6.7 [Stack], page 100, for details.

Undo Undo the most recent action. Almost all commands can be undone this way. See
Section 3.5 [Undo and Redo], page 62, for details.

Redo Redo the action most recently undone. Every command undone can be redone this
way. See Section 3.5 [Undo and Redo], page 62, for details.

Edit Invoke an editor for the current source file. See Section 9.1 [Editing Source Code],
page 147, for details.

Make Run the make program with the most recently given arguments. See Section 9.2 [Re-
compiling], page 148, for details.

3.3.1 Customizing the Command Tool

The Command Tool can be customized in various ways.

See Section 10.4.1 [Customizing Buttons], page 154, for details on customizing the tool buttons.

3.3.1.1 Disabling the Command Tool

You can disable the command tool and show its buttons in a separate row beneath the tool
bar. To disable the command tool, set ‘Edit⇒ Preferences⇒ Source⇒ Tool Buttons
Location⇒ Source Window’.

60 Debugging with DDD

Source Preferences

Here’s the related resource:

ResourcecommandToolBar (class ToolBar)
Whether the tool buttons should be shown in a tool bar above the source window (‘on’)
or within the command tool (‘off’, default). Enabling the command tool bar disables the
command tool and vice versa.

3.3.2 Command Tool Position

The following resources control the position of the command tool (see Section 3.6 [Customiz-
ing], page 62):

ResourceautoRaiseTool (class AutoRaiseTool)
If ‘on’ (default), ddd will always keep the command tool on top of other ddd windows.
If this setting interferes with your window manager, or if your window manager keeps the
command tool on top anyway, set this resource to ‘off’.

ResourcestickyTool (class StickyTool)
If ‘on’ (default), the command tool automatically follows every movement of the source
window. Whenever the source window is moved, the command tool is moved by the same
offset such that its position relative to the source window remains unchanged. If ‘off’, the
command tool does not follow source window movements.

ResourcetoolRightOffset (class Offset)
The distance between the right border of the command tool and the right border of the source
text (in pixels). Default is 8.

ResourcetoolTopOffset (class Offset)
The distance between the upper border of the command tool and the upper border of the
source text (in pixels). Default is 8.

Chapter 3: The DDD Windows 61

3.3.2.1 Customizing Tool Decoration

The following resources control the decoration of the command tool (see Section 3.6 [Customiz-
ing], page 62):

ResourcedecorateTool (class Decorate)
This resource controls the decoration of the command tool.
• If this is ‘off’, the command tool is created as a transient window. Several window

managers keep transient windows automatically on top of their parents, which is appro-
priate for the command tool. However, your window manager may be configured not
to decorate transient windows, which means that you cannot easily move the command
tool around.

• If this is ‘on’, ddd realizes the command tool as a top-level window. Such win-
dows are always decorated by the window manager. However, top-level windows are
not automatically kept on top of other windows, such that you may wish to set the
‘autoRaiseTool’ resource, too.

• If this is ‘auto’ (default), ddd checks whether the window manager decorates tran-
sients. If yes, the command tool is realized as a transient window (as in the ‘off’
setting); if no, the command tool is realized as a top-level window (as in the ‘on’ set-
ting). Hence, the command tool is always decorated using the “best” method, but the
extra check takes some time.

3.4 Getting Help

ddd has an extensive on-line help system. Here’s how to get help while working with ddd.
• You can get a short help text on most ddd buttons by simply moving the mouse pointer on it

and leave it there. After a second, a small window (called button tip; also known as tool tip
or balloon help) pops up, giving a hint on the button’s meaning. The button tip disappears as
soon as you move the mouse pointer to another item.

• The status line also displays information about the currently selected item. By clicking on the
status line, you can redisplay the most recent messages.

• You can get detailed help on any visible ddd item. Just point on the item you want help and
press the ‘F1’ key. This pops up a detailed help text.

• The ddd dialogs all contain ‘Help’ buttons that give detailed information about the dialog.
• You can get help on debugger commands by entering help at the debugger prompt. See

Section 10.1 [Entering Commands], page 149, for details on entering commands.
• If you are totally stuck, try ‘Help⇒ What Now?’ (the ‘What Now?’ item in the ‘Help’

menu) or press 〈Ctrl+F1〉. Depending on the current state, ddd will give you some hints on
what you can do next.

• Of course, you can always refer to the on-line documentation:
− ‘Help⇒ ddd Reference’ gives you access to the ddd manual, the ultimate ddd

reference.
− ‘Help⇒ Debugger Reference’ shows you the on-line documentation of the inferior

debugger.

62 Debugging with DDD

− ‘Help⇒ ddd www Page’ gives you access to the latest and greatest information on
ddd.

• Finally, the ddd Tip Of The Day gives you important hints with each new ddd invocation.

All these functions can be customized in various ways (see Section 3.6.2 [Customizing Help],
page 63).

If, after all, you made a mistake, don’t worry: almost every ddd command can be undone. See
Section 3.5 [Undo and Redo], page 62, for details.

3.5 Undoing and Redoing Commands

Almost every ddd command can be undone, using ‘Edit⇒ Undo’ or the ‘Undo’ button on
the command tool.

Likewise, ‘Edit⇒ Redo’ repeats the command most recently undone.

The ‘Edit’ menu shows which commands are to be undone and redone next; this is also indi-
cated by the popup help on the ‘Undo’ and ‘Redo’ buttons.

3.6 Customizing DDD

ddd is controlled by several resources—user-defined variables that take specific values in order
to control and customize ddd behavior.

Most ddd resources can be set interactively while ddd is running or when invoking ddd. See
[Resource Index], page 219, for the full list of ddd resources.

We first discuss how customizing works in general; then we turn to customizing parts of ddd
introduced so far.

3.6.1 How Customizing DDD Works

3.6.1.1 Resources

Just like any X program, ddd has a number of places to get resource values from. For ddd, the
most important places to specify resources are:

• The ‘~/.ddd/init’ file (‘~’ stands for your home directory). This file is read in by ddd
upon start-up; the resources specified herein override all other sources (except for resources
given implicitly by command-line options).

If the environment variable DDD_STATE is set, its value is used instead of ‘~/.ddd/’.

• The ‘Ddd’ application-defaults file. This file is typically compiled into the ddd executable.
If it exists, its resource values override the values compiled into ddd. If the versions of the
‘Ddd’ application-defaults file and the ddd executable do not match, ddd may not function
properly; ddd will give you a warning in this case.1

• The command-line options. These options override all other resource settings.

1 If you use a ‘Ddd’ application-defaults file, you will not be able to maintain multiple ddd versions at the
same time. This is why the suiting ‘Ddd’ is normally compiled into the ddd executable.

Chapter 3: The DDD Windows 63

• If the environment variable DDD_SESSION is set, it indicates the name of a session to start,
overriding all options and resources. This is used by ddd when restarting itself.

Not every resource has a matching command-line option. Each resource (whether in
‘~/.ddd/init’ or ‘Ddd’) is specified using a line

Ddd*resource: value

For instance, to set the ‘pollChildStatus’ resource to ‘off’, you would specify in
‘~/.ddd/init’:

Ddd*pollChildStatus: off

For more details on the syntax of resource specifications, see the section RESOURCES in the
X(1) manual page.

3.6.1.2 Changing Resources

You can change ddd resources by three methods:

• Use ddd to change the options, notably ‘Edit⇒ Preferences’. This works for the most
important ddd resources. Be sure to save the options (see Section 3.6.1.3 [Saving Options],
page 63) such that they apply to future ddd sessions, too.

• You can also invoke ddd with an appropriate command-line option. This changes the re-
lated ddd resource for this particular ddd invocation. However, if you save the options (see
Section 3.6.1.3 [Saving Options], page 63), the changed resource will also apply to future
invocations.

• Finally, you can set the appropriate resource in a file named ‘.ddd/init’ in your home
directory. See [Resource Index], page 219, for a list of ddd resources to be set.

3.6.1.3 Saving Options

You can save the current option settings by setting ‘Edit⇒ Save Options’. Options are
saved in a file named ‘.ddd/init’ in your home directory when ddd exits. If a session session
is active, options will be saved in ‘~/.ddd/sessions/session/init’ instead.

The options are automatically saved when exiting ddd. You can turn off this feature by unsetting
‘Edit⇒ Save Options’. This is tied to the following resource:

ResourcesaveOptionsOnExit (class SaveOnExit)
If ‘on’ (default), the current option settings are automatically saved when ddd exits.

3.6.2 Customizing DDD Help

ddd Help can be customized in various ways.

3.6.2.1 Button Tips

Button tips are helpful for novices, but may be distracting for experienced users. You can turn off
button tips via ‘Edit⇒ Preferences⇒ General⇒ Automatic display of Button
Hints⇒ as Popup Tips’.

64 Debugging with DDD

You can also turn off the hint that is displayed in the status line. Just toggle ‘Edit⇒
Preferences⇒ General⇒ Automatic Display of Button Hints⇒ in the
Status Line’.

General Preferences

These are the related ddd resources (see Section 3.6 [Customizing], page 62):

ResourcebuttonTips (class Tips)
If ‘on’ (default), enable button tips.

ResourcebuttonDocs (class Docs)
If ‘on’ (default), show button hints in the status line.

3.6.2.2 Tip of the day

You can turn off the tip of the day by toggling ‘Edit⇒ Preferences⇒ Startup⇒
Startup Windows⇒ Tip of the Day’.

Here is the related ddd resource (see Section 3.6 [Customizing], page 62):

ResourcestartupTips (class StartupTips)
If ‘on’ (default), show a tip of the day upon ddd startup.

See Section 2.1.2 [Options], page 18, for options to set this resource upon ddd invocation.
The actual tips are controlled by these resources (see Section 3.6 [Customizing], page 62):

ResourcestartupTipCount (class StartupTipCount)
The number n of the tip of the day to be shown at startup. See also the ‘tipn’ resources.

Resourcetipn (class Tip)
The tip of the day numbered n (a string).

Chapter 3: The DDD Windows 65

3.6.2.3 Help Helpers

ddd relies on a number of external commands, specified via ‘Edit⇒ Preferences⇒
Helpers’.

Setting Helpers Preferences

To uncompress help texts, you can define a ‘Uncompress’ command:

ResourceuncompressCommand (class UncompressCommand)
The command to uncompress the built-in ddd manual, the ddd license, and the ddd news.
Takes a compressed text from standard input and writes the uncompressed text to standard
output. The default value is gzip -d -c; typical values include zcat and gunzip -c.

To view www pages, you can define a ‘Web Browser’ command:

ResourcewwwCommand (class WWWCommand)
The command to invoke a www browser. The string ‘@URL@’ is replaced by the url to
open. Default is to try a running Netscape first (trying mozilla, then netscape), then
$WWWBROWSER, then to invoke a new Netscape process, then to let a running Emacs or
XEmacs do the job (via gnudoit), then to invoke Firefox, then to invoke Lynx in an xterm.
To specify ‘netscape-6.0’ as browser, use the setting:

Ddd*wwwCommand: \
netscape-6.0 -remote ’openURL(@URL@)’ \

|| netscape-6.0 ’@URL@’

This command first tries to connect to a running netscape-6.0 browser; if this fails, it
starts a new netscape-6.0 process.

This is the default www Page shown by ‘Help⇒ ddd www Page’:

66 Debugging with DDD

ResourcewwwPage (class wwwPage)
The ddd www page. Value: http://www.gnu.org/software/ddd/

3.6.3 Customizing Undo

ddd Undo can be customized in various ways.

To set a maximum size for the undo buffer, set ‘Edit⇒ Preferences⇒ General⇒
Undo Buffer Size’.

This is related to the ‘maxUndoSize’ resource:

ResourcemaxUndoSize (class MaxUndoSize)
The maximum memory usage (in bytes) of the undo buffer. Useful for limiting ddd memory
usage. A negative value means to place no limit. Default is 2000000, or 2000 kBytes.

You can also limit the number of entries in the undo buffer, regardless of size (see Section 3.6
[Customizing], page 62):

ResourcemaxUndoDepth (class MaxUndoDepth)
The maximum number of entries in the undo buffer. This limits the number of actions that
can be undone, and the number of states that can be shown in historic mode. Useful for
limiting ddd memory usage. A negative value (default) means to place no limit.

To clear the undo buffer at any time, thus reducing memory usage, use ‘Edit⇒
Preferences⇒ General⇒ Clear Undo Buffer’

3.6.4 Customizing the DDD Windows

You can customize the ddd Windows in various ways.

3.6.4.1 Splash Screen

You can turn off the ddd splash screen shown upon startup. Just select ‘Edit⇒
Preferences⇒ Startup ddd Splash Screen’.

http://www.gnu.org/software/ddd/

Chapter 3: The DDD Windows 67

Startup Preferences

The value applies only to the next ddd invocation.

This setting is related to the following resource:

ResourcesplashScreen (class SplashScreen)
If ‘on’ (default), show a ddd splash screen upon start-up.

You can also customize the appearance of the splash screen (see Section 3.6 [Customizing],
page 62):

ResourcesplashScreenColorKey (class ColorKey)
The color key to use for the ddd splash screen. Possible values include:

• ‘c’ (default) for a color visual,

• ‘g’ for a multi-level greyscale visual,

• ‘g4’ for a 4-level greyscale visual, and

• ‘m’ for a dithered monochrome visual.

• ‘best’ chooses the best visual available for your display.

Please note: if ddd runs on a monochrome display, or if ddd was compiled without the xpm
library, only the monochrome version (‘m’) can be shown.

3.6.4.2 Window Layout

By default, ddd stacks commands, source, and data in one single top-level window. To have
separate top-level windows for source, data, and debugger console, set ‘Edit⇒ Preferences
⇒ Startup⇒ Window Layout⇒ Separate Windows’.

68 Debugging with DDD

Source Window

Debugger Console

Data Window

Button Tip

The DDD Layout using Separate Windows

Here are the related ddd resources:

ResourceseparateDataWindow (class Separate)
If ‘on’, the data window and the debugger console are realized in different top-level windows.
If ‘off’ (default), the data window is attached to the debugger console.

ResourceseparateSourceWindow (class Separate)
If ‘on’, the source window and the debugger console are realized in different top-level win-
dows. If ‘off’ (default), the source window is attached to the debugger console.

By default, the ddd tool bars are located on top of the window. If you prefer the tool bar being
located at the bottom, as in ddd 2.x and earlier, set ‘Edit⇒ Preferences⇒ Startup⇒
Tool Bar Appearance⇒ Bottom’.

This is related to the ‘toolbarsAtBottom’ resource:

ResourcetoolbarsAtBottom (class ToolbarsAtBottom)
Whether source and data tool bars should be placed above source and data, respectively
(‘off’, default), or below, as in ddd 2.x (‘on’).

The bottom setting is only supported for separate tool bars—that is, you must either choose
separate windows or configure the tool bar to have neither images nor captions (see Section 3.2.1
[Customizing the Tool Bar], page 56).

If you use stacked windows, you can choose whether there should be one tool bar or two tool
bars. By default, ddd uses two tool bars if you use separate windows and disable captions and
images, but you can also explicitly change the setting via this resource:

Chapter 3: The DDD Windows 69

ResourcecommonToolBar (class ToolBar)
Whether the tool bar buttons should be shown in one common tool bar at the top of the
common ddd window (‘on’, default), or whether they should be placed in two separate tool
bars, one for data, and one for source operations, as in ddd 2.x (‘off’).

You can also change the location of the status line (see Section 3.6 [Customizing], page 62):

ResourcestatusAtBottom (class StatusAtBottom)
If ‘on’ (default), the status line is placed at the bottom of the ddd source window. If ‘off’,
the status line is placed at the top of the ddd source window (as in ddd 1.x).

See Section 2.1.2 [Options], page 18, for options to set these resources upon ddd invocation.

3.6.4.3 Customizing Fonts

You can configure the basic ddd fonts at run-time. Each font is specified using two members:

• The font family is an X font specifications, where the initial ‘foundry-’ specification may
be omitted, as well as any specification after family. Thus, a pair ‘family-weight’ usually
suffices.

• The font size is given as (resolution-independent) 1/10 points.

To specify fonts, select ‘Edit⇒ Preferences⇒ Fonts’.

Setting Font Preferences

The ‘Browse’ button opens a font selection program, where you can select fonts and attributes
interactively. Clicking ‘quit’ or ‘select’ in the font selector causes all non-default values to be
transferred to the ddd font preferences panel.

The following fonts can be set using the preferences panel:

70 Debugging with DDD

Default Font
The default ddd font to use for labels, menus, and buttons. Default is
‘helvetica-bold’.

Variable Width
The variable width ddd font to use for help texts and messages. Default is
‘helvetica-medium’.

Fixed Width
The fixed width ddd font to use for source code, the debugger console, text fields, and
the execution window. Default is ‘lucidatypewriter-medium’.

Data The ddd font to use for data displays. Default is ‘lucidatypewriter-medium’.

Changes in this panel will take effect only in the next ddd session. To make it effective right
now, restart ddd (using ‘File⇒ Restart ddd’).

After having made changes in the panel, ddd will automatically offer you to restart itself, such
that you can see the changes taking effect.

The ‘Reset’ button restores the most recently saved preferences.
Here are the resources related to font specifications:

ResourcedefaultFont (class Font)
The default ddd font to use for labels, menus, buttons, etc. The font is specified as an X font
spec, where the initial Foundry specification may be omitted, as well as any specification
after Family.
Default value is ‘helvetica-bold’.
To set the default ddd font to, say, ‘helvetica medium’, insert a line

Ddd*defaultFont: helvetica-medium

in your ‘~/.ddd/init’ file.

ResourcedefaultFontSize (class FontSize)
The size of the default ddd font, in 1/10 points. This resource overrides any font size spec-
ification in the ‘defaultFont’ resource (see above). The default value is 120 for a 12.0
point font.

ResourcevariableWidthFont (class Font)
The variable width ddd font to use for help texts and messages. The font is specified as an X
font spec, where the initial Foundry specification may be omitted, as well as any specification
after Family.
Default value is ‘helvetica-medium-r’.
To set the variable width ddd font family to, say, ‘times’, insert a line

Ddd*fixedWidthFont: times-medium

in your ‘~/.ddd/init’ file.

ResourcevariableWidthFontSize (class FontSize)
The size of the variable width ddd font, in 1/10 points. This resource overrides any font
size specification in the ‘variableWidthFont’ resource (see above). The default value
is 120 for a 12.0 point font.

Chapter 3: The DDD Windows 71

ResourcefixedWidthFont (class Font)
The fixed width ddd font to use for source code, the debugger console, text fields, and
the execution window. The font is specified as an X font spec, where the initial Foundry
specification may be omitted, as well as any specification after Family.

Default value is ‘lucidatypewriter-medium’.

To set the fixed width ddd font family to, say, ‘courier’, insert a line

Ddd*fixedWidthFont: courier-medium

in your ‘~/.ddd/init’ file.

ResourcefixedWidthFontSize (class FontSize)
The size of the fixed width ddd font, in 1/10 points. This resource overrides any font size
specification in the ‘fixedWidthFont’ resource (see above). The default value is 120 for
a 12.0 point font.

ResourcedataFont (class Font)
The fixed width ddd font to use data displays. The font is specified as an X font spec, where
the initial Foundry specification may be omitted, as well as any specification after Family.

Default value is ‘lucidatypewriter-medium’.

To set the ddd data font family to, say, ‘courier’, insert a line

Ddd*dataFont: courier-medium

in your ‘~/.ddd/init’ file.

ResourcedataFontSize (class FontSize)
The size of the ddd data font, in 1/10 points. This resource overrides any font size specifi-
cation in the ‘dataFont’ resource (see above). The default value is 120 for a 12.0 point
font.

As all font size resources have the same class (and by default the same value), you can easily
change the default ddd font size to, say, 9.0 points by inserting a line

Ddd*FontSize: 90

in your ‘~/.ddd/init’ file.

Here’s how to specify the command to select fonts:

ResourcefontSelectCommand (class FontSelectCommand)
A command to select from a list of fonts. The string ‘@FONT@’ is replaced by the current
ddd default font; the string ‘@TYPE@’ is replaced by a symbolic name of the ddd font to
edit. The program must either place the name of the selected font in the PRIMARY selection
or print the selected font on standard output. A typical value is:

Ddd*fontSelectCommand: xfontsel -print

See Section 2.1.2 [Options], page 18, for options to set these resources upon ddd invocation.

72 Debugging with DDD

3.6.4.4 Toggling Windows

In the default stacked window setting, you can turn the individual ddd windows on and off
by toggling the respective items in the ‘View’ menu (see Section 3.1.3 [View Menu], page 46).
When using separate windows (see Section 3.6.4.2 [Window Layout], page 67), you can close the
individual windows via ‘File⇒ Close’ or by closing them via your window manager.

Whether windows are opened or closed when starting ddd is controlled by the following re-
sources, immediately tied to the ‘View’ menu items:

ResourceopenDataWindow (class Window)
If ‘off’ (default), the data window is closed upon start-up.

ResourceopenDebuggerConsole (class Window)
If ‘off’, the debugger console is closed upon start-up.

ResourceopenSourceWindow (class Window)
If ‘off’, the source window is closed upon start-up.

See Section 2.1.2 [Options], page 18, for options to set these resources upon ddd invocation.

3.6.4.5 Text Fields

The ddd text fields can be customized using the following resources:

ResourcepopdownHistorySize (class HistorySize)
The maximum number of items to display in pop-down value histories. A value of 0 (default)
means an unlimited number of values.

ResourcesortPopdownHistory (class SortPopdownHistory)
If ‘on’ (default), items in the pop-down value histories are sorted alphabetically. If ‘off’,
most recently used values will appear at the top.

3.6.4.6 Icons

If you frequently switch between ddd and other multi-window applications, you may like to
set ‘Edit⇒ Preferences⇒ General⇒ Iconify all windows at once’. This way,
all ddd windows are iconified and deiconified as a group.

This is tied to the following resource:

ResourcegroupIconify (class GroupIconify)
If this is ‘on’, (un)iconifying any ddd window causes all other ddd windows to (un)iconify
as well. Default is ‘off’, meaning that each ddd window can be iconified on its own.

If you want to keep ddd off your desktop during a longer computation, you may like to set
‘Edit⇒ Preferences⇒ General⇒ Uniconify when ready’. This way, you can
iconify ddd while it is busy on a command (e.g. running a program); ddd will automatically pop
up again after becoming ready (e.g. after the debugged program has stopped at a breakpoint). See
Section 6.4 [Program Stop], page 98, for a discussion.

Here is the related resource:

Chapter 3: The DDD Windows 73

ResourceuniconifyWhenReady (class UniconifyWhenReady)
If this is ‘on’ (default), the ddd windows are uniconified automatically whenever gdb be-
comes ready. This way, you can iconify ddd during some longer operation and have it
uniconify itself as soon as the program stops. Setting this to ‘off’ leaves the ddd windows
iconified.

3.6.4.7 Adding Buttons

You can extend ddd with new buttons. See Section 10.4 [Defining Buttons], page 153, for
details.

3.6.4.8 More Customizations

You can change just about any label, color, keyboard mapping, etc. by changing resources from
the ‘Ddd’ application defaults file which comes with the ddd source distribution. Here’s how it
works:

• Identify the appropriate resource in the ‘Ddd’ file.

• Copy the resource line to your ‘~/.ddd/init’ file and change it at will.

See Appendix A [Application Defaults], page 161, for details on the application-defaults file.

3.6.5 Debugger Settings

For most inferior debuggers, you can change their internal settings using ‘Edit⇒ Settings’.
Using the settings editor, you can determine whether C++ names are to be demangled, how many
array elements are to print, and so on.

GDB Settings Panel (Excerpt)

74 Debugging with DDD

The capabilities of the settings editor depend on the capabilities of your inferior debugger. Click-
ing on ‘?’ gives an an explanation on the specific item; the gdb documentation gives more details.

Use ‘Edit⇒ Undo’ to undo changes. Clicking on ‘Reset’ restores the most recently saved
settings.

Some debugger settings are insensitive and cannot be changed, because doing so would endanger
ddd operation. See the ‘gdbInitCommands’ and ‘dbxInitCommands’ resources for details.

All debugger settings (except source and object paths) are saved with ddd options.

Chapter 4: Navigating through the Code 75

4 Navigating through the Code

This chapter discusses how to access code from within ddd.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when you
compile it. This debugging information is stored in the object file; it describes the data type of
each variable or function and the correspondence between source line numbers and addresses in the
executable code.1

To request debugging information, specify the ‘-g’ option when you run the compiler.

Many C compilers are unable to handle the ‘-g’ and ‘-O’ options together. Using those compil-
ers, you cannot generate optimized executables containing debugging information.

gcc, the gnu C compiler, supports ‘-g’ with or without ‘-O’, making it possible to debug
optimized code. We recommend that you always use ‘-g’ whenever you compile a program. You
may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with ‘-g -O’, remember that the optimizer is rearranging
your code; the debugger shows you what is really there. Do not be too surprised when the execution
path does not exactly match your source file! An extreme example: if you define a variable, but
never use it, ddd never sees that variable—because the compiler optimizes it out of existence.

4.2 Opening Files

If you did not invoke ddd specifying a program to be debugged, you can use the ‘File’ menu
to open programs, core dumps and sources.

4.2.1 Opening Programs

To open a program to be debugged, select ‘File⇒ Open Program’.2 Click on ‘Open’ to
open the program

In jdb, select ‘File⇒ Open Class’ instead. This gives you a list of available classes to
choose from.

1 If you use ddd to debug Perl, Python or Bash scripts, then this section does not apply.
2 With xdb and some dbx variants, the debugged program must be specified upon invocation and cannot

be changed at run time.

76 Debugging with DDD

Opening a program to be debugged

Directory List

Program to be opened

Click here to open

File List

File Filter

To re-open a recently debugged program or class, select ‘File⇒ Open Recent’ and choose
a program or class from the list.

If no sources are found, See Section 4.3.4 [Source Path], page 78, for specifying source directo-
ries.

4.2.2 Opening Core Dumps

If a previous run of the program has crashed and you want to find out why, you can have ddd
examine its core dump.3

To open a core dump for the program, select ‘File⇒ Open Core Dump’. Click on ‘Open’
to open the core dump.

Before ‘Open Core Dump’, you should first use ‘File⇒ Open Program’ to specify the
program that generated the core dump and to load its symbol table.

4.2.3 Opening Source Files

To open a source file of the debugged program, select ‘File⇒ Open Source’.
• Using gdb, this gives you a list of the sources used for compiling your program.
• Using other inferior debuggers, this gives you a list of accessible source files, which may or

may not be related to your program.

Click on ‘Open’ to open the source file. See Section 4.3.4 [Source Path], page 78, if no sources
are found.

3 jdb, pydb, Perl, and Bash do not support core dumps.

Chapter 4: Navigating through the Code 77

4.2.4 Filtering Files

When presenting files to be opened, ddd by default filters files when opening execution files,
core dumps, or source files, such that the selection shows only suitable files. This requires that ddd
opens each file, which may take time. See Section 4.4.6 [Customizing File Filtering], page 82, if
you want to turn off this feature.

4.3 Looking up Items

As soon as the source of the debugged program is available, the source window displays its
current source text. (see Section 4.3.4 [Source Path], page 78, if a source text cannot be found.)

In the source window, you can lookup and examine function and variable definitions as well as
search for arbitrary occurrences in the source text.

4.3.1 Looking up Definitions

If you wish to lookup a specific function or variable definition whose name is visible in the
source text, click with mouse button 1 on the function or variable name. The name is copied to the
argument field. Change the name if desired and click on the ‘Lookup’ button to find its definition.

Show Item Value

The Source Popup Menu

Set and Delete Breakpoint at Item

Lookup Item’s Definition in Source Code

Show Item Type

Press Button 3 on Item

As a faster alternative, you can simply press mouse button 3 on the function name and select the
‘Lookup’ item from the source popup menu.

As an even faster alternative, you can also double-click on a function call (an identifier followed
by a ‘(’ character) to lookup the function definition.

78 Debugging with DDD

If a source file is not found, See Section 4.3.4 [Source Path], page 78, for specifying source
directories.

4.3.2 Textual Search

If the item you wish to search is visible in the source text, click with mouse button 1 on it.
The identifier is copied to the argument field. Click on the ‘Find >>’ button to find following
occurrences and on ‘Find >>⇒ Find << ()’ to find previous occurrences.

By default, ddd finds only complete words. To search for arbitrary substrings, change the value
of the ‘Source⇒ Find Words Only’ option.

4.3.3 Looking up Previous Locations

After looking up a location, use ‘Edit⇒ Undo’ (or the ‘Undo’ button on the command tool)
to go back to the original locations. ‘Edit⇒ Redo’ brings you back again to the location you
looked for.

The Source Window

Program Counter

Disabled Breakpoint

Execution Position

Enabled Breakpoint

Click here to lookup ‘tree_test’

Click here to find further occurrences of ‘tree_test’Argument for command buttons on the right

4.3.4 Specifying Source Directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved between
the compilation and your debugging session.

Chapter 4: Navigating through the Code 79

Here’s how gdb accesses source files; other inferior debuggers have similar methods.

gdb has a list of directories to search for source files; this is called the source path. Each time
gdb wants a source file, it tries all the directories in the list, in the order they are present in the list,
until it finds a file with the desired name. Note that the executable search path is not used for this
purpose. Neither is the current working directory, unless it happens to be in the source path.

If gdb cannot find a source file in the source path, and the object program records a directory,
gdb tries that directory too. If the source path is empty, and there is no record of the compilation
directory, gdb looks in the current directory as a last resort.

To specify a source path for your inferior debugger, use ‘Edit⇒ Debugger Settings’
(see Section 3.6.5 [Debugger Settings], page 73 and search for appropriate entries (in gdb, this is
‘Search path for source files’).

If ‘Debugger Settings’ has no suitable entry, you can also specify a source path for the
inferior debugger when invoking ddd. See Section 2.1.4 [Inferior Debugger Options], page 26, for
details.

When using jdb, you can set the CLASSPATH environment variable to specify directories where
jdb (and ddd) should search for classes.

If DDD does not find a source file for any reason, check the following issues:

• In order to debug a program effectively, you need to generate debugging information when
you compile it. Without debugging information, the inferior debugger will be unable to locate
the source code. To request debugging information, specify the ‘-g’ option when you run the
compiler. See Section 4.1 [Compiling for Debugging], page 75, for details.

• You may need to tell your inferior debugger where the source code files are. See Section 4.3.4
[Source Path], page 78, for details.

Using gdb, you can also create a local ‘.gdbinit’ file that contains a line directory
path . Here, path is a colon-separated list of source paths.

4.4 Customizing the Source Window

The source window can be customized in a number of ways, most of them accessed via ‘Edit
⇒ Preferences⇒ Source’.

80 Debugging with DDD

Source Preferences

4.4.1 Customizing Glyphs

In the source text, the current execution position and breakpoints are indicated by symbols
(glyphs). As an alternative, ddd can also indicate these positions using text characters. If you
wish to disable glyphs, set ‘Edit⇒ Preferences⇒ Source⇒ Show Position and
Breakpoints⇒ as Text Characters’ option. This also makes ddd run slightly faster,
especially when scrolling.

This setting is tied to this resource:

ResourcedisplayGlyphs (class DisplayGlyphs)
If this is ‘on’, the current execution position and breakpoints are displayed as glyphs; other-
wise, they are shown through characters in the text. The default is ‘on’. See Section 2.1.2
[Options], page 18, for the ‘--glyphs’ and ‘--no-glyphs’ options.

You can further control glyphs using the following resources:

ResourcecacheGlyphImages (class CacheMachineCode)
Whether to cache (share) glyph images (‘on’) or not (‘off’). Caching glyph images re-
quires less X resources, but has been reported to fail with OSF/Motif 2.1 on XFree86 servers.
Default is ‘off’ for OSF/Motif 2.1 or later on gnu/Linux machines, and ‘on’ otherwise.

ResourceglyphUpdateDelay (class GlyphUpdateDelay)
A delay (in ms) that says how much time to wait before updating glyphs while scrolling the
source text. A small value results in glyphs being scrolled with the text, a large value disables
glyphs while scrolling and makes scrolling faster. Default: 10.

ResourcemaxGlyphs (class MaxGlyphs)
The maximum number of glyphs to be displayed (default: 10). Raising this value causes
more glyphs to be allocated, possibly wasting resources that are never needed.

Chapter 4: Navigating through the Code 81

4.4.2 Customizing Searching

Searching in the source text (see Section 4.3.2 [Textual Search], page 78) is controlled by these
resources, changed via the ‘Source’ menu:

ResourcefindCaseSensitive (class FindCaseSensitive)
If this is ‘on’ (default), the ‘Find’ commands are case-sensitive. Otherwise, occurrences
are found regardless of case.

ResourcefindWordsOnly (class FindWordsOnly)
If this is ‘on’ (default), the ‘Find’ commands find complete words only. Otherwise, arbi-
trary occurrences are found.

4.4.3 Customizing Source Appearance

You can have ddd show line numbers within the source window. Use ‘Edit⇒
Preferences⇒ Source⇒ Display Source Line Numbers’.

ResourcedisplayLineNumbers (class DisplayLineNumbers)
If this is ‘on’, lines in the source text are prefixed with their respective line number. The
default is ‘off’.

You can instruct ddd to indent the source code, leaving more room for breakpoints and
execution glyphs. This is done using the ‘Edit⇒ Preferences⇒ Source⇒ Source
indentation’ slider. The default value is 0 for no indentation at all.

ResourceindentSource (class Indent)
The number of columns to indent the source code, such that there is enough place to display
breakpoint locations. Default: 0.

By default, ddd uses a minimum indentation for script languages.

ResourceindentScript (class Indent)
The minimum indentation for script languages, such as Perl, Python, and Bash. Default: 4.

The maximum width of line numbers is controlled by this resource.

ResourcelineNumberWidth (class LineNumberWidth)
The number of columns to use for line numbers (if displaying line numbers is enabled). Line
numbers wider than this value extend into the breakpoint space. Default: 4.

If your source code uses a tab width different from 8 (the default), you can set an alternate width
using the ‘Edit⇒ Preferences⇒ Source⇒ Tab width’ slider.

ResourcetabWidth (class TabWidth)
The tab width used in the source window (default: 8)

82 Debugging with DDD

4.4.4 Customizing Source Scrolling

These resources control when the source window is scrolled:

ResourcelinesAboveCursor (class LinesAboveCursor)
The minimum number of lines to show before the current location. Default is 2.

ResourcelinesBelowCursor (class LinesBelowCursor)
The minimum number of lines to show after the current location. Default is 3.

4.4.5 Customizing Source Lookup

Some dbx and xdb variants do not properly handle paths in source file specifications. If you
want the inferior debugger to refer to source locations by source base names only, unset the ‘Edit
⇒ Preferences⇒ Source⇒ Refer to Program Sources by full path name’
option.

This is related to the following resource:

ResourceuseSourcePath (class UseSourcePath)
If this is ‘off’ (default), the inferior debugger refers to source code locations only by their
base names. If this is ‘on’ (default), ddd uses the full source code paths.

By default, ddd caches source files in memory. This is convenient for remote debugging,
since remote file access may be slow. If you want to reduce memory usage, unset the ‘Edit⇒
Preferences⇒ Source⇒ Cache source files’ option.

This is related to the following resource:

ResourcecacheSourceFiles (class CacheSourceFiles)
Whether to cache source files (‘on’, default) or not (‘off’). Caching source files requires
more memory, but makes ddd run faster.

4.4.6 Customizing File Filtering

You can control whether ddd should filter files to be opened.

ResourcefilterFiles (class FilterFiles)
If this is ‘on’ (default), ddd filters files when opening execution files, core dumps, or source
files, such that the selection shows only suitable files. This requires that ddd opens each file,
which may take time. If this is ‘off’, ddd always presents all available files.

Chapter 5: Stopping the Program 83

5 Stopping the Program

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out why.

Inside ddd, your program may stop for any of several reasons, such as a signal, a breakpoint,
or reaching a new line after a ddd command such as ‘Step’. You may then examine and change
variables, set new breakpoints or remove old ones, and then continue execution.

The inferior debuggers supported by ddd support two mechanisms for stopping a program upon
specific events:
• A breakpoint makes your program stop whenever a certain point in the program is reached.

For each breakpoint, you can add conditions to control in finer detail whether your program
stops. Typically, breakpoints are set before running the program.

• A watchpoint is a special breakpoint that stops your program when the value of an expression
changes.

5.1 Breakpoints

5.1.1 Setting Breakpoints

You can set breakpoints by location or by name.

5.1.1.1 Setting Breakpoints by Location

Breakpoints are set at a specific location in the program.
If the source line is visible, click with mouse button 1 on the left of the source line and then on

the ‘Break’ button.
As a faster alternative, you can simply press mouse button 3 on the left of the source line and

select the ‘Set Breakpoint’ item from the line popup menu.

The Line Popup Menu

Set Breakpoint at Line

Press Button 3 on Line

As an even faster alternative, you can simply double-click on the left of the source line to set a
breakpoint.

84 Debugging with DDD

As yet another alternative, you can select ‘Source⇒ Breakpoints’. Click on the ‘Break’
button and enter the location.

(If you find this number of alternatives confusing, be aware that ddd users fall into three cate-
gories, which must all be supported. Novice users explore ddd and may prefer to use one single
mouse button. Advanced users know how to use shortcuts and prefer popup menus. Experienced
users prefer the command line interface.)

Breakpoints are indicated by a plain stop sign, or as ‘#n’, where n is the breakpoint number. A
greyed out stop sign (or ‘_n_’) indicates a disabled breakpoint. A stop sign with a question mark
(or ‘?n?’) indicates a conditional breakpoint or a breakpoint with an ignore count set.

If you set a breakpoint by mistake, use ‘Edit⇒ Undo’ to delete it again.

5.1.1.2 Setting Breakpoints by Name

If the function name is visible, click with mouse button 1 on the function name. The function
name is then copied to the argument field. Click on the ‘Break’ button to set a breakpoint there.

As a shorter alternative, you can simply press mouse button 3 on the function name and select
the ‘Break at’ item from the popup menu.

As yet another alternative, you can click on ‘Break...’ from the Breakpoint editor (invoked
through ‘Source⇒ Breakpoints’) and enter the function name.

5.1.1.3 Setting Regexp Breakpoints

Using gdb, you can also set a breakpoint on all functions that match a given string. ‘Break⇒
Set Breakpoints at Regexp ()’ sets a breakpoint on all functions whose name matches the
regular expression given in ‘()’. Here are some examples:

• To set a breakpoint on every function that starts with ‘Xm’, set ‘()’ to ‘^Xm’.

• To set a breakpoint on every member of class ‘Date’, set ‘()’ to ‘^Date::’.

• To set a breakpoint on every function whose name contains ‘_fun’, set ‘()’ to ‘_fun’.

• To set a breakpoint on every function that ends in ‘_test’, set ‘()’ to ‘_test$’.

5.1.2 Deleting Breakpoints

To delete a visible breakpoint, click with mouse button 1 on the breakpoint. The breakpoint
location is copied to the argument field. Click on the ‘Clear’ button to delete all breakpoints
there.

If the function name is visible, click with mouse button 1 on the function name. The function
name is copied to the argument field. Click on the ‘Clear’ button to clear all breakpoints there.

As a faster alternative, you can simply press mouse button 3 on the breakpoint and select the
‘Delete Breakpoint’ item from the popup menu.

As yet another alternative, you can select the breakpoint and click on ‘Delete’ in the Break-
point editor (invoked through ‘Source⇒ Breakpoints’).

As an even faster alternative, you can simply double-click on the breakpoint while holding 〈Ctrl〉.

Chapter 5: Stopping the Program 85

5.1.3 Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer to disable it. This makes the
breakpoint inoperative as if it had been deleted, but remembers the information on the breakpoint
so that you can enable it again later.1

To disable a breakpoint, press mouse button 3 on the breakpoint symbol and select the
‘Disable Breakpoint’ item from the breakpoint popup menu. To enable it again, select
‘Enable Breakpoint’.

The Breakpoint Popup Menu

Disable Breakpoint

Edit Properties

Press Button 3 on Breakpoint

As an alternative, you can select the breakpoint and click on ‘Disable’ or ‘Enable’ in the
Breakpoint editor (invoked through ‘Source⇒ Breakpoints’.

Disabled breakpoints are indicated by a grey stop sign, or ‘_n_’, where n is the breakpoint
number.

The ‘Disable Breakpoint’ item is also accessible via the ‘Clear’ button. Just press and
hold mouse button 1 on the button to get a popup menu.

5.1.4 Temporary Breakpoints

A temporary breakpoint is immediately deleted as soon as it is reached.2

To set a temporary breakpoint, press mouse button 3 on the left of the source line and select the
‘Set Temporary Breakpoint’ item from the popup menu.

As a faster alternative, you can simply double-click on the left of the source line while holding
〈Ctrl〉.

Temporary breakpoints are convenient to make the program continue up to a specific location:
just set the temporary breakpoint at this location and continue execution.

The ‘Continue Until Here’ item from the popup menu sets a temporary breakpoint on the
left of the source line and immediately continues execution. Execution stops when the temporary
breakpoint is reached.

1 jdb does not support breakpoint disabling.
2 jdb does not support temporary breakpoints.

86 Debugging with DDD

The ‘Set Temporary Breakpoint’ and ‘Continue Until Here’ items are also acces-
sible via the ‘Break’ button. Just press and hold mouse button 1 on the button to get a popup
menu.

5.1.5 Editing Breakpoint Properties

You can change all properties of a breakpoint by pressing mouse button 3 on the breakpoint
symbol and select ‘Properties’ from the breakpoint popup menu. This will pop up a dialog
showing the current properties of the selected breakpoint.

Breakpoint Properties

Edit Breakpoint Condition

Edit Ignore Count

Disable Breakpoint

As an even faster alternative, you can simply double-click on the breakpoint.

• Click on ‘Lookup’ to move the cursor to the breakpoint’s location.

• Click on ‘Enable’ to enable the breakpoint.

• Click on ‘Disable’ to disable the breakpoint.

• Click on ‘Temp’ to make the breakpoint temporary.3

• Click on ‘Delete’ to delete the breakpoint.

5.1.6 Breakpoint Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place. You
can also specify a condition for a breakpoint. A condition is just a Boolean expression in your

3 gdb has no way to make a temporary breakpoint non-temporary again.

Chapter 5: Stopping the Program 87

programming language. A breakpoint with a condition evaluates the expression each time your
program reaches it, and your program stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you want to
stop when the assertion is violated–that is, when the condition is false. In C, if you want to test
an assertion expressed by the condition assertion, you should set the condition ‘!assertion’ on the
appropriate breakpoint.

Break conditions can have side effects, and may even call functions in your program. This can
be useful, for example, to activate functions that log program progress, or to use your own print
functions to format special data structures. The effects are completely predictable unless there is
another enabled breakpoint at the same address. (In that case, ddd might see the other breakpoint
first and stop your program without checking the condition of this one.)

Note that breakpoint commands are usually more convenient and flexible for the purpose of
performing side effects when a breakpoint is reached. See Section 5.1.8 [Breakpoint Commands],
page 87, for details.

5.1.7 Breakpoint Ignore Counts

A special case of a breakpoint condition is to stop only when the breakpoint has been reached a
certain number of times. This is so useful that there is a special way to do it, using the ignore count
of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the
ignore count is zero, and therefore has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count value is n, the breakpoint does not stop the next n times
your program reaches it.

In the field ‘Ignore Count’ of the ‘Breakpoint Properties’ panel, you can specify the
breakpoint ignore count.4

If a breakpoint has a positive ignore count and a condition, the condition is not checked. Once
the ignore count reaches zero, ddd resumes checking the condition.

5.1.8 Breakpoint Commands

You can give any breakpoint (or watchpoint) a series of ddd commands to execute when your
program stops due to that breakpoint. For example, you might want to print the values of certain
expressions, or enable other breakpoints.5

Using the ‘Commands’ buttons of the ‘Breakpoint Properties’ panel, you can edit com-
mands to be executed when the breakpoint is hit.

To edit breakpoint commands, click on ‘Edit >>’ and enter the commands in the commands
editor. When done with editing, click on ‘Edit <<’ to close the commands editor.

Using gdb, you can also record a command sequence to be executed. To record a command
sequence, follow these steps:

1. Click on ‘Record’ to begin the recording of the breakpoint commands.

4 jdb, Perl and some dbx variants do not support breakpoint ignore counts.
5 jdb, pydb, and some dbx variants do not support breakpoint commands.

88 Debugging with DDD

2. Now interact with ddd. While recording, ddd does not execute commands, but simply records
them to be executed when the breakpoint is hit. The recorded debugger commands are shown
in the debugger console.

3. To stop the recording, click on ‘End’ or enter ‘end’ at the gdb prompt. To cancel the record-
ing, click on ‘Interrupt’ or press 〈ESC〉.

4. You can edit the breakpoint commands just recorded using ‘Edit >>’.

5.1.9 Moving and Copying Breakpoints

To move a breakpoint to a different location, press mouse button 1 on the stop sign and drag it
to the desired location.6 This is equivalent to deleting the breakpoint at the old location and setting
a breakpoint at the new location. The new breakpoint inherits all properties of the old breakpoint,
except the breakpoint number.

To copy a breakpoint to a new location, press 〈Shift〉 while dragging.

5.1.10 Looking up Breakpoints

If you wish to lookup a specific breakpoint, select ‘Source⇒ Breakpoints⇒ Lookup’.
After selecting a breakpoint from the list and clicking the ‘Lookup’ button, the breakpoint location
is displayed.

As an alternative, you can enter ‘#n’ in the argument field, where n is the breakpoint number,
and click on the ‘Lookup’ button to find its definition.

5.1.11 Editing all Breakpoints

To view and edit all breakpoints at once, select ‘Source⇒ Breakpoints’. This will popup
the Breakpoint Editor which displays the state of all breakpoints.

6 When glyphs are disabled (see Section 4.4 [Customizing Source], page 79), breakpoints cannot be
dragged. Delete and set breakpoints instead.

Chapter 5: Stopping the Program 89

Condition

Ignore Count

Commands

Edit Properties

The Breakpoint Editor

In the breakpoint editor, you can select individual breakpoints by clicking on them. Pressing
〈Ctrl〉 while clicking toggles the selection. To edit the properties of all selected breakpoints, click on
‘Props’.

5.1.12 Hardware-Assisted Breakpoints

Using gdb, a few more commands related to breakpoints can be invoked through the debugger
console:

hbreak position
Sets a hardware-assisted breakpoint at position. This command requires hardware
support and some target hardware may not have this support. The main purpose of this
is eprom/rom code debugging, so you can set a breakpoint at an instruction without
changing the instruction.

thbreak pos
Set a temporary hardware-assisted breakpoint at pos.

See section “Setting Breakpoints” in Debugging with gdb, for details.

5.2 Watchpoints

You can make the program stop as soon as some variable value changes, or when some variable
is read or written. This is called setting a watchpoint on a variable.7

Watchpoints have much in common with breakpoints: in particular, you can enable and disable
them. You can also set conditions, ignore counts, and commands to be executed when a watched
variable changes its value.

7 Watchpoints are available in gdb and some dbx variants only. In xdb, a similar feature is available via
xdb assertions; see the xdb documentation for details.

90 Debugging with DDD

Please note: on architectures without special watchpoint support, watchpoints currently make
the program execute two orders of magnitude more slowly. This is so because the inferior debugger
must interrupt the program after each machine instruction in order to examine whether the watched
value has changed. However, this delay can be well worth it to catch errors when you have no clue
what part of your program is the culprit.

5.2.1 Setting Watchpoints

If the variable name is visible, click with mouse button 1 on the variable name. The variable
name is copied to the argument field. Otherwise, enter the variable name in the argument field.
Click on the ‘Watch’ button to set a watchpoint there.

Using gdb and jdb 1.2, you can set different types of watchpoints. Click and hold mouse button
1 on the ‘Watch’ button to get a menu.

5.2.2 Editing Watchpoint Properties

To change the properties of a watchpoint, enter the name of the watched variable in the ar-
gument field. Click and hold mouse button 1 on the ‘Watch’ button and select ‘Watchpoint
Properties’.

The Watchpoint Properties panel has the same functionality as the Breakpoint Properties panel
(see Section 5.1.5 [Editing Breakpoint Properties], page 86). As an additional feature, you can click
on ‘Print’ to see the current value of a watched variable.

5.2.3 Editing all Watchpoints

To view and edit all watchpoints at once, select ‘Data⇒ Watchpoints’. This will popup
the Watchpoint Editor which displays the state of all watchpoints.

The Watchpoint Editor has the same functionality as the Breakpoint Editor (see Section 5.1.11
[Editing all Breakpoints], page 88). As an additional feature, you can click on ‘Print’ to see the
current value of a watched variable.

5.2.4 Deleting Watchpoints

To delete a watchpoint, enter the name of the watched variable in the argument field and click
the ‘Unwatch’ button.

5.3 Interrupting

If the program is already running (see Chapter 6 [Running], page 93), you can interrupt it any
time by clicking the ‘Interrupt’ button or typing 〈ESC〉 in a ddd window.8 Using gdb, this is
equivalent to sending a SIGINT (Interrupt) signal.

‘Interrupt’ and 〈ESC〉 also interrupt a running debugger command, such as printing data.

8 If 〈Ctrl+C〉 is not bound to ‘Copy’ (see Section 3.1.11.2 [Customizing the Edit Menu], page 53), you can
also use 〈Ctrl+C〉 to interrupt the running program.

Chapter 5: Stopping the Program 91

5.4 Stopping X Programs

If your program is a modal X application, ddd may interrupt it while it has grabbed the mouse
pointer, making further interaction impossible—your X display will be unresponsive to any user
actions.

By default, ddd will check after each interaction whether the pointer is grabbed. If the pointer is
grabbed, ddd will continue the debugged program such that you can continue to use your X display.

This is how this feature works: When the program stops, ddd checks for input events such as
keyboard or mouse interaction. If ddd does not receive any event within the next 5 seconds, ddd
checks whether the mouse pointer is grabbed by attempting to grab and ungrab it. If this attempt
fails, then ddd considers the pointer grabbed.

Unfortunately, ddd cannot determine the program that grabbed the pointer—it may be the de-
bugged program, or another program. Consequently, you have another 10 seconds to cancel contin-
uation before ddd continues the program automatically.

There is one situation where this fails: if you lock your X display while ddd is running, then
ddd will consider a resulting pointer grab as a result of running the program—and automatically
continue execution of the debugged program. Consequently, you can turn off this feature via ‘Edit
⇒ Preferences⇒ General⇒ Continue Automatically when Mouse Pointer
is Frozen’.

5.4.1 Customizing Grab Checking

The grab checks are controlled by the following resources:

ResourcecheckGrabs (class CheckGrabs)
If this is ‘on’ (default), ddd will check after each interaction whether the pointer is grabbed.
If this is so, ddd will automatically continue execution of debugged program.

ResourcecheckGrabDelay (class CheckGrabDelay)
The time to wait (in ms) after a debugger command before checking for a grabbed pointer. If
ddd sees some pointer event within this delay, the pointer cannot be grabbed and an explicit
check for a grabbed pointer is unnecessary. Default is 5000, or 5 seconds.

ResourcegrabAction (class grabAction)
The action to take after having detected a grabbed mouse pointer. This is a list of newline-
separated commands. Default is cont, meaning to continue the debuggee. Other possible
choices include kill (killing the debuggee) or quit (exiting ddd).

ResourcegrabActionDelay (class grabActionDelay)
The time to wait (in ms) before taking an action due to having detected a grabbed pointer.
During this delay, a working dialog pops up telling the user about imminent execution of the
grab action (see the ‘grabAction’ resource, above). If the pointer grab is released within
this delay, the working dialog pops down and no action is taken. This is done to exclude
pointer grabs from sources other than the debugged program (including ddd). Default is
10000, or 10 seconds.

92 Debugging with DDD

Chapter 6: Running the Program 93

6 Running the Program

You may start the debugged program with its arguments, if any, in an environment of your
choice. You may redirect your program’s input and output, debug an already running process, or
kill a child process.

6.1 Starting Program Execution

To start execution of the debugged program, select ‘Program⇒ Run’. You will then be
prompted for the arguments to pass to your program. You can either select from a list of previ-
ously used arguments or enter own arguments in the text field. Afterwards, press the ‘Run’ button
to start execution with the selected arguments.

Click here to select

Empty Argument List

Other Arguments

Program Arguments

Click here to run

Starting a Program with Arguments

To run your program again, with the same arguments, select ‘Program⇒ Run Again’ or
press the ‘Run’ button on the command tool. You may also enter run, followed by arguments at
the debugger prompt instead.

When you click on ‘Run’, your program begins to execute immediately. See Chapter 5 [Stop-
ping], page 83, for a discussion of how to arrange for your program to stop. Once your program has
stopped, you may call functions in your program to examine data. See Chapter 7 [Examining Data],
page 107, for details.

If the modification time of your symbol file has changed since the last time gdb read its symbols,
gdb discards its symbol table, and reads it again. When it does this, gdb and ddd try to retain
your current debugger state, such as breakpoints.

94 Debugging with DDD

6.1.1 Your Program’s Arguments

The arguments to your program are specified by the arguments of the ‘run’ command, as com-
posed in ‘Program⇒ Run’.

In gdb, the arguments are passed to a shell, which expands wildcard characters and performs
redirection of I/O, and thence to your program. Your SHELL environment variable (if it exists)
specifies what shell gdb uses. If you do not define SHELL, gdb uses ‘/bin/sh’.

If you use another inferior debugger, the exact semantics on how the arguments are interpreted
depend on the inferior debugger you are using. Normally, the shell is used to pass the arguments,
so that you may use normal conventions (such as wildcard expansion or variable substitution) in
describing the arguments.

6.1.2 Your Program’s Environment

Your program normally inherits its environment from the inferior debugger, which again inherits
it from ddd, which again inherits it from its parent process (typically the shell or desktop).

In gdb, you can use the commands set environment and unset environment
to change parts of the environment that affect your program. See section “Your Program’s
Environment” in Debugging with gdb, for details.

The following environment variables are set by ddd:

DDD Set to a string indicating the ddd version. By testing whether DDD is set, a debuggee
(or inferior debugger) can determine whether it was invoked by ddd.

TERM Set to ‘dumb’, the ddd terminal type. This is set for the inferior debugger only.1

TERMCAP Set to ‘’ (none), the ddd terminal capabilities.

PAGER Set to ‘cat’, the preferred ddd pager.

The inferior debugger, in turn, might also set or unset some environment variables.

6.1.3 Your Program’s Working Directory

Your program normally inherits its working directory from the inferior debugger, which again
inherits it from ddd, which again inherits it from its parent process (typically the shell or desktop).

You can change the working directory of the inferior debugger via ‘File⇒ Change
Directory’ or via the ‘cd’ command of the inferior debugger.

6.1.4 Your Program’s Input and Output

By default, the program you run under ddd does input and output to the debugger console.
Normally, you can redirect your program’s input and/or output using shell redirections with the
arguments—that is, additional arguments like ‘< input’ or ‘> output’. You can enter these shell
redirections just like other arguments (see Section 6.1.1 [Arguments], page 94).

1 If the debuggee runs in a separate execution window, the debuggee’s TERM value is set according to the
‘termType’ resource; See Section 6.2.1 [Customizing the Execution Window], page 96, for details.

Chapter 6: Running the Program 95

Warning: While input and output redirection work, you cannot use pipes to pass the output of the
program you are debugging to another program; if you attempt this, ddd may wind up debugging
the wrong program. See Section 6.3 [Attaching to a Process], page 96, for an alternative.

If command output is sent to the debugger console, it is impossible for ddd to distinguish
between the output of the debugged program and the output of the inferior debugger.

Program output that confuses ddd includes:
• Primary debugger prompts (e.g. ‘(gdb) ’, ‘(dbx) ’ or ‘(ladebug) ’)
• Secondary debugger prompts (e.g. ‘>’)
• Confirmation prompts (e.g. ‘(y or n) ’)
• Prompts for more output (e.g. ‘Press RETURN to continue’)
• Display output (e.g. ‘$pc = 0x1234’)

If your program outputs any of these strings, you may encounter problems with ddd mistaking
them for debugger output. These problems can easily be avoided by redirecting program I/O, for
instance to the separate execution window (see Section 6.2 [Using the Execution Window], page 95).

If the inferior debugger changes the default tty settings, for instance through a stty command
in its initialization file, ddd may also become confused. The same applies to debugged programs
which change the default tty settings.

The behavior of the debugger console can be controlled using the following resource:

ResourcelineBufferedConsole (class LineBuffered)
If this is ‘on’ (default), each line from the inferior debugger is output on each own, such that
the final line is placed at the bottom of the debugger console. If this is ‘off’, all lines are
output as a whole. This is faster, but results in a random position of the last line.

6.2 Using the Execution Window

By default, input and output of your program go to the debugger console. As an alternative, ddd
can also invoke an execution window, where the program terminal input and output is shown.2

To activate the execution window, select ‘Program⇒ Run in Execution Window’.
Using the execution window has an important side effect: The output of your program no longer

gets intermixed with the output of the inferior debugger. This makes it far easier for ddd to parse
the debugger output correctly. See Section 2.5.3 [Debugger Communication], page 41, for details
on the ‘bufferGDBOutput’ resource.

The execution window is opened automatically as soon as you start the debugged program.
While the execution window is active, ddd redirects the standard input, output, and error streams
of your program to the execution window. Note that the device ‘/dev/tty’ still refers to the
debugger console, not the execution window.

You can override the ddd stream redirection by giving alternate redirection operations as argu-
ments. For instance, to have your program read from file, but to write to the execution window,
invoke your program with ‘< file’ as argument. Likewise, to redirect the standard error output to
the debugger console, use ‘2> /dev/tty’ (assuming the inferior debugger and/or your unix shell
support standard error redirection).

2 The execution window is not available in jdb.

96 Debugging with DDD

6.2.1 Customizing the Execution Window

You can customize the ddd execution window and use a different tty command. The command
is set by ‘Edit⇒ Preferences⇒ Helpers⇒ Execution Window’:

ResourcetermCommand (class TermCommand)
The command to invoke for the execution window—a tty emulator that shows the in-
put/output of the debugged program. A Bourne shell command to run in the separate tty is
appended to this string. The string ‘@FONT@’ is replaced by the name of the fixed width font
used by ddd. A simple value is

Ddd*termCommand: xterm -fn @FONT@ -e /bin/sh -c

You can also set the terminal type:

ResourcetermType (class TermType)
The terminal type provided by the ‘termCommand’ resource—that is, the value of the TERM
environment variable to be passed to the debugged program. Default: ‘xterm’.

Whether the execution window is active or not, as set by ‘Program⇒ Run in Execution
Window’, is saved using this resource:

ResourceseparateExecWindow (class Separate)
If ‘on’, the debugged program is executed in a separate execution window. If ‘off’ (default),
the debugged program is executed in the console window.

6.3 Attaching to a Running Process

If the debugged program is already running in some process, you can attach to this process
(instead of starting a new one with ‘Run’).3

To attach ddd to a process, select ‘File⇒ Attach to Process’. You can now choose
from a list of processes. Then, press the ‘Attach’ button to attach to the specified process.

3 jdb, pydb, Perl, and Bash do not support attaching the debugger to running processes.

Chapter 6: Running the Program 97

Selecting a Process to Attach

Click to attach

Selected process

ps output

The first thing ddd does after arranging to debug the specified process is to stop it. You can
examine and modify an attached process with all the ddd commands that are ordinarily available
when you start processes with ‘Run’. You can insert breakpoints; you can step and continue; you
can modify storage. If you would rather the process continue running, you may use ‘Continue’
after attaching ddd to the process.

When using ‘Attach to Process’, you should first use ‘Open Program’ to specify the
program running in the process and load its symbol table.

When you have finished debugging the attached process, you can use the ‘File⇒ Detach
Process’ to release it from ddd control. Detaching the process continues its execution. After
‘Detach Process’, that process and ddd become completely independent once more, and you
are ready to attach another process or start one with ‘Run’.

You can customize the list of processes shown by defining an alternate command to list pro-
cesses. See ‘Edit⇒ Preferences⇒ Helpers⇒ List Processes’; See Section 6.3.1
[Customizing Attaching to Processes], page 97, for details.

6.3.1 Customizing Attaching to Processes

When attaching to a process (see Section 6.3 [Attaching to a Process], page 96), ddd uses a ps
command to get the list of processes. This command is defined by the ‘psCommand’ resource.

ResourcepsCommand (class PsCommand)
The command to get a list of processes. Usually ps. Depending on your system, useful
alternate values include ps -ef and ps ux. The first line of the output must either contain a
‘PID’ title, or each line must begin with a process ID.

Note that the output of this command is filtered by ddd; a process is only shown if it can
be attached to. The ddd process itself as well as the process of the inferior debugger are
suppressed, too.

98 Debugging with DDD

6.4 Program Stops

After the program has been started, it runs until one of the following happens:

• A breakpoint is reached (see Section 5.1 [Breakpoints], page 83).

• A watched value changes (see Section 5.2 [Watchpoints], page 89).

• The program is interrupted (see Section 5.3 [Interrupting], page 90).

• A signal is received (see Section 6.10 [Signals], page 104).

• Execution completes.

ddd shows the current program status in the debugger console. The current execution position
is highlighted by an arrow.

If ‘Edit⇒ Preferences⇒ General⇒ Uniconify When Ready’ is set, ddd auto-
matically deiconifies itself when the program stops. This way, you can iconify ddd during a lengthy
computation and have it uniconify as soon as the program stops.

6.5 Resuming Execution

6.5.1 Continuing

To resume execution, at the current execution position, click on the ‘Continue’ button. Any
breakpoints set at the current execution position are bypassed.

6.5.2 Stepping one Line

To execute just one source line, click on the ‘Step’ button. The program is executed until
control reaches a different source line, which may be in a different function. Then, the program is
stopped and control returns to ddd.

Warning: If you use the ‘Step’ button while control is within a function that was compiled
without debugging information, execution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function which is compiled without de-
bugging information. To step through functions without debugging information, use the ‘Stepi’
button (see Section 8.2 [Machine Code Execution], page 144).

In gdb, the ‘Step’ button only stops at the first instruction of a source line. This prevents the
multiple stops that used to occur in switch statements, for loops, etc. ‘Step’ continues to stop if a
function that has debugging information is called within the line.

Also, the ‘Step’ in gdb only enters a subroutine if there is line number information for the
subroutine. Otherwise it acts like the ‘Next’ button.

6.5.3 Continuing to the Next Line

To continue to the next line in the current function, click on the ‘Next’ button. This is similar
to ‘Step’, but any function calls appearing within the line of code are executed without stopping.

Execution stops when control reaches a different line of code at the original stack level that was
executing when you clicked on ‘Next’.

Chapter 6: Running the Program 99

6.5.4 Continuing Until Here

To continue running until a specific location is reached, use the ‘Continue Until Here’
facility from the line popup menu. See Section 5.1.4 [Temporary Breakpoints], page 85, for a
discussion.

6.5.5 Continuing Until a Greater Line is Reached

To continue until a greater line in the current function is reached, click on the ‘Until’ button.
This is useful to avoid single stepping through a loop more than once.

‘Until’ is like ‘Next’, except that when ‘Until’ encounters a jump, it automatically contin-
ues execution until the program counter is greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though it, ‘until’ makes
your program continue execution until it exits the loop. In contrast, clicking on ‘Next’ at the end
of a loop simply steps back to the beginning of the loop, which forces you to step through the next
iteration.

‘Until’ always stops your program if it attempts to exit the current stack frame.

‘Until’ works by means of single instruction stepping, and hence is slower than continuing
until a breakpoint is reached.

6.5.6 Continuing Until Function Returns

To continue running until the current function returns, use the ‘Finish’ button. The returned
value (if any) is printed.

6.6 Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it stopped. You can
instead continue at an address of your own choosing.

The most common occasion to use this feature is to back up—perhaps with more breakpoints
set-over a portion of a program that has already executed, in order to examine its execution in more
detail.

To set the execution position to the current location, use ‘Set Execution Position’
from the breakpoint popup menu. This item is also accessible by pressing and holding the
‘Break/Clear’ button.4

As a quicker alternative, you can also press mouse button 1 on the arrow and drag it to a different
location.5

4 jdb, pydb, Perl, and Bash do not support altering the execution position.
5 When glyphs are disabled (see Section 4.4 [Customizing Source], page 79), dragging the execution posi-

tion is not possible. Set the execution position explicitly instead.

100 Debugging with DDD

Click on arrow, hold mouse button and move to the final position.

Changing the Execution Position by Dragging the Execution Arrow

Moving the execution position does not change the current stack frame, or the stack pointer, or
the contents of any memory location or any register other than the program counter.

Some inferior debuggers (notably gdb) allow you to set the new execution position into a differ-
ent function from the one currently executing. This may lead to bizarre results if the two functions
expect different patterns of arguments or of local variables. For this reason, moving the execution
position requests confirmation if the specified line is not in the function currently executing.

After moving the execution position, click on ‘Continue’ to resume execution.

6.7 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and how it
got there.

Each time your program performs a function call, information about the call is generated. That
information includes the location of the call in your program, the arguments of the call, and the
local variables of the function being called. The information is saved in a block of data called a
stack frame. The stack frames are allocated in a region of memory called the call stack.

When your program stops, the ddd commands for examining the stack allow you to see all of
this information.

One of the stack frames is selected by ddd and many ddd commands refer implicitly to the
selected frame. In particular, whenever you ask ddd for the value of a variable in your program, the
value is found in the selected frame. There are special ddd commands to select whichever frame
you are interested in.

6.7.1 Stack Frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short; each
frame is the data associated with one call to one function. The frame contains the arguments given
to the function, the function’s local variables, and the address at which the function is executing.

Chapter 6: Running the Program 101

When your program is started, the stack has only one frame, that of the function main. This is
called the initial frame or the outermost frame. Each time a function is called, a new frame is made.
Each time a function returns, the frame for that function invocation is eliminated. If a function is
recursive, there can be many frames for the same function. The frame for the function in which
execution is actually occurring is called the innermost frame. This is the most recently created of
all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame consists of
many bytes, each of which has its own address; each kind of computer has a convention for choosing
one byte whose address serves as the address of the frame. Usually this address is kept in a register
called the frame pointer register while execution is going on in that frame.

gdb assigns numbers to all existing stack frames, starting with zero for the innermost frame, one
for the frame that called it, and so on upward. These numbers do not really exist in your program;
they are assigned by gdb to give you a way of designating stack frames in gdb commands.

6.7.2 Backtraces

ddd provides a backtrace window showing a summary of how your program got where it is.
It shows one line per frame, for many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack.

To enable the backtrace window, select ‘Status⇒ Backtrace’.

Selecting a Frame from the Backtrace Viewer

Called functions

Current frame in source window

Calling functions

Using gdb, each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless you use the gdb command ‘set print address
off’. The backtrace also shows the source file name and line number, as well as the arguments to
the function. The program counter value is omitted if it is at the beginning of the code for that line
number.

102 Debugging with DDD

6.7.3 Selecting a Frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a stack frame.6

In the backtrace window, you can select an arbitrary frame to move from one stack frame to
another. Just click on the desired frame.

The ‘Up’ button selects the function that called the current one—that is, it moves one frame up.
The ‘Down’ button selects the function that was called by the current one—that is, it moves one

frame down.
You can also directly type the up and down commands at the debugger prompt. Typing 〈Ctrl+Up〉

and 〈Ctrl+Down〉, respectively, will also move you through the stack.
‘Up’ and ‘Down’ actions can be undone via ‘Edit⇒ Undo’.

6.8 “Undoing” Program Execution

If you take a look at the ‘Edit⇒ Undo’ menu item after an execution command, you’ll find
that ddd offers you to undo execution commands just as other commands. Does this mean that ddd
allows you to go backwards in time, undoing program execution as well as undoing any side-effects
of your program?

Sorry—we must disappoint you. ddd cannot undo what your program did. (After a little bit
of thought, you’ll find that this would be impossible in general.) However, ddd can do something
different: it can show previously recorded states of your program.

After “undoing” an execution command (via ‘Edit⇒ Undo’, or the ‘Undo’ button), the exe-
cution position moves back to the earlier position and displayed variables take their earlier values.
Your program state is in fact unchanged, but ddd gives you a view on the earlier state as recorded
by ddd.

In this so-called historic mode, most normal ddd commands that would query further infor-
mation from the program are disabled, since the debugger cannot be queried for the earlier state.
However, you can examine the current execution position, or the displayed variables. Using ‘Undo’
and ‘Redo’, you can move back and forward in time to examine how your program got into the
present state.

To let you know that you are operating in historic mode, the execution arrow gets a dashed-line
appearance (indicating a past position); variable displays also come with dashed lines. Furthermore,
the status line informs you that you are seeing an earlier program state.

Here’s how historic mode works: each time your program stops, ddd collects the current exe-
cution position and the values of displayed variables. Backtrace, thread, and register information is
also collected if the corresponding dialogs are open. When “undoing” an execution command, ddd
updates its view from this collected state instead of querying the program.

If you want to collect this information without interrupting your program—within a loop, for
instance—you can place a breakpoint with an associated cont command (see Section 5.1.8 [Break-
point Commands], page 87). When the breakpoint is hit, ddd will stop, collect the data, and execute
the ‘cont’ command, resuming execution. Using a later ‘Undo’, you can step back and look at
every single loop iteration.

6 Perl does not allow changing the current stack frame.

Chapter 6: Running the Program 103

To leave historic mode, you can use ‘Redo’ until you are back in the current program state.
However, any ddd command that refers to program state will also leave historic mode immediately
by applying to the current program state instead. For instance, ‘Up’ leaves historic mode immedi-
ately and selects an alternate frame in the restored current program state.

If you want to see the history of a specific variable, as recorded during program stops, you can
enter the ddd command

graph history name

This returns a list of all previously recorded values of the variable name, using array syntax.
Note that name must have been displayed at earlier program stops in order to record values.

6.9 Examining Threads

In some operating systems, a single program may have more than one thread of execution. The
precise semantics of threads differ from one operating system to another, but in general the threads
of a single program are akin to multiple processes—except that they share one address space (that
is, they can all examine and modify the same variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

For debugging purposes, ddd lets you display the list of threads currently active in your program
and lets you select the current thread—the thread which is the focus of debugging. ddd shows all
program information from the perspective of the current thread.7

Current thread

Change thread properties

Click on group to toggle view

Selecting Threads

To view all currently active threads in your program, select ‘Status⇒ Threads’. The cur-
rent thread is highlighted. Select any thread to make it the current thread.

Using jdb, additional functionality is available:

7 Currently, threads are supported in gdb and jdb only.

104 Debugging with DDD

• Select a thread group to switch between viewing all threads and the threads of the selected
thread group;

• Click on ‘Suspend’ to suspend execution of the selected threads;

• Click on ‘Resume’ to resume execution of the selected threads.

For more information on threads, see the jdb and gdb documentation (see section “Debugging
Programs with Multiple Threads” in Debugging with gdb).

6.10 Handling Signals

A signal is an asynchronous event that can happen in a program. The operating system defines
the possible kinds of signals, and gives each kind a name and a number. For example, in unix,
SIGINT is the signal a program gets when you type an interrupt; SIGSEGV is the signal a program
gets from referencing a place in memory far away from all the areas in use; SIGALRM occurs when
the alarm clock timer goes off (which happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program. Oth-
ers, such as SIGSEGV, indicate errors; these signals are fatal (kill your program immediately) if
the program has not specified in advance some other way to handle the signal. SIGINT does not
indicate an error in your program, but it is normally fatal so it can carry out the purpose of the
interrupt: to kill the program.

gdb has the ability to detect any occurrence of a signal in your program. You can tell gdb in
advance what to do for each kind of signal.

Normally, ddd is set up to ignore non-erroneous signals like SIGALRM (so as not to interfere
with their role in the functioning of your program) but to stop your program immediately whenever
an error signal happens. In ddd, you can view and edit these settings via ‘Status⇒ Signals’.

‘Status⇒ Signals’ pops up a panel showing all the kinds of signals and how gdb has been
told to handle each one. The settings available for each signal are:

Stop If set, gdb should stop your program when this signal happens. This also implies
‘Print’ being set.

Print If set, gdb should print a message when this signal happens.

If unset, gdb should not mention the occurrence of the signal at all. This also implies
‘Stop’ being unset.

Pass If set, gdb should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled.

If unset, gdb should not allow your program to see this signal.

Chapter 6: Running the Program 105

GDB Signal Handling Panel (Excerpt)

The entry ‘All Signals’ is special. Changing a setting here affects all signals at once—
except those used by the debugger, typically SIGTRAP and SIGINT.

To undo any changes, use ‘Edit⇒ Undo’. The ‘Reset’ button restores the saved settings.

When a signal stops your program, the signal is not visible until you continue. Your program
sees the signal then, if ‘Pass’ is in effect for the signal in question at that time. In other words,
after gdb reports a signal, you can change the ‘Pass’ setting in ‘Status⇒ Signals’ to control
whether your program sees that signal when you continue.

You can also cause your program to see a signal it normally would not see, or to give it any
signal at any time. The ‘Send’ button will resume execution where your program stopped, but
immediately give it the signal shown.

On the other hand, you can also prevent your program from seeing a signal. For example, if
your program stopped due to some sort of memory reference error, you might store correct values
into the erroneous variables and continue, hoping to see more execution; but your program would
probably terminate immediately as a result of the fatal signal once it saw the signal. To prevent this,
you can resume execution using ‘Commands⇒ Continue Without Signal’.

Signal settings are not saved across DDD invocations, since changed signal settings are normally
useful within specific projects only. Instead, signal settings are saved with the current session, using
‘File⇒ Save Session As’.

106 Debugging with DDD

6.11 Killing the Program

You can kill the process of the debugged program at any time using the ‘Kill’ button.
Killing the process is useful if you wish to debug a core dump instead of a running process. gdb

ignores any core dump file while your program is running.
The ‘Kill’ button is also useful if you wish to recompile and relink your program, since on

many systems it is impossible to modify an executable file while it is running in a process. In this
case, when you next click on ‘Run’, gdb notices that the file has changed, and reads the symbol
table again (while trying to preserve your current debugger state).

Chapter 7: Examining Data 107

7 Examining Data

ddd provides several means to examine data.

• The quickest way to examine variables is to move the pointer on an occurrence in the source
text. The value is displayed in the source line; after a second, a popup window (called value
tip) shows the variable value. This is useful for quick examination of several simple values.

• If you want to refer to variable values at a later time, you can print the value in the debugger
console. This allows for displaying and examining larger data structures.

• If you want to examine complex data structures, you can display them graphically in the data
window. Displays remain effective until you delete them; they are updated each time the
program stops. This is useful for large dynamic structures.

• If you want to examine arrays of numeric values, you can plot them graphically in a separate
plot window. The plot is updated each time the program stops. This is useful for large numeric
arrays.

• Using gdb or dbx, you can also examine memory contents in any of several formats, inde-
pendently of your program’s data types.

7.1 Showing Simple Values using Value Tips

To display the value of a simple variable, move the mouse pointer on its name. After a second, a
small window (called value tip) pops up showing the value of the variable pointed at. The window
disappears as soon as you move the mouse pointer away from the variable. The value is also shown
in the status line.

Displaying Simple Values using Value Tips

Move pointer on item

The value tip shows its value

You can disable value tips via ‘Edit⇒ Preferences⇒ General⇒ Automatic
display of variable values as popup tips’.

108 Debugging with DDD

You can disable displaying variable values in the status line via ‘Edit⇒ Preferences⇒
General⇒ Automatic display of variable values in the status line’.

These customizations are tied to the following resources:

ResourcevalueTips (class Tips)
Whether value tips are enabled (‘on’, default) or not (‘off’). Value tips affect ddd perfor-
mance and may be distracting for some experienced users.

ResourcevalueDocs (class Docs)
Whether the display of variable values in the status line is enabled (‘on’, default) or not
(‘off’).

You can turn off value tips via ‘Edit⇒ Preferences⇒ General⇒ Automatic
Display of Variable Values’.

7.2 Printing Simple Values in the Debugger Console

The variable value can also be printed in the debugger console, making it available for future
operations. To print a variable value, select the desired variable by clicking mouse button 1 on its
name. The variable name is copied to the argument field. By clicking the ‘Print’ button, the value
is printed in the debugger console. The printed value is also shown in the status line.

As a shorter alternative, you can simply press mouse button 3 on the variable name and select
the ‘Print’ item from the popup menu.

The value is printed

in the debugger console

Select ‘Print’ on item

Displaying Simple Values in the Debugger Console

Chapter 7: Examining Data 109

In gdb, the ‘Print’ button generates a print command, which has several more options. See
section “Examining Data” in Debugging with gdb, for gdb-specific expressions, variables, and
output formats.

7.3 Displaying Complex Values in the Data Window

To explore complex data structures, you can display them permanently in the data window. The
data window displays selected data of your program, showing complex data structures graphically.
It is updated each time the program stops.

7.3.1 Display Basics

This section discusses how to create, manipulate, and delete displays. The essentials are:
• Click on ‘Display’ to display the variable in ‘()’.
• Click on a display to select it.
• Click on ‘Undisplay’ to delete the selected display.

7.3.1.1 Creating Single Displays

To create a new display showing a specific variable, select the variable by clicking mouse button
1 on its name. The variable name is copied to the argument field. By clicking the ‘Display’
button, a new display is created in the data window. The data window opens automatically as soon
as you create a display.

Scroll the data display

Displaying Data

As a shorter alternative, you can simply press mouse button 3 on the variable name and select
‘Display’ from the popup menu.

As an even faster alternative, you can also double-click on the variable name.
As another alternative, you may also enter the expression to be displayed in the argument field

and press the ‘Display’ button.

110 Debugging with DDD

Finally, you may also type in a command at the debugger prompt:

graph display expr [clustered] [at (x, y)]
[dependent on display] [[now or] when in scope]

This command creates a new display showing the value of the expression expr. The optional
parts have the following meaning:

clustered
If given, the new display is created in a cluster. See Section 7.3.1.9 [Clustering],
page 116, for a discussion.

at (x, y) If given, the new display is created at the position (x, y). Otherwise, a default position
is assigned.

dependent on display
If given, an edge from the display numbered or named display to the new display
is created. Otherwise, no edge is created. See Section 7.3.4.1 [Dependent Values],
page 122, for details.

when in scope
now or when in scope

If ‘when in’ is given, the display creation is deferred until execution reaches the
given scope (a function name, as in the backtrace output).

If ‘now or when in’ is given, ddd first attempts to create the display immediately.
The display is deferred only if display creation fails.

If neither ‘when in’ suffix nor ‘now or when in’ suffix is given, the display is cre-
ated immediately.

7.3.1.2 Selecting Displays

Each display in the data window has a title bar containing the display number and the displayed
expression (the display name). Below the title, the display value is shown.

You can select single displays by clicking on them with mouse button 1.

You can extend an existing selection by pressing the 〈Shift〉 key while selecting. You can also
toggle an existing selection by pressing the 〈Shift〉 key while selecting already selected displays.

Single displays may also be selected by using the arrow keys 〈Up〉, 〈Down〉, 〈Left〉, and 〈Right〉.

Multiple displays are selected by pressing and holding mouse button 1 somewhere on the window
background. By moving the pointer while holding the button, a selection rectangle is shown; all
displays fitting in the rectangle are selected when mouse button 1 is released.

If the 〈Shift〉 key is pressed while selecting, the existing selection is extended.

By double-clicking on a display title, the display itself and all connected displays are automati-
cally selected.

Chapter 7: Examining Data 111

Selecting Multiple Displays

Selection rectangle

7.3.1.3 Showing and Hiding Details

Aggregate values (i.e. records, structs, classes, and arrays) can be shown expanded, that is,
displaying all details, or hidden, that is, displayed as ‘{...}’.

To show details about an aggregate, select the aggregate by clicking mouse button 1 on its name
or value and click on the ‘Show’ button. Details are shown for the aggregate itself as well as for all
contained sub-aggregates.

To hide details about an aggregate, select the aggregate by clicking mouse button 1 on its name
or value and click on the ‘Hide’ button.

Showing Display Detail

Detailed view Select and show detailHidden details

When pressing and holding mouse button 1 on the ‘Show/Hide’ button, a menu pops up with
even more alternatives:

112 Debugging with DDD

Show More ()
Shows details of all aggregates currently hidden, but not of their sub-aggregates. You
can invoke this item several times in a row to reveal more and more details of the
selected aggregate.

Show Just ()
Shows details of the selected aggregate, but hides all sub-aggregates.

Show All ()
Shows all details of the selected aggregate and of its sub-aggregates. This item is
equivalent to the ‘Show’ button.

Hide () Hide all details of the selected aggregate. This item is equivalent to the ‘Hide’ button.

As a faster alternative, you can also press mouse button 3 on the aggregate and select the appro-
priate menu item.

As an even faster alternative, you can also double-click mouse button 1 on a value. If some part
of the value is hidden, more details will be shown; if the entire value is shown, double-clicking will
hide the value instead. This way, you can double-click on a value until you get the right amount of
details.

If all details of a display are hidden, the display is called disabled ; this is indicated by the string
‘(Disabled)’.

Displays can also be disabled or enabled via a ddd command, which you enter at the debugger
prompt:

graph disable display displays. . .

disables the given displays.

graph enable display displays. . .

re-enables the given displays.

In both commands, displays. . . is either

• a space-separated list of display numbers to disable or enable, or

• a single display name. If you specify a display by name, all displays with this name will be
affected.

Use ‘Edit⇒ Undo’ to undo disabling or enabling displays.

7.3.1.4 Rotating Displays

Arrays, structures and lists can be oriented horizontally or vertically. To change the orientation
of a display, select it and then click on the ‘Rotate’ button.

As a faster alternative, you can also press mouse button 3 on the array and select ‘Rotate’ from
the popup menu.

Chapter 7: Examining Data 113

Select and Rotate

Rotating an Array

If a structure or list is oriented horizontally, ddd automatically suppresses the member names.
This can be handy for saving space.

The last chosen display orientation is used for the creation of new displays. If you recently
rotated an array to horizontal orientation, the next array you create will also be oriented horizontally.
These settings are tied to the following resources:

ResourcearrayOrientation (class Orientation)
How arrays are to be oriented. Possible values are ‘XmVERTICAL’ (default) and
‘XmHORIZONTAL’.

ResourceshowMemberNames (class ShowMemberNames)
Whether to show struct member names or not. Default is ‘on’.

ResourcestructOrientation (class Orientation)
How structs are to be oriented. Possible values are ‘XmVERTICAL’ (default) and
‘XmHORIZONTAL’.

7.3.1.5 Displaying Local Variables

You can display all local variables at once by choosing ‘Data⇒ Display Local
Variables’. When using dbx, xdb, jdb, or Perl, this displays all local variables, including the
arguments of the current function. When using gdb or pydb, function arguments are contained in
a separate display, activated by ‘Data⇒ Display Arguments’.

The display showing the local variables can be manipulated just like any other data display.
Individual variables can be selected and dereferenced.

114 Debugging with DDD

Dereferencing a Local Variable

via popup menu

Dereference

Local arguments

Dereferenced pointer

7.3.1.6 Displaying Program Status

You can create a display from the output of an arbitrary debugger command. By entering

graph display ‘command‘

the output of command is turned into a status display updated each time the program stops.

For instance, the command

graph display ‘where‘

creates a status display named ‘Where’ that shows the current backtrace.

If you are using gdb, ddd provides a panel from which you can choose useful status displays.
Select ‘Data⇒ Status Displays’ and pick your choice from the list.

Chapter 7: Examining Data 115

Click here...

... to enable or disable this status display

Activating Status Displays

Refreshing status displays at each stop takes time; you should delete status displays as soon as
you don’t need them any more.

7.3.1.7 Refreshing the Data Window

The data window is automatically updated or refreshed each time the program stops. Values that
have changed since the last refresh are highlighted.

However, there may be situations where you should refresh the data window explicitly. This is
especially the case whenever you changed debugger settings that could affect the data format, and
want the data window to reflect these settings.

You can refresh the data window by selecting ‘Data⇒ Refresh Displays’.

As an alternative, you can press mouse button 3 on the background of the data window and select
the ‘Refresh Displays’ item.

Typing

graph refresh

at the debugger prompt has the same effect.

7.3.1.8 Display Placement

By default, displays are created from top to bottom—that is, each new display is placed below
the downmost one. You can change this setting to left to right via ‘Edit⇒ Preferences⇒
Data⇒ Placement⇒ Left to right’.

116 Debugging with DDD

Data Preferences

This setting is tied to the following resource:

ResourcedisplayPlacement (class Orientation)
If this is ‘XmVERTICAL’ (default), ddd places each new independent display below the
downmost one. If this is ‘XmHORIZONTAL’, each new independent display is placed on the
right of the rightmost one.

Note that changing the placement of new displays also affects the placement of dependent dis-
plays (see Section 7.3.4.1 [Dependent Values], page 122). In top to bottom mode, dependent dis-
plays are created on the right of the originating display; in left to right mode, dependent displays
are created on the below the originating display.

7.3.1.9 Clustering Displays

If you examine several variables at once, having a separate display for each of them uses a lot
of screen space. This is why ddd supports clusters. A cluster merges several logical data displays
into one physical display, saving screen space.

There are two ways to create clusters:

• You can create clusters manually. This is done by selecting the displays to be clustered and
choosing ‘Undisp⇒ Cluster ()’. This creates a new cluster from all selected displays.
If an already existing cluster is selected, too, the selected displays will be clustered into the
selected cluster.

• You can create a cluster automatically for all independent data displays, such that all new
data displays will automatically be clustered, too. This is achieved by enabling ‘Edit⇒
Preferences⇒ Data⇒ Placement⇒ clustered’.

Chapter 7: Examining Data 117

Displays

uni =

ii = 7
bit1 = 1
bit2 = 3
u = {...}

guni =
ii = 1
{...}
{...}

pi = 3.14159274
sqrt2 = 1.4142135623730951

1: uni

ii = 7
bit1 = 1
bit2 = 3
u = {...}

2: guni

ii = 1
{...}
{...} 4: sqrt2

1.4142135623730951

3: pi

3.14159274

Clustered and Unclustered Displays

Displays in a cluster can be selected and manipulated like parts of an ordinary display; in par-
ticular, you can show and hide details, or dereference pointers. However, edges leading to clustered
displays can not be shown, and you must either select one or all clustered displays.

Disabling a cluster is called unclustering, and again, there are two ways of doing it:

• You can uncluster displays manually, by selecting the cluster and choosing ‘Undisp⇒
Uncluster ()’.

• You can uncluster all current and future displays by disabling ‘Edit⇒ Preferences⇒
Data⇒ Placement⇒ clustered’.

7.3.1.10 Creating Multiple Displays

To display several successive objects of the same type (a section of an array, or an array of
dynamically determined size), you can use the notation ‘from..to’ in display expressions.

from and to are numbers that denote the first and last expression to display. Thus,

graph display argv[0..9]

creates 10 new displays for ‘argv[0]’, ‘argv[1]’, . . . , ‘argv[9]’. The displays are clustered
automatically (see Section 7.3.1.9 [Clustering], page 116), such that you can easily handle the set
just like an array.

The ‘from..to’ notation can also be used multiple times. For instance,

graph display 1..5 * 1..5

creates a handy small multiplication table.

The ‘from..to’ notation creates several displays, which takes time to create and update. If you
want to display only a part of an array, array slices are a more efficient way. See Section 7.3.2.1
[Array Slices], page 120, for a discussion.

7.3.1.11 Editing all Displays

You can view the state of all displays by selecting ‘Data⇒ Displays’. This invokes the
Display Editor.

118 Debugging with DDD

The Display Editor

Selected Display

The Display Editor shows the properties of each display, using the following fields:

‘Num’ The display number.

‘Expression’
The displayed expression.

‘State’ One of

‘enabled’
Normal state.

‘disabled’
Disabled; all details are hidden. Use ‘Show’ to enable.

‘not active’
Out of scope.

‘deferred’
Will be created as soon as its ‘Scope’ is reached (see Section 7.3.1.1
[Creating Single Displays], page 109).

‘clustered’
Part of a cluster (see Section 7.3.1.9 [Clustering], page 116). Use
‘Undisp⇒ Uncluster’ to uncluster.

‘alias of display’
A suppressed alias of display display (see Section 7.3.4.3 [Shared Struc-
tures], page 123).

Chapter 7: Examining Data 119

‘Scope’ The scope in which the display was created. For deferred displays, this is the scope in
which the display will be created.

‘Address’
The address of the displayed expression. Used for resolving aliases (see Section 7.3.4.3
[Shared Structures], page 123).

7.3.1.12 Deleting Displays

To delete a single display, select its title or value and click on the ‘Undisp’ button. As an
alternative, you can also press mouse button 3 on the display and select the ‘Undisplay’ item.

When a display is deleted, its immediate ancestors and descendants are automatically selected,
so that you can easily delete entire graphs.

If you have selected only part of a display, clicking on the ‘Undisp’ button allows you to sup-
press this part—by applying the Suppress Values theme on the part. You’ll be asked for confirmation
first. See Section 7.3.5.1 [Using Data Themes], page 127, for details.

*()2: tree

(Tree *) 0x804eb50

value = 7
_name = 0x804a8c0 "Ada"
_left = 0x804eb80
_right = 0x804ec10

*()

value = 7
_name = 0x804a8c0 "Ada"
_left = 0x804eb80
_right = 0x804ec10
left_thread = false
right_thread = false

date =

day_of_week = Thu
day = 1
month = 1
year = 1970
_vptr. = 0x804ba84

shared = 4711

2: tree

(Tree *) 0x804eb50

Suppressed members

Normal Data Display

Suppressing Values

To delete several displays at once, use the ‘Undisp’ button in the Display Editor (invoked via
‘Data⇒ Displays’). Select any number of display items in the usual way and delete them by
pressing ‘Undisp’.

As an alternative, you can also use a ddd command:

graph undisplay displays. . .

Here, displays. . . is either

• a space-separated list of display numbers to disable or enable, or

• a single display name. If you specify a display by name, all displays with this name will be
affected.

120 Debugging with DDD

If you are using stacked windows, deleting the last display from the data window also automat-
ically closes the data window. (You can change this via ‘Edit⇒ Preferences⇒ Data⇒
Close data window when deleting last display’.)

If you deleted a display by mistake, use ‘Edit⇒ Undo’ to re-create it.

Finally, you can also cut, copy, and paste displays using the ‘Cut’, ‘Copy’, and ‘Paste’ items
from the ‘Edit’ menu. The clipboard holds the commands used to create the displays; ‘Paste’
inserts the display commands in the debugger console. This allows you to save displays for later
usage or to copy displays across multiple ddd instances.

7.3.2 Arrays

ddd has some special features that facilitate handling of arrays.

7.3.2.1 Array Slices

It is often useful to print out several successive objects of the same type in memory; a slice
(section) of an array, or an array of dynamically determined size for which only a pointer exists in
the program.

Using ddd, you can display slices using the ‘from..to’ notation (see Section 7.3.1.10 [Creating
Multiple Displays], page 117). But this requires that you already know from and to; it is also
inefficient to create several single displays. If you use gdb, you have yet another alternative.

Using gdb, you can display successive objects by referring to a contiguous span of memory as
an artificial array, using the binary operator ‘@’. The left operand of ‘@’ should be the first element
of the desired array and be an individual object. The right operand should be the desired length
of the array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on.

Here is an example. If a program says
int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with
print array[0]@len

and display the contents with
graph display array[0]@len

The general form of displaying an array slice is thus
graph display array[first]@nelems

where array is the name of the array to display, first is the index of the first element, and nelems is
the number of elements to display.

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way behave
just like other arrays in terms of subscripting, and are coerced to pointers when used in expressions.

7.3.2.2 Repeated Values

Using gdb, an array value that is repeated 10 or more times is displayed only once. The value
is shown with a ‘<nx>’ postfix added, where n is the number of times the value is repeated. Thus,

Chapter 7: Examining Data 121

the display ‘0x0 <30x>’ stands for 30 array elements, each with the value ‘0x0’. This saves a lot
of display space, especially with homogeneous arrays.

Displaying Repeated Array Values

Repeated Value

The default gdb threshold for repeated array values is 10. You can change it via ‘Edit⇒
gdb Settings⇒ Threshold for repeated print elements’. Setting the threshold to
0 will cause gdb (and ddd) to display each array element individually. Be sure to refresh the data
window via ‘Data⇒ Refresh Displays’ after a change in gdb settings.

You can also configure ddd to display each array element individually:

ResourceexpandRepeatedValues (class ExpandRepeatedValues)
gdb can print repeated array elements as ‘value <repeated n times>’. If
‘expandRepeatedValues’ is ‘on’, ddd will display n instances of value instead. If
‘expandRepeatedValues’ is ‘off’ (default), ddd will display value with ‘<nx>’
appended to indicate the repetition.

7.3.2.3 Arrays as Tables

By default, ddd lays out two-dimensional arrays as tables, such that all array elements are
aligned with each other.1 To disable this feature, unset ‘Edit⇒ Preferences⇒ Data⇒
Display Two-Dimensional Arrays as Tables’. This is tied to the following resource:

Resourcealign2dArrays (class Align2dArrays)
If ‘on’ (default), ddd lays out two-dimensional arrays as tables, such that all array elements
are aligned with each other. If ‘off’, ddd treats a two-dimensional array as an array of
one-dimensional arrays, each aligned on its own.

1 This requires that the full array size is known to the debugger.

122 Debugging with DDD

7.3.3 Assignment to Variables

During program execution, you can change the values of arbitrary variables.2

To change the value of a variable, enter its name in ‘()’—for instance, by selecting an occur-
rence or a display. Then, click on the ‘Set’ button. In a dialog, you can edit the variable value at
will; clicking the ‘OK’ or ‘Apply’ button commits your change and assigns the new value to the
variable.

Changing Variable Values

Select to set

Enter new value here

To change a displayed value, you can also select ‘Set Value’ menu from the data popup menu,
If you made a mistake, you can use ‘Edit⇒ Undo’ to re-set the variable to its previous value.

7.3.4 Examining Structures

Besides displaying simple values, ddd can also visualize the Dependencies between values—
especially pointers and other references that make up complex data structures.

7.3.4.1 Displaying Dependent Values

Dependent displays are created from an existing display. The dependency is indicated by an
edge leading from the originating display to the dependent display.

To create a dependent display, select the originating display or display part and enter the depen-
dent expression in the ‘():’ argument field. Then click on the ‘Display’ button.

Using dependent displays, you can investigate the data structure of a tree for example and lay it
out according to your intuitive image of the tree data structure.

By default, ddd does not recognize shared data structures (i.e. a data object referenced by
multiple other data objects). See Section 7.3.4.3 [Shared Structures], page 123, for details on how
to examine such structures.

2 jdb 1.1 does not support changing variable values.

Chapter 7: Examining Data 123

7.3.4.2 Dereferencing Pointers

There are special shortcuts for creating dependent displays showing the value of a dereferenced
pointer. This allows for rapid examination of pointer-based data structures.

To dereference a pointer, select the originating pointer value or name and click on the ‘Disp *’
button. A new display showing the dereferenced pointer value is created.

As a faster alternative, you can also press mouse button 3 on the originating pointer value or
name and select the ‘Display *’ menu item.

As an even faster alternative, you can also double-click mouse button 1 on the originating pointer
value or name. If you press 〈Ctrl〉 while double-clicking, the display will be dereferenced in place–
that is, it will be replaced by the dereferenced display.

The ‘Display *()’ function is also accessible by pressing and holding the ‘Display’ button.

7.3.4.3 Shared Structures

By default, ddd does not recognize shared data structures—that is, a data object referenced by
multiple other data objects. For instance, if two pointers ‘p1’ and ‘p2’ point at the same data object
‘d’, the data displays ‘d’, ‘*p1’, and ‘*p2’ will be separate, although they denote the same object.

ddd provides a special mode which makes it detect these situations. ddd recognizes if two or
more data displays are stored at the same physical address, and if this is so, merges all these aliases
into one single data display, the original data display. This mode is called Alias Detection; it is
enabled via ‘Data⇒ Detect Aliases’.

When alias detection is enabled, ddd inquires the memory location (the address) of each data
display after each program step. If two displays have the same address, they are merged into one.
More specifically, only the one which has least recently changed remains (the original data display);
all other aliases are suppressed, i.e. completely hidden. The edges leading to the aliases are replaced
by edges leading to the original data display.

An edge created by alias detection is somewhat special: rather than connecting two displays
directly, it goes through an edge hint, describing an arc connecting the two displays and the edge
hint.

Each edge hint is a placeholder for a suppressed alias; selecting an edge hint is equivalent to
selecting the alias. This way, you can easily delete display aliases by simply selecting the edge hint
and clicking on ‘Undisp’.

124 Debugging with DDD

Examining Shared Data Structures

Original Display Edge Hint

To access suppressed display aliases, you can also use the Display Editor. Suppressed displays
are listed in the Display Editor as aliases of the original data display. Via the Display Editor, you
can select, change, and delete suppressed displays.

Suppressed displays become visible again as soon as
• alias detection is disabled,
• their address changes such that they are no more aliases, or
• the original data display is deleted, such that the least recently changed alias becomes the new

original data display.

Please note the following caveats with alias detection:
• Alias detection requires that the current programming language provides a means to determine

the address of an arbitrary data object. Currently, only C, C++, and Java are supported.
• Some inferior debuggers (for instance, SunOS dbx) produce incorrect output for address ex-

pressions. Given a pointer p, you may verify the correct function of your inferior debugger by
comparing the values of p and ‘&p’ (unless p actually points to itself). You can also examine
the data display addresses, as shown in the Display Editor.

• Alias detection slows down ddd slightly, which is why you can turn it off. You may consider
to enable it only at need—for instance, while examining some complex data structure—and
disable it while examining control flow (i.e., stepping through your program). ddd will auto-
matically restore edges and data displays when switching modes.

Alias detection is controlled by the following resources:

ResourcedeleteAliasDisplays (class DeleteAliasDisplays)
If this is ‘on’ (default), the ‘Undisplay ()’ button also deletes all aliases of the selected
displays. If this is ‘off’, only the selected displays are deleted; the aliases remain, and one
of the aliases will be unsuppressed.

ResourcedetectAliases (class DetectAliases)
If ‘on’ (default), ddd attempts to recognize shared data structures. If ‘off’, shared data
structures are not recognized.

Chapter 7: Examining Data 125

ResourcetypedAliases (class TypedAliases)
If ‘on’ (default), ddd requires structural equivalence in order to recognize shared data struc-
tures. If this is ‘off’, two displays at the same address are considered aliases, regardless of
their structure.

7.3.4.4 Display Shortcuts

ddd maintains a shortcut menu of frequently used display expressions. This menu is activated

• by pressing and holding the ‘Display’ button, or

• by pressing mouse button 3 on some display and selecting ‘New Display’, or

• by pressing 〈Shift〉 and mouse button 3 on some display.

By default, the shortcut menu contains frequently used base conversions.

The ‘Other’ entry in the shortcut menu lets you create a new display that extends the shortcut
menu.

As an example, assume you have selected a display named ‘date_ptr’. Selecting ‘Display
⇒ Other’ pops up a dialog that allows you to enter a new expression to be displayed—for instance,
you can cast the display ‘date_ptr’ to a new display ‘(char *)date_ptr’. If the ‘Include
in ‘New Display’ Menu’ toggle was activated, the shortcut menu will then contain a new entry
‘Display (char *)()’ that will cast any selected display display to ‘(char *)display’. Such
shortcuts can save you a lot of time when examining complex data structures.

Using Display Shortcuts

Modify expression here... ... to include it in the ‘New Display’ menu.

You can edit the contents of the ‘New Display’ menu by selecting its ‘Edit Menu’ item. This
pops up the Shortcut Editor containing all shortcut expressions, which you can edit at leisure. Each
line contains the expression for exactly one menu item. Clicking on ‘Apply’ re-creates the ‘New
Display’ menu from the text. If the text is empty, the ‘New Display’ menu will be empty, too.

126 Debugging with DDD

Invoke shortcut editor

Editing Display Shortcuts

ddd also allows you to specify individual labels for user-defined buttons. You can write such a
label after the expression, separated by ‘//’. This feature is used in the default contents of the gdb
‘New Display’ menu, where each of the base conversions has a label:

/t () // Convert to Bin
/d () // Convert to Dec
/x () // Convert to Hex
/o () // Convert to Oct

Feel free to add other conversions here. ddd supports up to 20 ‘New Display’ menu items.

The shortcut menu is controlled by the following resources:

ResourcedbxDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for dbx.

If a line contains a label delimiter3, the string before the delimiter is used as expression,
and the string after the delimiter is used as label. Otherwise, the label is ‘Display expres-
sion’. Upon activation, the string ‘()’ in expression is replaced by the name of the currently
selected display.

ResourcegdbDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for gdb. See the description of ‘dbxDisplayShortcuts’, above.

3 The string ‘//’; can be changed via the ‘labelDelimiter’ resource. See Section 10.4.1 [Customizing
Buttons], page 154, for details.

Chapter 7: Examining Data 127

ResourcejdbDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for jdb. See the description of ‘dbxDisplayShortcuts’, above.

ResourceperlDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for Perl. See the description of ‘dbxDisplayShortcuts’, above.

ResourcebashDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for Bash. See the description of ‘dbxDisplayShortcuts’, above.

ResourcepydbDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for pydb. See the description of ‘dbxDisplayShortcuts’, above.

ResourcexdbDisplayShortcuts (class DisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu
for xdb. See the description of ‘dbxDisplayShortcuts’, above.

7.3.5 Customizing Displays

7.3.5.1 Using Data Themes

ddd provides a simple method to customize displays. ddd comes with a number of visual
modifiers, called data themes.

Each theme modifies a particular aspect of a data display. It can be applied to individual displays
or to a number of displays. The themes installed with ddd include:

‘Small Titles’
If enabled, display titles in a smaller font.

‘Small Values’
Apply this theme to display values in a smaller font.

‘Tiny Values’
If enabled, display values in a tiny font. This could be combined with a pattern like
\[\] to make all array members tiny. Apply this theme to display values in a tiny
font.

‘Suppress Values’
If enabled, the given value will be suppressed. This should be combined with a pattern
like *->X to suppress all members named ‘X’. Apply this theme to display values not
at all.

‘Red Background’
Use this with a self-defined button associated with the command graph apply
red.vsl "()"

128 Debugging with DDD

‘Red nil pointers’
If enabled, show nil pointers in red.

‘Green background’
Use this with a self-defined button associated with the command graph apply
green.vsl "()".

‘Intel x86 flag bits and registers’
To use this theme, set up some data buttons like this:

Ddd*dataButtons: \
graph display ($eflags & 1) != 0 // c\n\
graph display ($eflags & 64) != 0 // z\n\
graph display ($eflags & 128) != 0 // s\n\
graph display ($eflags & 1024) != 0 // d\n\
graph display ($eflags & 2048) != 0 // o\n\
graph display $eax & 255 // al\n\
graph display $eax >> 8 & 255 // ah\n\
graph display $eax & 65535 // ax\n\
graph display $ebx & 255 // bl\n\
graph display $ebx >> 8 & 255 // bh\n\
graph display $ebx & 65535 // bx\n\
graph display $ecx & 255 // cl\n\
graph display $ecx >> 8 & 255 // ch\n\
graph display $ecx & 65535 // cx\n\
graph display $edx & 255 // dl\n\
graph display $edx >> 8 & 255 // dh\n\
graph display $edx & 65535 // dx

Whenever the these displays is shown, the title will be replaced by a more intuitive
title like “carry”, or “zero” for one of the flag bits and “al” “ax”, etc. for one of the
registers.

Each of these themes can be applied for specific displays.

Chapter 7: Examining Data 129

1: twodim

0x804a918 "Pioneering" 0x804a92c "computer"

0x804a923 "women" 0x804a935 "science"

0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a918 "Pioneering" 0x804a92c "computer"

0x804a923 "women" 0x804a935 "science"

0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a918 "Pioneering" 0x804a92c "computer"

0x804a923 "women" 0x804a935 "science"

0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a918 "Pioneering" 0x804a92c "computer"

0x804a923 "women" 0x804a935 "science"

0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a918 "Pioneering" 0x804a92c "computer"

0x804a923 "women" 0x804a935 "science"

0x804a929 "in" 0x804a93d "!"

1: twodim

0x804a92c "computer"

0x804a935 "science"

0x804a93d "!"

Normal Data Display

Red and Green Backgrounds

Small Titles

Small Values

Tiny Values

Suppress Values

Some DDD Themes

To apply a theme on a display,
1. Press mouse button 3 on the display.
2. Select ‘Theme’
3. Select the theme to apply.

For instance, to display the variable s in a tiny font, click mouse button 3 on the display of s,
and select ‘Theme⇒ Tiny Values⇒ Apply’.

To unapply a theme, just click on ‘Undo’ (if you just applied it) or repeat the sequence as above.

7.3.5.2 Applying Data Themes to Several Values

Whenever you want to apply a theme on a struct member or an array element, you will be asked
whether to

130 Debugging with DDD

• apply the theme on the single value only, or

• apply the theme on all similar values.

Suppose, for instance, that you don’t want to see ‘vptr’ members anymore. Then you’d apply
the theme Suppress Values on all similar values.

On the other hand, if you want to highlight one single value only, you’d apply the theme Red
Background on only one single value.

If you find this confirmation annoying, you can define a command button which directly applies
the theme. See Section 10.5 [Defining Commands], page 156, for details on defining commands.

Applying and unapplying themes is associated with the following commands:

graph apply theme name pattern

applies the theme name on pattern.

graph unapply theme name pattern

unapplies the theme name on pattern.

graph toggle theme name pattern

applies the theme name on pattern if it was not already applied, and unapplies it otherwise.

7.3.5.3 Editing Themes

Each theme can be globally activated or not. If a theme is activated, it is applied to all expressions
that match its pattern.

Normally, these patterns are automatically maintained by simply selecting the themes for the
individual displays. However, you can also edit patterns directly.

Patterns are separated by ‘;’ and contain shell-like metacharacters:

• ‘*’ matches any sequence of characters.

• ‘?’ matches any single character.

• ‘[set]’ matches any character in set. Character ranges can be expressed using from-to:
‘[0-9a-zA-Z_]’ is the set of characters allowed in C characters.

• ‘[!set]’ matches any character not in set.

• To suppress the special syntactic significance of any metacharacter\n\ and match the character
exactly, precede it with ‘\’ (backslash).

• To suppress the syntactic significance of all metacharacters,\n\ enclose the pattern in double
or single quotes.\n\

To edit the set of themes, invoke ‘Data⇒ Themes’.

To apply changes you made to the themes, click on ‘Apply’. To revert the themes to the last
saved, click on ‘Reset’.

7.3.5.4 Writing Data Themes

You can write your own data themes, customizing the display to match your need. See section
“Top” in Writing DDD Themes , for details.

Chapter 7: Examining Data 131

7.3.5.5 Display Resources

You can use these resources to control display appearance:

ResourceautoCloseDataWindow (class AutoClose)
If this is ‘on’ (default) and ddd is in stacked window mode, deleting the last display auto-
matically closes the data window. If this is ‘off’, the data window stays open even after
deleting the last display.

ResourcebumpDisplays (class BumpDisplays)
If some display d changes size and this resource is ‘on’ (default), ddd assigns new positions
to displays below and on the right of d such that the distance between displays remains
constant. If this is ‘off’, other displays are not rearranged.

ResourceclusterDisplays (class ClusterDisplays)
If ‘on’, new independent data displays will automatically be clustered. Default is ‘off’,
meaning to leave new displays unclustered.

ResourcehideInactiveDisplays (class HideInactiveDisplays)
If some display gets out of scope and this resource is ‘on’ (default), ddd removes it from the
data display. If this is ‘off’, it is simply disabled.

ResourceshowBaseDisplayTitles (class ShowDisplayTitles)
Whether to assign titles to base (independent) displays or not. Default is ‘on’.

ResourceshowDependentDisplayTitles (class ShowDisplayTitles)
Whether to assign titles to dependent displays or not. Default is ‘off’.

ResourcesuppressTheme (class Theme)
The theme to apply when selecting ‘Undisp’ on a data value. Default is ‘suppress.vsl’.

Resourcethemes (class Themes)
A newline-separated list of themes. Each theme has the format name, tabulator character,
pattern.

7.3.5.6 VSL Resources

The following resources control the vsl interpreter:

ResourcevslBaseDefs (class VSLDefs)
A string with additional vsl definitions that are appended to the builtin vsl library. This
resource is prepended to the ‘vslDefs’ resource below and set in the ddd application
defaults file; don’t change it.

132 Debugging with DDD

ResourcevslDefs (class VSLDefs)
A string with additional vsl definitions that are appended to the builtin vsl library. The
default value is an empty string. This resource can be used to override specific vsl definitions
that affect the data display. The preferred method, though, is to write a specific data theme
(see Section 7.3.5.4 [Writing Data Themes], page 130).

ResourcevslLibrary (class VSLLibrary)
The vsl library to use. ‘builtin’ (default) means to use the built-in library, any other value
is used as file name.

ResourcevslPath (class VSLPath)
A colon-separated list of directories to search for vsl include files. The following directory
names are special:

• The special directory name ‘user_themes’ stands for your individual theme direc-
tory, typically ‘~/.ddd/themes/’.

• The special directory name ‘ddd_themes’ stands for the installed theme directory,
typically ‘/usr/local/share/ddd-3.3.12-rc2/themes/’.

Default is ‘user_themes:ddd_themes:.’, which means that ddd first searches your
theme directory, followed by the system directory and the current directory.

If your ddd source distribution is installed in ‘/opt/src’, you can use the following settings
to read the vsl library from ‘/home/joe/ddd.vsl’:

Ddd*vslLibrary: /home/joe/ddd.vsl
Ddd*vslPath: user_themes:.:/opt/src/ddd/ddd:/opt/src/ddd/vsllib

vsl include files referenced by ‘/home/joe/ddd.vsl’ are searched first in the current
directory ‘.’, then in your theme directory, then in ‘/opt/src/ddd/ddd/’, and then in
‘/opt/src/ddd/vsllib/’.

Instead of supplying another vsl library, it is often easier to specify some minor changes to the
built-in library (see Section 7.3.5.4 [Writing Data Themes], page 130).

7.3.6 Layouting the Graph

If you have several displays at once, you may wish to arrange them according to your personal
preferences. This section tells you how you can do this.

7.3.6.1 Moving Displays

From time to time, you may wish to move displays at another place in the data window. You
can move a single display by pressing and holding mouse button 1 on the display title. Moving the
pointer while holding the button causes all selected displays to move along with the pointer.

Edge hints can be selected and moved around like other displays. If an arc goes through the edge
hint, you can change the shape of the arc by moving the edge hint around.

For fine-grain movements, selected displays may also be moved using the arrow keys. Pressing
〈Shift〉 and an arrow key moves displays by single pixels. Pressing 〈Ctrl〉 and arrow keys moves
displays by grid positions.

Chapter 7: Examining Data 133

7.3.6.2 Scrolling Data

If the data window becomes too small to hold all displays, scroll bars are created. If your ddd is
set up to use panners instead, a panner is created in the lower right edge. When the panner is moved
around, the window view follows the position of the panner.

To change from scroll bars to panners, use ‘Edit⇒ Startup⇒ Data Scrolling’ and
choose either ‘Panner’ or ‘Scrollbars’.

This setting is tied to the following resource:

ResourcepannedGraphEditor (class PannedGraphEditor)
The control to scroll the graph.

• If this is ‘on’, an Athena panner is used (a kind of two-directional scrollbar).

• If this is ‘off’ (default), two M*tif scrollbars are used.

See Section 2.1.2 [Options], page 18, for the ‘--scrolled-graph-editor’ and
‘--panned-graph-editor’ options.

7.3.6.3 Aligning Displays

You can align all displays on the nearest grid position by selecting ‘Data⇒ Align on Grid’.
This is useful for keeping edges strictly horizontal or vertical.

You can enforce alignment by selecting ‘Edit⇒ Preferences⇒ Data⇒ Auto-align
Displays on Nearest Grid Point’. If this feature is enabled, displays can be moved on grid
positions only.

7.3.6.4 Automatic Layout

You can layout the entire graph as a tree by selecting ‘Data⇒ Layout Graph’. The layout
direction is determined from the display placement (see Section 7.3.1.8 [Placement], page 115) and
from the last rotation (see Section 7.3.6.5 [Rotating the Graph], page 134).

134 Debugging with DDD

A Layouted Graph (with Compact Layout)

Layouting the graph may introduce edge hints; that is, edges are no more straight lines, but lead
to an edge hint and from there to their destination. Edge hints can be moved around like arbitrary
displays.

To enable a more compact layout, you can set the ‘Edit⇒ Preferences⇒ Data⇒
Compact Layout’ option. This realizes an alternate layout algorithm, where successors are
placed next to their parents. This algorithm is suitable for homogeneous data structures only.

You can enforce layout by setting ‘Edit⇒ Preferences⇒ Data⇒ Automatic
Layout’. If automatic layout is enabled, the graph is layouted after each change.

7.3.6.5 Rotating the Graph

You can rotate the entire graph clockwise by 90 degrees by selecting ‘Data⇒ Rotate
Graph’. You may need to layout the graph after rotating it; See Section 7.3.6.4 [Automatic
Layout], page 133, for details.

7.3.7 Printing the Graph

ddd allows for printing the graph picture on PostScript printers or into files. This is useful for
documenting program states.

Chapter 7: Examining Data 135

Printing displays

Enter print command

Select paper size

Click to print

To print the graph on a PostScript printer, select ‘File⇒ Print Graph’. Enter the printing
command in the ‘Print Command’ field. Click on the ‘OK’ or the ‘Apply’ button to start printing.

As an alternative, you may also print the graph in a file. Click on the ‘File’ button and enter
the file name in the ‘File Name’ field. Click on the ‘Print’ button to create the file.

When the graph is printed in a file, two formats are available:

• ‘PostScript’—suitable for enclosing the graph in another document;

• ‘FIG’—suitable for post-processing, using the xfig graphic editor, or for conversion into
other formats (among others, ibmgl, TEX, pic), using the transfig or fig2dev programs.

*() next next

next

self self self

5: list

(List *) 0x804af30

value = 86

self = 0x804af40

next = 0x804af50

value = 87

self = 0x804af50

next = 0x804af30

value = 85

self = 0x804af30

next = 0x804af40

Output of the ‘Print Graph’ Command

Please note the following caveats related to printing graphs:

• If any displays were selected when invoking the ‘Print’ dialog, the option ‘Selected
Only’ is set. This makes ddd print only the selected displays.

136 Debugging with DDD

• The ‘Color’, ‘Orientation’, and ‘Paper Size’ options are meaningful for PostScript
only.

These settings are tied to the following resources:

ResourceprintCommand (class PrintCommand)
The command to print a PostScript file. Usually ‘lp’ or ‘lpr’.

ResourcepaperSize (class PaperSize)
The paper size used for printing, in format ‘width x height’. The default is ISO A4 format,
or ‘210mm x 297mm’.

7.4 Plotting Values

If you have huge amounts of numerical data to examine, a picture often says more than a thou-
sand numbers. Therefore, ddd allows you to draw numerical values in nice 2-D and 3-D plots.

7.4.1 Plotting Arrays

Basically, ddd can plot two types of numerical values:

• One-dimensional arrays. These are drawn in a 2-D x/y space, where x denotes the array index,
and y the element value.

• Two-dimensional arrays. These are drawn in a 3-D x/y/z space, where x and y denote the
array indexes, and z the element value.

To plot a fixed-size array, select its name by clicking mouse button 1 on an occurrence. The
array name is copied to the argument field. By clicking the ‘Plot’ button, a new display is created
in the data window, followed by a new top-level window containing the value plot.

To plot a dynamically sized array, you must use an array slice (see Section 7.3.2.1 [Array Slices],
page 120). In the argument field, enter

array[first]@nelems

where array is the name of the array to display, first is the index of the first element, and nelems is
the number of elements to display. Then, click on ‘Plot’ to start the plot.

To plot a value, you can also enter a command at the debugger prompt:

graph plot expr

works like ‘graph display expr’ (and takes the same arguments; see Section 7.3.1.1 [Creating
Single Displays], page 109), but the value is additionally shown in the plot window.

Each time the value changes during program execution, the plot is updated to reflect the current
values. The plot window remains active until you close it (via ‘File⇒ Close’) or until the
associated display is deleted.

Chapter 7: Examining Data 137

7.4.2 Changing the Plot Appearance

The actual drawing is not done by ddd itself. Instead, ddd relies on an external gnuplot
program to create the drawing.

ddd adds a menu bar to the Gnuplot plot window that lets you influence the appearance of the
plot:

• The ‘View’ menu toggles optional parts of the plot, such as border lines or a background grid.

• The ‘Plot’ menu changes the plotting style. The ‘3-D Lines’ option is useful for plotting
two-dimensional arrays.

• The ‘Scale’ menu allows you to enable logarithmic scaling and to enable or disable the scale
tics.

• The ‘Contour’ menu adds contour lines to 3-D plots.

In a 3-D plot, you can use the scroll bars to change your view position. The horizontal scroll bar
rotates the plot around the z axis, that is, to the left and right. The vertical scroll bar rotates the plot
around the y axis, that is, up and down.

Plotting 1−D and 2−D Arrays

Rotate View

Change Style

A 2−D Array

A 1−D Array

You can also resize the plot window as desired.

7.4.3 Plotting Scalars and Composites

Besides plotting arrays, ddd also allows you to plot scalars (simple numerical values). This
works just like plotting arrays—you select the numerical variable, click on ‘Plot’, and here comes

138 Debugging with DDD

the plot. However, plotting a scalar is not very exciting. A plot that contains nothing but a scalar
simply draws the scalar’s value as a y constant—that is, a horizontal line.

So why care about scalars at all? ddd allows you to combine multiple values into one plot. The
basic idea is: if you want to plot something that is neither an array nor a scalar, ddd takes all numer-
ical sub-values it can find and plots them all together in one window. For instance, you can plot all
local variables by selecting ‘Data⇒ Display Local Variables’, followed by ‘Plot’. This
will create a plot containing all numerical values as found in the current local variables. Likewise,
you can plot all numeric members contained in a structure by selecting it, followed by ‘Plot’.

If you want more control about what to include in a plot and what not, you can use display clus-
ters (see Section 7.3.1.9 [Clustering], page 116). A common scenario is to plot a one-dimensional
array together with the current index position. This is done in three steps:

1. Display the array and the index, using ‘Display’.
2. Cluster both displays: select them and choose ‘Undisp⇒ Cluster ()’.
3. Plot the cluster by pressing ‘Plot’.

Scalars that are displayed together with arrays can be displayed either as vertical lines or hori-
zontal lines. By default, scalars are plotted as horizontal lines. However, if a scalar is a valid index
for an array that was previously plotted, it is shown as a vertical line. You can change this initial
orientation by selecting the scalar display, followed by ‘Rotate’.

7.4.4 Plotting Display Histories

At each program stop, ddd records the values of all displayed variables, such that you can
“undo” program execution (see Section 6.8 [Undoing Program Execution], page 102). These display
histories can be plotted, too. The menu item ‘Plot⇒ Plot history of ()’ creates a plot that
shows all previously recorded values of the selected display.

7.4.5 Printing Plots

If you want to print the plot, select ‘File⇒ Print Plot’. This pops up the ddd printing
dialog, set up for printing plots. Just as when printing graphs, you have the choice between printing
to a printer or a file and setting up appropriate options.

The actual printing is also performed by Gnuplot, using the appropriate driver. Please note the
following caveats related to printing:
• Creating ‘FIG’ files requires an appropriate driver built into Gnuplot. Your Gnuplot program

may not contain such a driver. In this case, you will have to recompile Gnuplot, including the
line ‘#define FIG’ in the Gnuplot ‘term.h’ file.

• The ‘Portrait’ option generates an eps file useful for inclusion in other documents. The
‘Landscape’ option makes ddd print the plot in the size specified in the ‘Paper Size’
option; this is useful for printing on a printer. In ‘Portrait’ mode, the ‘Paper Size’
option is ignored.

• The Gnuplot device drivers for PostScript and X11 each have their own set of colors, such that
the printed colors may differ from the displayed colors.

• The ‘Selected Only’ option is set by default, such that only the currently selected plot is
printed. (If you select multiple plots to be printed, the respective outputs will all be concate-
nated, which may not be what you desire.)

Chapter 7: Examining Data 139

7.4.6 Entering Plotting Commands

Via ‘File⇒ Command’, you can enter Gnuplot commands directly. Each command entered
at the ‘gnuplot>’ prompt is passed to Gnuplot, followed by a Gnuplot ‘replot’ command to
update the view. This is useful for advanced Gnuplot tasks.

Here’s a simple example. The Gnuplot command
set xrange [xmin:xmax]

sets the horizontal range that will be displayed to xmin . . . xmax. To plot only the elements 10 to
20, enter:

gnuplot> set xrange [10:20]
gnuplot> _

After each command entered, ddd adds a replot command, such that the plot is updated
automatically.

Here’s a more complex example. The following sequence of Gnuplot commands saves the plot
in TEX format:

gnuplot> set output "plot.tex" # Set the output filename
gnuplot> set term latex # Set the output format
gnuplot> set term x11 # Show original picture again
gnuplot> _

Due to the implicit replot command, the output is automatically written to ‘plot.tex’ after
the set term latex command.

The dialog keeps track of the commands entered; use the arrow keys to restore previous com-
mands. Gnuplot error messages (if any) are also shown in the history area.

The interaction between ddd and Gnuplot is logged in the file ‘~/.ddd/log’ (see
Section B.5.1 [Logging], page 172). The ddd ‘--trace’ option logs this interaction on standard
output.

7.4.7 Exporting Plot Data

If you want some external program to process the plot data (a stand-alone Gnuplot program or
the xmgr program, for instance), you can save the plot data in a file, using ‘File⇒ Save Data
As’. This pops up a dialog that lets you choose a data file to save the plotted data in.

The generated file starts with a few comment lines. The actual data follows in X/Y or X/Y/Z
format. It is the same file as processed by Gnuplot.

7.4.8 Animating Plots

If you want to see how your data evolves in time, you can set a breakpoint whose command
sequence ends in a cont command (see Section 5.1.8 [Breakpoint Commands], page 87. Each
time this “continue” breakpoint is reached, the program stops and ddd updates the displayed values,
including the plots. Then, ddd executes the breakpoint command sequence, resuming execution.

This way, you can set a “continue” breakpoint at some decisive point within an array-processing
algorithm and have ddd display the progress graphically. When your program has stopped for good,
you can use ‘Undo’ and ‘Redo’ to redisplay and examine previous program states. See Section 6.8
[Undoing Program Execution], page 102, for details.

140 Debugging with DDD

7.4.9 Customizing Plots

You can customize the Gnuplot program to invoke, as well as a number of basic settings.

7.4.9.1 Gnuplot Invocation

Using ‘Edit⇒ Preferences⇒ Helpers⇒ Plot’, you can choose the Gnuplot pro-
gram to invoke. This is tied to the following resource:

ResourceplotCommand (class PlotCommand)
The name of a Gnuplot executable. Default is ‘gnuplot’, followed by some options to set
up colors and the initial geometry.

Using ‘Edit⇒ Preferences⇒ Helpers⇒ Plot Window’, you can choose whether
to use the Gnuplot plot window (‘External’) or to use the plot window supplied by ddd
(‘builtin’). This is tied to the following resource:

ResourceplotTermType (class PlotTermType)
The Gnuplot terminal type. Can have one of two values:

• If this is ‘x11’, ddd “swallows” the external Gnuplot output window into its own user
interface. Some window managers, notably mwm, have trouble with swallowing tech-
niques.

• Setting this resource to ‘xlib’ (default) makes ddd provide a builtin plot window in-
stead. In this mode, plots work well with any window manager, but are less customizable
(Gnuplot resources are not understood).

You can further control interaction with the external plot window:

ResourceplotWindowClass (class PlotWindowClass)
The class of the Gnuplot output window. When invoking Gnuplot, ddd waits for a window
with this class and incorporates it into its own user interface (unless ‘plotTermType’ is
‘xlib’; see above). Default is ‘Gnuplot’.

ResourceplotWindowDelay (class WindowDelay)
The time (in ms) to wait for the creation of the Gnuplot window. Before this delay, ddd
looks at each newly created window to see whether this is the plot window to swallow. This
is cheap, but unfortunately, some window managers do not pass the creation event to ddd.
If this delay has passed, and ddd has not found the plot window, ddd searches all existing
windows, which is pretty expensive. Default time is 2000.

7.4.9.2 Gnuplot Settings

To change Gnuplot settings, use these resources:

ResourceplotInitCommands (class PlotInitCommands)
The initial Gnuplot commands issued by ddd. Default is:

Chapter 7: Examining Data 141

set parametric
set urange [0:1]
set vrange [0:1]
set trange [0:1]

The ‘parametric’ setting is required to make Gnuplot understand the data files as gener-
ated ddd. The range commands are used to plot scalars.

See the Gnuplot documentation for additional commands.

Resourceplot2dSettings (class PlotSettings)
Additional initial settings for 2-D plots. Default is ‘set noborder’. Feel free to customize
these settings as desired.

Resourceplot3dSettings (class PlotSettings)
Additional initial settings for 3-D plots. Default is ‘set border’. Feel free to customize
these settings as desired.

7.5 Examining Memory

Using gdb or dbx, you can examine memory in any of several formats, independently of your
program’s data types. The item ‘Data⇒ Memory’ pops up a panel where you can choose the
format to be shown.

Examining Memory

Click here to print...

... in the GDB console

Enter address here

Memory Dump

as Status Display

142 Debugging with DDD

In the panel, you can enter
• a repeat count, a decimal integer that specifies how much memory (counting by units) to display
• a display format—one of

‘octal’ Print as integer in octal

‘hex’ Regard the bits of the value as an integer, and print the integer in hexadecimal.

‘decimal’
Print as integer in signed decimal.

‘unsigned’
Print as integer in unsigned decimal.

‘binary’ Print as integer in binary.

‘float’ Regard the bits of the value as a floating point number and print using typical
floating point syntax.

‘address’
Print as an address, both absolute in hexadecimal and as an offset from the nearest
preceding symbol.

‘instruction’
Print as machine instructions. The unit size is ignored for this display format.

‘char’ Regard as an integer and print it as a character constant.

‘string’ Print as null-terminated string. The unit size is ignored for this display format.
• a unit size—one of

‘bytes’ Bytes.

‘halfwords’
Halfwords (two bytes).

‘words’ Words (four bytes).

‘giants’ Giant words (eight bytes).
• an address—the starting display address. The expression need not have a pointer value (though

it may); it is always interpreted as an integer address of a byte of memory.

There are two ways to examine the values:
• You can dump the memory in the debugger console (using ‘Print’). If you repeat the resulting

‘x’ command by pressing 〈Return〉 in the debugger console (see Section 10.1.2 [Command
History], page 150), the following area of memory is shown.

• You can also display the memory dump in the data window (using ‘Display’). If you choose
to display the values, the values will be updated automatically each time the program stop.

Chapter 8: Machine-Level Debugging 143

8 Machine-Level Debugging

Sometimes, it is desirable to examine a program not only at the source level, but also at the
machine level. ddd provides special machine code and register windows for this task.

8.1 Examining Machine Code

To enable machine-level support, select ‘Source⇒ Display Machine Code’. With ma-
chine code enabled, an additional machine code window shows up, displaying the machine code of
the current function.1 By moving the sash at the right of the separating line between source and
machine code, you can resize the source and machine code windows.

Showing Machine Code

Assembler instructions

Step one instruction

The machine code window works very much like the source window. You can set, clear, and
change breakpoints by selecting the address and pressing a ‘Break’ or ‘Clear’ button; the usual
popup menus are also available. Breakpoints and the current execution position are displayed si-
multaneously in both source and machine code.

The ‘Lookup’ button can be used to look up the machine code for a specific function—or the
function for a specific address. Just click on the location in one window and press ‘Lookup’ to see
the corresponding code in the other window.

If source code is not available, only the machine code window is updated.

You can customize various aspects of the disassembling window. See Section 8.4 [Customizing
Machine Code], page 145, for details.

1 The machine code window is available with gdb and some dbx variants only.

144 Debugging with DDD

8.2 Machine Code Execution

All execution facilities available in the source code window are available in the machine code
window as well. Two special facilities are convenient for machine-level debugging:

To execute just one machine instruction, click on the ‘Stepi’ button or select ‘Program⇒
Step Instruction’.

To continue to the next instruction in the current function, click on the ‘Nexti’ button select
‘Program⇒ Next Instruction’.. This is similar to ‘Stepi’, but any subroutine calls are
executed without stopping.

Using gdb, it is often useful to do

graph display /i $pc

when stepping by machine instructions. This makes ddd automatically display the next instruction
to be executed, each time your program stops.

8.3 Examining Registers

ddd provides a register window showing the machine register values after each program stop.
To enable the register window, select ‘Status⇒ Registers’.2

Displaying Register Values

Select register

is copied to ()

The register name

By selecting one of the registers, its name is copied to the argument field. You can use it as value
for ‘Display’, for instance, to have its value displayed in the data window.

2 The machine code window is available with gdb and some dbx variants only.

Chapter 8: Machine-Level Debugging 145

8.4 Customizing Machine Code

Enabling machine code via ‘Source⇒ Display Machine Code’ (see Section 8.1 [Ma-
chine Code], page 143) toggles the following resource:

Resourcedisassemble (class Disassemble)
If this is ‘on’, the source code is automatically disassembled. The default is ‘off’. See
Section 2.1.2 [Options], page 18, for the ‘--disassemble’ and ‘--no-disassemble’
options.

You can keep disassembled code in memory, using ‘Edit⇒ Preferences⇒ Source⇒
Cache Machine Code’:

ResourcecacheMachineCode (class CacheMachineCode)
Whether to cache disassembled machine code (‘on’, default) or not (‘off’). Caching ma-
chine code requires more memory, but makes ddd run faster.

You can control the indentation of machine code, using ‘Edit⇒ Preferences⇒ Source
⇒ Machine Code Indentation’:

ResourceindentCode (class Indent)
The number of columns to indent the machine code, such that there is enough place to display
breakpoint locations. Default: 4.

The ‘maxDisassemble’ resource controls how much is to be disassembled. If
‘maxDisassemble’ is set to 256 (default) and the current function is larger than 256
bytes, ddd only disassembles the first 256 bytes below the current location. You can set the
‘maxDisassemble’ resource to a larger value if you prefer to have a larger machine code view.

ResourcemaxDisassemble (class MaxDisassemble)
Maximum number of bytes to disassemble (default: 256). If this is zero, the entire current
function is disassembled.

146 Debugging with DDD

Chapter 9: Changing the Program 147

9 Changing the Program

ddd offers some basic facilities to edit and recompile the source code, as well as patching
executables and core files.

9.1 Editing Source Code

In ddd itself, you cannot change the source file currently displayed. Instead, ddd allows you to
invoke a text editor. To invoke a text editor for the current source file, select the ‘Edit’ button or
‘Source⇒ Edit Source’.

By default, ddd tries a number of common editors. You can customize ddd to use your favorite
editor; See Section 9.1.1 [Customizing Editing], page 147, for details.

After the editor has exited, the source code shown is automatically updated.
If you have ddd and an editor running in parallel, you can also update the source code manually

via ‘Source⇒ Reload Source’. This reloads the source code shown from the source file.
Since ddd automatically reloads the source code if the debugged program has been recompiled,
this should seldom be necessary.

9.1.1 Customizing Editing

You can customize the editor to be used via ‘Edit⇒ Preferences⇒ Helpers⇒ Edit
Sources’. This is tied to the following resource:

ResourceeditCommand (class EditCommand)
A command string to invoke an editor on the specific file. ‘@LINE@’ is replaced by the
current line number, ‘@FILE@’ by the file name. The default is to invoke $XEDITOR first,
then $EDITOR, then vi:

Ddd*editCommand: \
${XEDITOR-false} +@LINE@ @FILE@ || \
xterm -e ${EDITOR-vi} +@LINE@ @FILE@

This ‘~/.ddd/init’ setting invokes an editing session for an XEmacs editor running
gnuserv:

Ddd*editCommand: gnuclient +@LINE@ @FILE@

This ‘~/.ddd/init’ setting invokes an editing session for an Emacs editor running
emacsserver:

Ddd*editCommand: emacsclient +@LINE@ @FILE@

9.1.2 In-Place Editing

This resource is experimental:

ResourcesourceEditing (class SourceEditing)
If this is ‘on’, the displayed source code becomes editable. This is an experimental feature;
Default is ‘off’.

148 Debugging with DDD

9.2 Recompiling

To recompile the source code using make, you can select ‘File⇒ Make’. This pops up a
dialog where you can enter a Make Target—typically the name of the executable. Clicking on the
‘Make’ button invokes the make program with the given target.

The ‘Make’ button on the command tool re-invokes make with the most recently given argu-
ments.

9.3 Patching

Using gdb, you can open your program’s executable code (and the core file) for both reading
and writing. This allows alterations to machine code, such that you can intentionally patch your
program’s binary. For example, you might want to turn on internal debugging flags, or even to make
emergency repairs.

Note that depending on your operating system, special preparation steps, such as setting permis-
sions, may be needed before you can change executable files.

To patch the binary, enable ‘Edit⇒ gdb Settings⇒ Writing into executable
and core files’. This makes gdb open executable and core files for both reading and writing.
If you have already loaded a file, you must load it again (using ‘Edit⇒ Open File’ or ‘Edit
⇒ Open Core’), for your new setting to take effect.

Be sure to turn off ‘Writing into executable and core files’ as soon as possible, to
prevent accidental alterations to machine code.

Chapter 10: The Command-Line Interface 149

10 The Command-Line Interface

All the buttons you click within ddd get eventually translated into some debugger command,
shown in the debugger console. You can also type in and edit these commands directly.

10.1 Entering Commands

In the debugger console, you can interact with the command interface of the inferior debug-
ger. Enter commands at the debugger prompt—that is, ‘(gdb)’ for gdb, ‘bashdb<>’ for Bash,
‘(dbx)’ for dbx, ‘>’ ‘thread[depth]’ for jdb, ‘(ladebug)’ for Ladebug, ‘mdb<>’ for the
GNU Make debugger, ‘DB<>’ for Perl, ‘(Pydb)’ for pydb, or ‘>’ for xdb. You can use arbitrary
debugger commands; use the 〈Return〉 key to enter them.

10.1.1 Command Completion

When using gdb or Perl, you can use the 〈TAB〉 key for completing commands and arguments.
This works in the debugger console as well as in all other text windows.

gdb can fill in the rest of a word in a command for you, if there is only one possibility; it can
also show you what the valid possibilities are for the next word in a command, at any time. This
works for gdb commands, gdb subcommands, and the names of symbols in your program.

Press the 〈TAB〉 key whenever you want gdb to fill out the rest of a word. If there is only one
possibility, gdb fills in the word, and waits for you to finish the command (or press 〈RET〉 to enter
it). For example, if you type

(gdb) info bre_〈TAB〉

gdb fills in the rest of the word ‘breakpoints’, since that is the only info subcommand begin-
ning with ‘bre’:

(gdb) info breakpoints

You can either press 〈RET〉 at this point, to run the info breakpoints command, or backspace
and enter something else, if ‘breakpoints’ does not look like the command you expected. (If you
were sure you wanted info breakpoints in the first place, you might as well just type 〈RET〉
immediately after ‘info bre’, to exploit command abbreviations rather than command comple-
tion).

If there is more than one possibility for the next word when you press 〈TAB〉, ddd sounds a bell.
You can either supply more characters and try again, or just press 〈TAB〉 a second time; gdb displays
all the possible completions for that word. For example, you might want to set a breakpoint on a
subroutine whose name begins with ‘make_’, but when you type b make_〈TAB〉, ddd just sounds
the bell. Typing 〈TAB〉 again displays all the function names in your program that begin with those
characters. If you type 〈TAB〉 again, you cycle through the list of completions, for example:

(gdb) b make_ 〈TAB〉
ddd sounds bell; press 〈TAB〉 again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_ 〈TAB〉

150 Debugging with DDD

ddd presents one expansion after the other:
(gdb) b make_a_section_from_file 〈TAB〉
(gdb) b make_abs_section 〈TAB〉
(gdb) b make_blockvector 〈TAB〉

After displaying the available possibilities, gdb copies your partial input (‘b make_’ in the ex-
ample) so you can finish the command—by pressing 〈TAB〉 again, or by entering the remainder
manually.

Sometimes the string you need, while logically a “word”, may contain parentheses or other
characters that gdb normally excludes from its notion of a word. To permit word completion to
work in this situation, you may enclose words in ’ (single quote marks) in gdb commands.

The most likely situation where you might need this is in typing the name of a C++ function.
This is because C++ allows function overloading (multiple definitions of the same function, dis-
tinguished by argument type). For example, when you want to set a breakpoint you may need to
distinguish whether you mean the version of name that takes an int parameter, name(int), or
the version that takes a float parameter, name(float). To use the word-completion facili-
ties in this situation, type a single quote ’ at the beginning of the function name. This alerts gdb
that it may need to consider more information than usual when you press 〈TAB〉 to request word
completion:

(gdb) b ’bubble(_〈TAB〉
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(_

In some cases, ddd can tell that completing a name requires using quotes. When this happens,
ddd inserts the quote for you (while completing as much as it can) if you do not type the quote in
the first place:

(gdb) b bub_〈TAB〉
ddd alters your input line to the following, and rings a bell:

(gdb) b ’bubble(_

In general, ddd can tell that a quote is needed (and inserts it) if you have not yet started typing the
argument list when you ask for completion on an overloaded symbol.

If you prefer to use the 〈TAB〉 key for switching between items, unset ‘Edit⇒ Preferences
⇒ General⇒ TAB Key completes in All Windows’. This is useful if you have pointer-
driven keyboard focus (see below) and no special usage for the 〈TAB〉 key. If the option is set, the
〈TAB〉 key completes in the debugger console only.

This option is tied to the following resource:

ResourceglobalTabCompletion (class GlobalTabCompletion)
If this is ‘on’ (default), the 〈TAB〉 key completes arguments in all windows. If this is ‘off’,
the 〈TAB〉 key completes arguments in the debugger console only.

10.1.2 Command History

You can repeat previous and next commands by pressing the 〈Up〉 and 〈Down〉 arrow keys, re-
spectively. This presents you previous and later commands on the command line; use 〈Return〉 to
apply the current command.

If you enter an empty line (just use 〈Return〉 at the debugger prompt), the last command is repeated
as well.

Chapter 10: The Command-Line Interface 151

‘Commands⇒ Command History’ shows the command history.

Command Apply Selected CommandSearch String

Position in History

Searching with Ctrl+B in the Command History

You can search for previous commands by pressing 〈Ctrl+B〉. This invokes incremental search
mode, where you can enter a string to be searched in previous commands. Press 〈Ctrl+B〉 again to
repeat the search, or 〈Ctrl+F〉 to search in the reverse direction. To return to normal mode, press
〈ESC〉, or use any cursor command.

The command history is automatically saved when exiting ddd. You can turn off this feature by
setting the following resource to ‘off’:

ResourcesaveHistoryOnExit (class SaveOnExit)
If ‘on’ (default), the command history is automatically saved when ddd exits.

10.1.3 Typing in the Source Window

As a special convenience, anything you type into the source window is automatically forwarded
to the debugger console. Thus, you don’t have to change the keyboard focus explicitly in order to
enter commands.

You can change this behaviour using the following resource:

ResourceconsoleHasFocus (class ConsoleHasFocus)
If ‘on’ (default), all keyboard events in the source window are automatically forwarded to
the debugger console. If ‘off’, keyboard events are not forwarded. If ‘auto’, keyboard
events forwarded only if the debugger console is open.

152 Debugging with DDD

10.2 Entering Commands at the TTY

Rather than entering commands at the debugger console, you may prefer to enter commands at
the terminal window ddd was invoked from.

When ddd is invoked using the ‘--tty’ option, it enables its tty interface, taking additional
debugger commands from standard input and forwarding debugger output to standard output, just
as if the inferior debugger had been invoked directly. All remaining ddd functionality stays un-
changed.

By default, the debugger console remains closed if ddd is invoked using the ‘--tty’ option.
Use ‘View⇒ Debugger Console’ to open it.

ddd can be configured to use the ‘readline’ library for reading in commands from standard
input. This gnu library provides consistent behavior for programs which provide a command line
interface to the user. Advantages are gnu Emacs-style or vi-style inline editing of commands, csh-
like history substitution, and a storage and recall of command history across debugging sessions.
See section “Command Line Editing” in Debugging with gdb, for details on command-line editing
via the tty interface.

10.3 Integrating DDD

You can run ddd as an inferior debugger in other debugger front-ends, combining their special
abilities with those of ddd.

To have ddd run as an inferior debugger in other front-ends, the general idea is to set up your
debugger front-end such that ‘ddd --tty’ is invoked instead of the inferior debugger. When
ddd is invoked using the ‘--tty’ option, it enables its tty interface, taking additional debugger
commands from standard input and forwarding debugger output to standard output, just as if the
inferior debugger had been invoked directly. All remaining ddd functionality stays unchanged.

In case your debugger front-end uses the gdb ‘-fullname’ option to have gdb report source
code positions, the ‘--tty’ option is not required. ddd recognizes the ‘-fullname’ option, finds
that it has been invoked from a debugger front-end and automatically enables the tty interface.

If ddd is invoked with the ‘-fullname’ option, the debugger console and the source window
are initially disabled, as their facilities are supposed to be provided by the integrating front-end. In
case of need, you can use the ‘View’ menu to re-enable these windows.

10.3.1 Using DDD with Emacs

To integrate ddd with Emacs, use M-x gdb or M-x dbx in Emacs to start a debugging session.
At the prompt, enter ddd --tty (followed by ‘--dbx’ or ‘--gdb’, if required), and the name of
the program to be debugged. Proceed as usual.

10.3.2 Using DDD with XEmacs

To integrate ddd with XEmacs, set the variable gdb-command-name to ‘"ddd"’, by insert-
ing the following line in your ‘~/.emacs’ file:

(setq gdb-command-name "ddd")

You can also evaluate this expression by pressing 〈ESC〉 〈:〉 and entering it directly (〈ESC〉 〈ESC〉
for XEmacs 19.13 and earlier).

Chapter 10: The Command-Line Interface 153

To start a ddd debugging session in XEmacs, use ‘M-x gdb’ or ‘M-x gdbsrc’. Proceed as
usual.

10.3.3 Using DDD with xxgdb

To integrate ddd with xxgdb, invoke xxgdb as

xxgdb -db_name ddd -db_prompt ’(gdb) ’

10.4 Defining Buttons

To facilitate interaction, you can add own command buttons to ddd. These buttons can be added
below the debugger console (‘Console Buttons’), the source window (‘Source Buttons’),
or the data window (‘Data Buttons’).

To define individual buttons, use the Button Editor, invoked via ‘Commands⇒ Edit
Buttons’. The button editor displays a text, where each line contains the command for exactly
one button. Clicking on ‘OK’ creates the appropriate buttons from the text. If the text is empty (the
default), no button is created.

As a simple example, assume you want to create a ‘print i’ button. Invoke ‘Commands
⇒ Edit Buttons’ and enter a line saying ‘print i’ in the button editor. Then click on ‘OK’.
A button named ‘Print i’ will now appear below the debugger console—try it! To remove the
button, reopen the button editor, clear the ‘print i’ line and press ‘OK’ again.

If a button command contains ‘()’, the string ‘()’ will automatically be replaced by the contents
of the argument field. For instance, a button named ‘return ()’ will execute the gdb ‘return’
command with the current content of the argument field as argument.

By default, ddd disables buttons whose commands are not supported by the inferior debugger.
To enable such buttons, unset the ‘Enable supported buttons only’ toggle in the button
editor.

154 Debugging with DDD

Defining individual buttons

... to create these buttons.

Enter text here...

ddd also allows you to specify control sequences and special labels for user-defined buttons.
See Section 10.4.1 [Customizing Buttons], page 154, for details.

10.4.1 Customizing Buttons

ddd allows defining additional command buttons; See Section 10.4 [Defining Buttons],
page 153, for doing this interactively. This section describes the resources that control user-defined
buttons.

ResourceconsoleButtons (class Buttons)
A newline-separated list of buttons to be added under the debugger console. Each button
issues the command given by its name.
The following characters have special meanings:
• Commands ending with ... insert their name, followed by a space, in the debugger

console.
• Commands ending with a control character (that is, ‘^’ followed by a letter or ‘?’) insert

the given control character.
• The string ‘()’ is replaced by the current contents of the argument field ‘()’.
• The string specified in the ‘labelDelimiter’ resource (usually ‘//’) separates the

command name from the button label. If no button label is specified, the capitalized
command will be used as button label.

The following button names are reserved:

‘Apply’ Send the given command to the debugger.

Chapter 10: The Command-Line Interface 155

‘Back’ Lookup previously selected source position.

‘Clear’ Clear current command

‘Complete’
Complete current command.

‘Edit’ Edit current source file.

‘Forward’
Lookup next selected source position.

‘Make’ Invoke the ‘make’ program, using the most recently given arguments.

‘Next’ Show next command

‘No’ Answer current debugger prompt with ‘no’. This button is visible only if the
debugger asks a yes/no question.

‘Prev’ Show previous command

‘Reload’ Reload source file.

‘Yes’ Answer current debugger prompt with ‘yes’. This button is visible only if the
debugger asks a yes/no question.

The default resource value is empty—no console buttons are created.
Here are some examples to insert into your ‘~/.ddd/init’ file. These are the settings of
ddd 1.x:

Ddd*consoleButtons: Yes\nNo\nbreak^C

This setting creates some more buttons:
Ddd*consoleButtons: \
Yes\nNo\nrun\nClear\nPrev\nNext\nApply\nbreak^C

See also the ‘dataButtons’, ‘sourceButtons’ and ‘toolButtons’ resources.

ResourcedataButtons (class Buttons)
A newline-separated list of buttons to be added under the data display. Each button issues the
command given by its name. See the ‘consoleButtons’ resource, above, for details on
button syntax.
The default resource value is empty—no source buttons are created.

ResourcesourceButtons (class Buttons)
A newline-separated list of buttons to be added under the debugger console. Each button
issues the command given by its name. See the ‘consoleButtons’ resource, above, for
details on button syntax.
The default resource value is empty—no source buttons are created.
Here are some example to insert into your ‘~/.ddd/init’ file. These are the settings of
ddd 1.x:

Ddd*sourceButtons: \
run\nstep\nnext\nstepi\nnexti\ncont\n\
finish\nkill\nup\ndown\n\
Back\nForward\nEdit\ninterrupt^C

This setting creates some buttons which are not found on the command tool:

156 Debugging with DDD

Ddd*sourceButtons: \
print *()\ngraph display *()\nprint /x ()\n\
whatis ()\nptype ()\nwatch ()\nuntil\nshell

An even more professional setting uses customized button labels.
Ddd*sourceButtons: \
print *(()) // Print *()\n\
graph display *(()) // Display *()\n\
print /x ()\n\
whatis () // What is ()\n\
ptype ()\n\
watch ()\n\
until\n\
shell

See also the ‘consoleButtons’ and ‘dataButtons’ resources, above, and the
‘toolButtons’ resource, below.

ResourcetoolButtons (class Buttons)
A newline-separated list of buttons to be included in the command tool or the command tool
bar (see Section 3.3.1.1 [Disabling the Command Tool], page 59). Each button issues the
command given by its name. See Section 10.4 [Defining Buttons], page 153, for details on
button syntax.
The default resource value is

Ddd*toolButtons: \
run\nbreak^C\nstep\nstepi\nnext\nnexti\n\
until\nfinish\ncont\n\kill\n\
up\ndown\nBack\nForward\nEdit\nMake

For each button, its location in the command tool must be specified using ‘XmForm’ con-
straint resources. See the ‘Ddd’ application defaults file for instructions.
If the ‘toolButtons’ resource value is empty, the command tool is not created.

The following resources set up button details:

ResourcelabelDelimiter (class LabelDelimiter)
The string used to separate labels from commands and shortcuts. Default is ‘//’.

ResourceverifyButtons (class VerifyButtons)
If ‘on’ (default), verify for each button whether its command is actually supported by the
inferior debugger. If the command is unknown, the button is disabled. If this resource is
‘off’, no checking is done: all commands are accepted “as is”.

10.5 Defining Commands

Aside from breakpoint commands (see Section 5.1.8 [Breakpoint Commands], page 87), ddd
also allows you to define user-defined commands. A user-defined command is a sequence of com-
mands to which you assign a new name as a command. This new command can be entered at the
debugger prompt or invoked via a button.

Chapter 10: The Command-Line Interface 157

10.5.1 Defining Simple Commands using GDB

Aside from breakpoint commands (see ‘Breakpoint commands’, above), ddd also allows
you to store sequences of commands as a user-defined gdb command. A user-defined command is
a sequence of gdb commands to which you assign a new name as a command. Using ddd, this is
done via the Command Editor, invoked via ‘Commands⇒ Define Command’.

A gdb command is created in five steps:

1. Enter the name of the command in the ‘Command’ field. Use the drop-down list on the right
to select from already defined commands.

2. Click on ‘Record’ to begin the recording of the command sequence.
3. Now interact with ddd. While recording, ddd does not execute commands, but simply records

them to be executed when the breakpoint is hit. The recorded debugger commands are shown
in the debugger console.

4. To stop the recording, click on ‘End’ or enter ‘end’ at the gdb prompt. To cancel the record-
ing, click on ‘Interrupt’ or press 〈ESC〉.

5. Click on ‘Edit >>’ to edit the recorded commands. When done with editing, click on ‘Edit
<<’ to close the commands editor.

After the command is defined, you can enter it at the gdb prompt. You may also click on
‘Execute’ to test the given user-defined command.

For convenience, you can assign a button to the defined command. Enabling one of the
‘Button’ locations will add a button with the given command to the specified location. If you
want to edit the button, select ‘Commands⇒ Edit Buttons’. See Section 10.4 [Defining
Buttons], page 153, for a discussion.

Command Name Command Definition

If enabled, use argument field symbolically

Defining GDB Commands

Start Recording Assign Button

158 Debugging with DDD

When user-defined gdb commands are executed, the commands of the definition are not printed.
An error in any command stops execution of the user-defined command.1

If used interactively, commands that would ask for confirmation proceed without asking when
used inside a user-defined command. Many gdb commands that normally print messages to say
what they are doing omit the messages when used in a user-defined command.

Command definitions are saved across ddd sessions.

10.5.2 Defining Argument Commands using GDB

If you want to pass arguments to user-defined commands, you can enable the ‘()’ toggle button
in the Command Editor. Enabling ‘()’ has two effects:
• While recording commands, all references to the argument field are taken symbolically instead

of literally. The argument field value is frozen to ‘$arg0’, which is how gdb denotes the argu-
ment of a user-defined command. When gdb executes the command, it will replace ‘$arg0’
by the current command argument.

• When assigning a button to the command, the command will be suffixed by the current contents
of the argument field.

While defining a command, you can toggle the ‘()’ button as you wish to switch between using
the argument field symbolically and literally.

As an example, let us define a command contuntil that will set a breakpoint in the given
argument and continue execution.

1. Enter ‘contuntil’ in the ‘Command’ field.
2. Enable the ‘()’ toggle button.
3. Now click on ‘Record’ to start recording. Note that the contents of the argument field change

to ‘$arg0’.
4. Click on ‘Break at ()’ to create a breakpoint. Note that the recorded breakpoint command

refers to ‘$arg0’.
5. Click on ‘Cont’ to continue execution.
6. Click on ‘End’ to end recording. Note that the argument field is restored to its original value.
7. Finally, click on one of the ‘Button’ locations. This creates a ‘Contuntil ()’ button

where ‘()’ will be replaced by the current contents of the argument field—and thus passed to
the ‘contuntil’ command.

8. You can now either use the ‘Contuntil ()’ button or enter a ‘contuntil’ command at
the gdb prompt. (If you plan to use the command frequently, you may wish to define a ‘cu’
command, which again calls ‘contuntil’ with its argument. This is a nice exercise.)

There is a little drawback with argument commands: a user-defined command in gdb has no
means to access the argument list as a whole; only the first argument (up to whitespace) is processed.
This may change in future gdb releases.

1 If you use ddd commands within command definitions, or if you include debugger commands that re-
sume execution, these commands will be realized transparently as auto-commands—that is, they won’t
be executed directly by the inferior debugger, but result in a command string being sent to ddd. This
command string is then interpreted by ddd and sent back to the inferior debugger, possibly prefixed by
some other commands such that ddd can update its state. See Section 10.5.3 [Commands with Other
Debuggers], page 159, for a discussion.

Chapter 10: The Command-Line Interface 159

10.5.3 Defining Commands using Other Debuggers

If your inferior debugger allows you to define own command sequences, you can also use these
user-defined commands within ddd; just enter them at the debugger prompt.

However, you may encounter some problems:
• In contrast to the well-documented commands of the inferior debugger, ddd does not know

what a user-defined command does. This may lead to inconsistencies between ddd and the
inferior debugger. For instance, if your the user-defined command ‘bp’ sets a breakpoint, ddd
may not display it immediately, because ddd does not know that ‘bp’ changes the breakpoint
state.

• You cannot use ddd ‘graph’ commands within user-defined commands. This is only natural,
because user-defined commands are interpreted by the inferior debugger, which does not know
about ddd commands.

As a solution, ddd provides a simple facility called auto-commands. If ddd receives any output
from the inferior debugger in the form ‘prefix command ’, it will interpret command as if it had
been entered at the debugger prompt. prefix is a user-defined string, for example ‘ddd: ’.

Suppose you want to define a command gd that serves as abbreviation for graph display.
All the command gd has to do is to issue a string

ddd: graph display argument
where argument is the argument given to gd. Using gdb, this can be achieved using the echo

command. In your ‘~/.gdbinit’ file, insert the lines
define gd
echo ddd: graph display $arg0\n

end

To complete the setting, you must also set the ‘autoCommandPrefix’ resource to the ‘ddd:
’ prefix you gave in your command. In ‘~/.ddd/init’, write:

Ddd*autoCommandPrefix: ddd:\

(Be sure to leave a space after the trailing backslash.)
Entering gd foo will now have the same effect as entering graph display foo at the de-

bugger prompt.
Please note: In your commands, you should choose some other prefix than ‘ddd: ’. This is

because auto-commands raise a security problem, since arbitrary commands can be executed. Just
imagine some malicious program issuing a string like ‘prefix shell rm -fr ~’ when being de-
bugged! As a consequence, be sure to choose your own prefix; it must be at least three characters
long.

160 Debugging with DDD

Appendix A: Application Defaults 161

Appendix A Application Defaults

Like any good X citizen, ddd comes with a large application-defaults file named ‘Ddd’. This
appendix documents the actions and images referenced in ‘Ddd’, such that you can easily modify
them.

A.1 Actions

The following ddd actions may be used in translation tables.

A.1.1 General Actions

Actionddd-get-focus ()
Assign focus to the element that just received input.

Actionddd-next-tab-group ()
Assign focus to the next tab group.

Actionddd-prev-tab-group ()
Assign focus to the previous tab group.

Actionddd-previous-tab-group ()
Assign focus to the previous tab group.

A.1.2 Data Display Actions

These actions are used in the ddd graph editor.

Actionend ()
End the action initiated by select. Bound to a button up event.

Actionextend ()
Extend the current selection. Bound to a button down event.

Actionextend-or-move ()
Extend the current selection. Bound to a button down event. If the pointer is dragged, move
the selection.

Actionfollow ()
Continue the action initiated by select. Bound to a pointer motion event.

Actiongraph-select ()
Equivalent to select, but also updates the current argument.

Actiongraph-select-or-move ()
Equivalent to select-or-move, but also updates the current argument.

162 Debugging with DDD

Actiongraph-extend ()
Equivalent to extend, but also updates the current argument.

Actiongraph-extend-or-move ()
Equivalent to extend-or-move, but also updates the current argument.

Actiongraph-toggle ()
Equivalent to toggle, but also updates the current argument.

Actiongraph-toggle-or-move ()
Equivalent to toggle-or-move, but also updates the current argument.

Actiongraph-popup-menu ([graph|node|shortcut])
Pops up a menu. graph pops up a menu with global graph operations, node pops up a
menu with node operations, and shortcut pops up a menu with display shortcuts.
If no argument is given, pops up a menu depending on the context: when pointing on a node
with the 〈Shift〉 key pressed, behaves like shortcut; when pointing on a without the 〈Shift〉
key pressed, behaves like node; otherwise, behaves as if graph was given.

Actiongraph-dereference ()
Dereference the selected display.

Actiongraph-detail ()
Show or hide detail of the selected display.

Actiongraph-rotate ()
Rotate the selected display.

Actiongraph-dependent ()
Pop up a dialog to create a dependent display.

Actionhide-edges ([any|both|from|to])
Hide some edges. any means to process all edges where either source or target node are
selected. both means to process all edges where both nodes are selected. from means to
process all edges where at least the source node is selected. to means to process all edges
where at least the target node is selected. Default is any.

Actionlayout ([regular|compact], [[+|-] degrees])
Layout the graph. regular means to use the regular layout algorithm; compact uses
an alternate layout algorithm, where successors are placed next to their parents. Default is
regular. degrees indicates in which direction the graph should be layouted. Default is the
current graph direction.

Actionmove-selected (x-offset, y-offset)
Move all selected nodes in the direction given by x-offset and y-offset. x-offset and y-offset
is either given as a numeric pixel value, or as ‘+grid’, or ‘-grid’, meaning the current
grid size.

Appendix A: Application Defaults 163

Actionnormalize ()
Place all nodes on their positions and redraw the graph.

Actionrotate ([[+|-]degrees])
Rotate the graph around degrees degrees. degrees must be a multiple of 90. Default is +90.

Actionselect ()
Select the node pointed at. Clear all other selections. Bound to a button down event.

Actionselect-all ()
Select all nodes in the graph.

Actionselect-first ()
Select the first node in the graph.

Actionselect-next ()
Select the next node in the graph.

Actionselect-or-move ()
Select the node pointed at. Clear all other selections. Bound to a button down event. If the
pointer is dragged, move the selected node.

Actionselect-prev ()
Select the previous node in the graph.

Actionshow-edges ([any|both|from|to])
Show some edges. any means to process all edges where either source or target node are
selected. both means to process all edges where both nodes are selected. from means to
process all edges where at least the source node is selected. to means to process all edges
where at least the target node is selected. Default is any.

Actionsnap-to-grid ()
Place all nodes on the nearest grid position.

Actiontoggle ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event.

Actiontoggle-or-move ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event. If the pointer is dragged, move the selection.

Actionunselect-all ()
Clear the selection.

164 Debugging with DDD

A.1.3 Debugger Console Actions

These actions are used in the debugger console and other text fields.

Actiongdb-backward-character ()
Move one character to the left. Bound to Left.

Actiongdb-beginning-of-line ()
Move cursor to the beginning of the current line, after the prompt. Bound to HOME.

Actiongdb-control (control-character)
Send the given control-character to the inferior debugger. control-character must be specified
in the form ‘^X ’, where X is an upper-case letter, or ‘?’.

Actiongdb-command (command)
Execute command in the debugger console. The following replacements are performed on
command :

• If command has the form ‘name...’, insert name, followed by a space, in the debugger
console.

• All occurrences of ‘()’ are replaced by the current contents of the argument field ‘()’.

Actiongdb-complete-arg (command)
Complete current argument as if command was prepended. Bound to 〈Ctrl+T〉.

Actiongdb-complete-command ()
Complete current command line in the debugger console. Bound to 〈TAB〉.

Actiongdb-complete-tab (command)
If global 〈TAB〉 completion is enabled, complete current argument as if command was
prepended. Otherwise, proceed as if the 〈TAB〉 key was hit. Bound to 〈TAB〉.

Actiongdb-delete-or-control (control-character)
Like gdb-control, but effective only if the cursor is at the end of a line. Otherwise,
control-character is ignored and the character following the cursor is deleted. Bound to
〈Ctrl+D〉.

Actiongdb-end-of-line ()
Move cursor to the end of the current line. Bound to End.

Actiongdb-forward-character ()
Move one character to the right. Bound to Right.

Actiongdb-insert-graph-arg ()
Insert the contents of the data display argument field ‘()’.

Appendix A: Application Defaults 165

Actiongdb-insert-source-arg ()
Insert the contents of the source argument field ‘()’.

Actiongdb-interrupt ()
If ddd is in incremental search mode, exit it; otherwise call gdb-control(^C).

Actiongdb-isearch-prev ()
Enter reverse incremental search mode. Bound to 〈Ctrl+B〉.

Actiongdb-isearch-next ()
Enter incremental search mode. Bound to 〈Ctrl+F〉.

Actiongdb-isearch-exit ()
Exit incremental search mode. Bound to 〈ESC〉.

Actiongdb-next-history ()
Recall next command from history. Bound to Down.

Actiongdb-prev-history ()
Recall previous command from history. Bound to Up.

Actiongdb-previous-history ()
Recall previous command from history. Bound to Up.

Actiongdb-process ([action [, args. . .]])
Process the given event in the debugger console. Bound to key events in the source and data
window. If this action is bound to the source window, and the source window is editable,
perform action(args...) on the source window instead; if action is not given, perform
‘self-insert()’.

Actiongdb-select-all ()
If the ‘selectAllBindings’ resource is set to Motif, perform ‘beginning-of-line’.
Otherwise, perform ‘select-all’. Bound to 〈Ctrl+A〉.

Actiongdb-set-line (value)
Set the current line to value. Bound to 〈Ctrl+U〉.

A.1.4 Source Window Actions

These actions are used in the source and code windows.

Actionsource-delete-glyph ()
Delete the breakpoint related to the glyph at cursor position.

166 Debugging with DDD

Actionsource-double-click ([text-action [, line-action [, function-action]]])
The double-click action in the source window.
• If this action is taken on a breakpoint glyph, edit the breakpoint properties.
• If this action is taken in the breakpoint area, invoke ‘gdb-command(line-action)’. If

line-action is not given, it defaults to ‘break ()’.
• If this action is taken in the source text, and the next character following the current

selection is ‘(’, invoke ‘gdb-command(function-action)’. If function-action is not
given, it defaults to ‘list ()’.

• Otherwise, invoke ‘gdb-command(text-action)’. If text-action is not given, it de-
faults to ‘graph display ()’.

Actionsource-drag-glyph ()
Initiate a drag on the glyph at cursor position.

Actionsource-drop-glyph ([action])
Drop the dragged glyph at cursor position. action is either ‘move’, meaning to move the
dragged glyph, or ‘copy’, meaning to copy the dragged glyph. If no action is given, ‘move’
is assumed.

Actionsource-end-select-word ()
End selecting a word.

Actionsource-follow-glyph ()
Continue a drag on the glyph at cursor position. Usually bound to some motion event.

Actionsource-popup-menu ()
Pop up a menu, depending on the location.

Actionsource-set-arg ()
Set the argument field to the current selection. Typically bound to some selection operation.

Actionsource-start-select-word ()
Start selecting a word.

Actionsource-update-glyphs ()
Update all visible glyphs. Usually invoked after a scrolling operation.

A.2 Images

ddd installs a number of images that may be used as pixmap resources, simply by giving a
symbolic name. For button images, three variants are installed as well:
• The suffix ‘-hi’ indicates a highlighted variant (Button is entered).
• The suffix ‘-arm’ indicates an armed variant (Button is pushed).
• The suffix ‘-xx’ indicates a disabled (insensitive) variant.

Appendix A: Application Defaults 167

Imagebreak at
‘Break at ()’ button.

Imageclear at
‘Clear at ()’ button.

Imageddd
ddd icon.

Imagedelete
‘Delete ()’ button.

Imagedisable
‘Disable’ button.

Imagedispref
‘Display * ()’ button.

Imagedisplay
‘Display ()’ button.

Imagedrag arrow
The execution pointer (being dragged).

Imagedrag cond
A conditional breakpoint (being dragged).

Imagedrag stop
A breakpoint (being dragged).

Imagedrag temp
A temporary breakpoint (being dragged).

Imageenable
‘Enable’ button.

Imagefind forward
‘Find>> ()’ button.

Imagefind backward
‘Find<< ()’ button.

Imagegrey arrow
The execution pointer (not in lowest frame).

168 Debugging with DDD

Imagegrey cond
A conditional breakpoint (disabled).

Imagegrey stop
A breakpoint (disabled).

Imagegrey temp
A temporary breakpoint (disabled).

Imagehide
‘Hide ()’ button.

Imagelookup
‘Lookup ()’ button.

Imagemaketemp
‘Make Temporary’ button.

Imagenew break
‘New Breakpoint’ button.

Imagenew display
‘New Display’ button.

Imagenew watch
‘New Watchpoint’ button.

Imageplain arrow
The execution pointer.

Imageplain cond
A conditional breakpoint (enabled).

Imageplain stop
A breakpoint (enabled).

Imageplain temp
A temporary breakpoint (enabled).

Imageprint
‘Print ()’ button.

Imageproperties
‘Properties’ button.

Appendix A: Application Defaults 169

Imagerotate
‘Rotate ()’ button.

Imageset
‘Set ()’ button.

Imageshow
‘Show ()’ button.

Imagesignal arrow
The execution pointer (stopped by signal).

Imageundisplay
‘Undisplay ()’ button.

Imageunwatch
‘Unwatch ()’ button.

Imagewatch
‘Watch ()’ button.

170 Debugging with DDD

Appendix B: Bugs and How To Report Them 171

Appendix B Bugs and How To Report Them

Sometimes you will encounter a bug in ddd. Although we cannot promise we can or will fix
the bug, and we might not even agree that it is a bug, we want to hear about bugs you encounter in
case we do want to fix them.

To make it possible for us to fix a bug, you must report it. In order to do so effectively, you must
know when and how to do it.

B.1 Where to Send Bug Reports

Send bug reports for ddd via electronic mail to

bug-ddd@gnu.org

B.2 Is it a DDD Bug?

Before sending in a bug report, try to find out whether the problem cause really lies within ddd.
A common cause of problems are incomplete or missing X or M*tif installations, for instance, or
bugs in the X server or M*tif itself. Running ddd as

$ ddd --check-configuration

checks for common problems and gives hints on how to repair them.

Another potential cause of problems is the inferior debugger; occasionally, they show bugs, too.
To find out whether a bug was caused by the inferior debugger, run ddd as

$ ddd --trace

This shows the interaction between ddd and the inferior debugger on standard error while ddd
is running. (If ‘--trace’ is not given, this interaction is logged in the file ‘~/.ddd/log’;
see Section B.5.1 [Logging], page 172) Compare the debugger output to the output of ddd and
determine which one is wrong.

B.3 How to Report Bugs

Here are some guidelines for bug reports:

• The fundamental principle of reporting bugs usefully is this: report all the facts. If you are
not sure whether to state a fact or leave it out, state it!

• Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not
known. It is not very important what happens if the bug is already known. Therefore, always
write your bug reports on the assumption that the bug is not known.

• Your bug report should be self-contained. Do not refer to information sent in previous mails;
your previous mail may have been forwarded to somebody else.

• Please report each bug in a separate message. This makes it easier for us to track which bugs
have been fixed and to forward your bugs reports to the appropriate maintainer.

• Please report bugs in English; this increases the chances of finding someone who can fix the
bug. Do not assume one particular person will receive your bug report.

mailto:bug-ddd@gnu.org

172 Debugging with DDD

B.4 What to Include in a Bug Report

To enable us to fix a ddd bug, you must include the following information:

• Your ddd configuration. Invoke ddd as
$ ddd --configuration

to get the configuration information. If this does not work, please include at least the ddd
version, the type of machine you are using, and its operating system name and version number.

• The debugger you are using and its version (e.g., ‘gdb-4.17’ or ‘dbx as shipped with
Solaris 2.6’).

• The compiler you used to compile ddd and its version (e.g., ‘gcc-2.8.1’).

• A description of what behavior you observe that you believe is incorrect. For example, “ddd
gets a fatal signal” or “ddd exits immediately after attempting to create the data window“.

• A log file showing the interaction between ddd and the inferior debugger. By default, this
interaction is logged in the file ‘~/.ddd/log’. Include all trace output from the ddd invo-
cation up to the first bug occurrence; insert own comments where necessary.

• If you wish to suggest changes to the ddd source, send us context diffs. If you even discuss
something in the ddd source, refer to it by context, never by line number.

Be sure to include this information in every single bug report.

B.5 Getting Diagnostics

B.5.1 Logging

If things go wrong, the first and most important information source is the ddd log file. This file,
created in ‘~/.ddd/log’ (‘~’ stands for your home directory), records the following information:

• Your ddd configuration (at the top)

• All programs invoked by ddd, shown as ‘$ program args...’

• All ddd messages, shown as ‘# message’.

• All information sent from ddd to the inferior debugger, shown as ‘-> text’.

• All information sent from the inferior debugger standard output to ddd, shown as ‘<- text’.

• All information sent from the inferior debugger standard error to ddd, shown as ‘<= text’.1

• All information sent from ddd to Gnuplot, shown as ‘>> text’.

• All information sent from Gnuplot standard output to ddd, shown as ‘<< text’.

• All information sent from Gnuplot standard error to ddd, shown as ‘<= text’.

• If ddd crashes, a gdb backtrace of the ddd core dump is included at the end.

This information, all in one place, should give you (and anyone maintaining ddd) a first insight
of what’s going wrong.

1 Since the inferior debugger is invoked through a virtual tty, standard error is normally redirected to
standard output, so ddd never receives standard error from the inferior debugger.

Appendix B: Bugs and How To Report Them 173

B.5.1.1 Disabling Logging

The log files created by ddd can become quite large, so you might want to turn off logging.
There is no explicit ddd feature that allows you to do that. However, you can easily create a
symbolic link from ‘~/.ddd/log’ to ‘/dev/null’, such that logging information is lost. Enter
the following commands at the shell prompt:

$ cd
$ rm .ddd/log
$ ln -s /dev/null .ddd/log
$ _

Be aware, though, that having logging turned off makes diagnostics much more difficult; in case
of trouble, it may be hard to reproduce the error.

B.5.2 Debugging DDD

As long as ddd is compiled with ‘-g’ (see Section 4.1 [Compiling for Debugging], page 75),
you can invoke a debugger on ddd—even ddd itself, if you wish. From within ddd, a special
‘Maintenance’ menu is provided that invokes gdb on the running ddd process. See Sec-
tion 3.1.9 [Maintenance Menu], page 51, for details.

The ddd distribution comes with a ‘.gdbinit’ file that is suitable for debugging ddd.
Among others, this defines a ‘ddd’ command that sets up an environment for debugging ddd
and a ‘string’ command that lets you print the contents of ddd ‘string’ variables; just use
‘print var’ followed by ‘string’.

You can cause ddd to dump core at any time by sending it a SIGUSR1 signal. ddd resumes
execution while you can examine the core file with gdb.

When debugging ddd, it can be useful to make ddd not catch fatal errors. This can be achieved
by setting the environment variable DDD_NO_SIGNAL_HANDLERS before invoking ddd.

B.5.3 Customizing Diagnostics

You can use these additional resources to obtain diagnostics about ddd. Most of them are tied
to a particular invocation option.

ResourceappDefaultsVersion (class Version)
The version of the ddd app-defaults file. If this string does not match the version of the
current ddd executable, ddd issues a warning.

ResourcecheckConfiguration (class CheckConfiguration)
If ‘on’, check the ddd environment (in particular, the X configuration), report any
possible problem causes and exit. See Section 2.1.2 [Options], page 18, for the
‘--check-configuration’ option.

ResourcedddinitVersion (class Version)
The version of the ddd executable that last wrote the ‘~/.ddd/init’ file. If this string
does not match the version of the current ddd executable, ddd issues a warning.

174 Debugging with DDD

ResourcedebugCoreDumps (class DebugCoreDumps)
If ‘on’, ddd invokes a debugger on itself when receiving a fatal signal. See Section 3.1.9
[Maintenance Menu], page 51, for setting this resource.

ResourcedumpCore (class DumpCore)
If ‘on’ (default), ddd dumps core when receiving a fatal signal. See Section 3.1.9 [Mainte-
nance Menu], page 51, for setting this resource.

Resourcemaintenance (class Maintenance)
If ‘on’, enables the top-level ‘Maintenance’ menu (see Section 3.1.9 [Maintenance
Menu], page 51) with additional options. See Section 2.1.2 [Options], page 18, for the
‘--maintenance’ option.

ResourceshowConfiguration (class ShowConfiguration)
If ‘on’, show the ddd configuration on standard output and exit. See Section 2.1.2 [Options],
page 18, for the ‘--configuration’ option.

ResourceshowFonts (class ShowFonts)
If ‘on’, show the ddd font definitions on standard output and exit. See Section 2.1.2 [Op-
tions], page 18, for the ‘--fonts’ option.

ResourceshowInvocation (class ShowInvocation)
If ‘on’, show the ddd invocation options on standard output and exit. See Section 2.1.2
[Options], page 18, for the ‘--help’ option.

ResourceshowLicense (class ShowLicense)
If ‘on’, show the ddd license on standard output and exit. See Section 2.1.2 [Options],
page 18, for the ‘--license’ option.

ResourceshowManual (class ShowManual)
If ‘on’, show this ddd manual page on standard output and exit. If the standard output is a
terminal, the manual page is shown in a pager ($PAGER, less or more). See Section 2.1.2
[Options], page 18, for the ‘--manual’ option.

ResourceshowNews (class ShowNews)
If ‘on’, show the ddd news on standard output and exit. See Section 2.1.2 [Options], page 18,
for the ‘--news’ option.

ResourceshowVersion (class ShowVersion)
If ‘on’, show the ddd version on standard output and exit. See Section 2.1.2 [Options],
page 18, for the ‘--version’ option.

ResourcesuppressWarnings (class SuppressWarnings)
If ‘on’, X warnings are suppressed. This is sometimes useful for executables that were built
on a machine with a different X or M*tif configuration. By default, this is ‘off’. See
Section 2.1.6 [X Warnings], page 30, for details.

Appendix B: Bugs and How To Report Them 175

Resourcetrace (class Trace)
If ‘on’, show the dialog between ddd and the inferior debugger on standard output. Default
is ‘off’. See Section 2.1.2 [Options], page 18, for the ‘--trace’ option.

176 Debugging with DDD

Appendix C: Configuration Notes 177

Appendix C Configuration Notes

C.1 Using DDD with GDB

Some gdb settings are essential for ddd to work correctly. These settings with their correct
values are:

set height 0
set width 0
set verbose off
set annotate 1
set prompt (gdb)

ddd sets these values automatically when invoking gdb; if these values are changed, there may
be some malfunctions, especially in the data display.

When debugging at the machine level with gdb 4.12 and earlier as inferior debugger, use a
‘display /x $pc’ command to ensure the program counter value is updated correctly at each
stop. You may also enter the command in ‘~/.gdbinit’ or (better yet) upgrade to the most
recent gdb version.

C.1.1 Using DDD with WDB

HP’s WildeBeest (wdb) is essentially a variant of gdb. To start ddd with wdb as inferior
debugger, use

ddd --wdb program

See Section C.1 [GDB], page 177, for further configuration notes.

C.1.2 Using DDD with WindRiver GDB (Tornado)

ddd now supports WindRiver’s version of gdb.1 ddd can be integrated into the ‘Launch’
window by placing the ‘launch.tcl’ script (see below) into the the directory ‘~/.wind’.

Currently, ddd only supports the PowerPC and has been only tested on a Solaris 2.6 host.

ddd launches the version of gdb that is either in the current path, or the one specified on the
command line using the ‘--debugger’ command.

Normally, the Tornado environment is set up by sourcing a script file which, among other things,
sets up the PATH variable.

It is suggested that a soft link for the version of gdb used for the target (i.e. ‘gdbppc’) be made
in the same directory:

bin>ls -l gdb*
39 Mar 6 16:14 gdb -> /usr/wind/host/sun4-solaris2/bin/gdbppc*
1619212 Mar 11 1997 gdbppc*
bin>_

This way ddd will start the correct version of gdb automatically.

1 This section was contributed by Gary Cliff from Computing Devices Canada Ltd.,
gary.cliff@cdott.com.

mailto:gary.cliff@cdott.com

178 Debugging with DDD

It is also suggested that you use ddd’s execution window to facilitate parsing of gdb output.
See Section 2.5.3 [Debugger Communication], page 41, for details.

Tornado reads the default TCL scripts first, then the ones in the users ‘.wind’ directory. The
following procedures can be cut and pasted into the user’s ‘launch.tcl’ file:

� �
Launch.tcl - Launch application Tcl user customization file.
#

######
#
setupDDD - sets up DDD for use by the launcher
#
This routine adds the DDD to the application bar
#
SYNOPSIS:
setupDDD
#
PARAMETERS: N/A
#
RETURNS: N/A
#
ERRORS: N/A
#

proc setupDDD {} {
Add to the default application bar
objectCreate app ddd DDD {launchDDD}

}
 	

Appendix C: Configuration Notes 179

� �
######
#
launchDDD - launch the DDD debugger
#
SYNOPSIS:
launchDDD
#
PARAMETERS: N/A
#
RETURNS: N/A
#
ERRORS: N/A
#

proc launchDDD {} {

global tgtsvr_selected
global tgtsvr_cpuid

if {$tgtsvr_selected == "" || $tgtsvr_cpuid == 0} {
noticePost error "Select an attached target first."
return

}

set startFileName /tmp/dddstartup.[pid]

if [catch {open $startFileName w} file] {
couldn’t create a startup file. Oh, well.
exec ddd --gdb &

}
else
{

write out a little /tmp file that attaches to the
selected target server and then deletes itself.
puts $file "set wtx-tool-name ddd"
puts $file "target wtx $tgtsvr_selected"
puts $file "tcl exec rm $startFileName"
close $file
exec ddd --gdb --command=$startFileName &

}
}
 	

180 Debugging with DDD

� �
######
#
Launch.tcl - Initialization
#
The user’s resource file sourced from the initial Launch.tcl
#

Add DDD to the laucher
setupDDD
 	

In order for ddd to automatically display the source of a previously loaded file, the entry point
must be named either ‘vxworks_main’ or ‘main_vxworks’.

See Section C.1 [GDB], page 177, for further configuration notes.

C.2 Using DDD with Bash

bash support is rather new. As a programming language, bash is not feature rich: there are no
record structures or hash tables (yet), no pointers, package variable scoping or methods. So much
of the data display and visualization features of DDD are disabled.

As with any scripting or interpreted language like Perl, stepping a machine-language instructions
(commands Stepi/Nexti) doesn’t exist.

Some bash settings are essential for ddd to work correctly. These settings with their correct
values are:

set annotate 1
set prompt set prompt bashdb$_Dbg_less$_Dbg_greater$_Dbg_space

ddd sets these values automatically when invoking bash; if these values are changed, there
may be some malfunctions.

Pay special attention when the prompt has extra angle brackets (a nested shell) or has any paren-
thesis (is in a subshell). Quitting may merely exit out of one of these nested (sub)shells rather than
leave the program.

C.3 Using DDD with DBX

When used for debugging Pascal-like programs, ddd does not infer correct array subscripts and
always starts to count with 1.

With some dbx versions (notably Solaris dbx), ddd strips C-style and C++-style comments
from the dbx output in order to interpret it properly. This also affects the output of the debugged
program when sent to the debugger console. Using the separate execution window avoids these
problems.

In some dbx versions (notably DEC dbx and AIX dbx), there is no automatic data display.
As an alternative, ddd uses the dbx ‘print’ command to access data values. This means that
variable names are interpreted according to the current frame; variables outside the current frame
cannot be displayed.

C.4 Using DDD with Ladebug

All dbx limitations (see Section C.3 [DBX], page 180) apply to Ladebug as well.

Appendix C: Configuration Notes 181

C.5 Using DDD with JDB

There is no automatic data display in jdb. As a workaround, ddd uses the ‘dump’ command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

In jdb 1.1, the ‘dump’ and ‘print’ commands do not support expression evaluation. Hence,
you cannot display arbitrary expressions.

Parsing of jdb output is quite CPU-intensive, due to the recognition of asynchronous prompts
(any thread may output anything at any time, including prompts). Hence, a program producing
much console output is likely to slow down ddd considerably. In such a case, have the program run
with ‘-debug’ in a separate window and attach jdb to it using the ‘-passwd’ option.

C.6 Using DDD with GNU Make

GNU Make support is rather new. As a programming language, GNU Make is a bit of a stretch
for DDD. There are no record structures or hash tables, no pointers. Well, actually this does exist,
but the records, pointers and hash tables are fixed into the system. There are Makefile variables,
“targets” (which sometimes refer to files), dependencies, and commands. There is sort of an “scope”
that for variables too.

But much of the data display and visualization features of DDD are disabled. However info
locals does work and you can hover over a variable and see its value.

As with any scripting or interpreted language like Perl, stepping a machine-language instructions
(commands Stepi/Nexti) doesn’t exist.

Pay special attention when the prompt has extra angle brackets—nested invocation of GNU
MAKE. Quitting may merely exit out of one of these nested invocations rather than leave the pro-
gram.

C.7 Using DDD with Perl

There is no automatic data display in Perl. As a workaround, ddd uses the ‘x’ command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

C.8 Using DDD with Python

In short, make sure you use a newer version of pydb, one from http://bashdb.sourceforge.net/pydb.
Older versions that had been supplied with ddd will no longer work.

History: Up to around 1999 there was parallel development that went on between ddd’s Python
debugger pydb and the stock python debugger pdb. These were not necessarily competing efforts,
just parallel. In fact the same person worked a little bit on both.

One feature that pydb supported that wasn’t in pdb was gdb’s display command.

After 1999, maintaining pydb more or less fell into disuse and pdb sort of inched ahead with
bug fixes and redisigned interaces. Around the beginning of 2006, new work was started to enhance
pdb and to make it more like gdb. Since ddd already understands a large set of gdb commands,

http://bashdb.sourceforge.net/pydb

182 Debugging with DDD

many of these enhancements were immediately realizable by ddd. These things include command
completion, restarting the debugger, and using set/show/info commands.

With the blessing of the original author of pydb, the new effort took over the name of the old
one, Although it did not actually start out from the pydb base but from pdb adding the old pydb
features.

C.9 Using DDD with XDB

There is no automatic data display in xdb. As a workaround, ddd uses the ‘p’ command to
access data values. This means that variable names are interpreted according to the current frame;
variables outside the current frame cannot be displayed.

C.10 Using DDD with LessTif

ddd includes a number of hacks that make ddd run with LessTif, a free M*tif library with-
out loss of functionality. Since a ddd binary may be dynamically bound and used with either an
OSF/Motif or LessTif library, these lesstif hacks can be enabled and disabled at run time.

Whether the lesstif hacks are included at run-time depends on the setting of the
‘lessTifVersion’ resource:

ResourcelessTifVersion (class LessTifVersion)
Indicates the LessTif version ddd is running against. For LessTif version x.y, the value is x
multiplied by 1000 plus y—for instance, the value 79 stands for LessTif 0.79 and the value
1005 stands for LessTif 1.5.

If the value of this resource is less than 1000, indicating LessTif 0.99 or earlier, ddd enables
version-specific hacks to make ddd work around LessTif bugs and deficiencies.

If ddd was compiled against LessTif, the default value is the value of the
‘LessTifVersion’ macro in ‘<Xm/Xm.h>’. If ddd was compiled against OSF/Motif,
the default value is 1000, disabling all LessTif-specific hacks.

To set the ‘lessTifVersion’ resource at ddd invocation and to specify the version number
of the LessTif library, you can also use the option ‘--lesstif-version’ version.

The default value of the ‘lessTifVersion’ resource is derived from the LessTif library ddd
was compiled against (or 1000 when compiled against OSF/Motif). Hence, you normally don’t
need to worry about the value of this resource. However, if you use a dynamically linked ddd
binary with a library other than the one ddd was compiled against, you must specify the version
number of the library using this resource. (Unfortunately, ddd cannot detect this at run-time.)

Here are a few scenarios to illustrate this scheme:

• Your ddd binary was compiled against OSF/Motif, but you use a LessTif 0.88 dynamic library
instead. Invoke ddd with ‘--lesstif-version 88’.

• Your ddd binary was compiled against LessTif, but you use a OSF/Motif dynamic library
instead. Invoke ddd with ‘--lesstif-version 1000’.

• Your ddd binary was compiled against LessTif 0.85, and you have upgraded to LessTif 0.90.
Invoke ddd with ‘--lesstif-version 90’.

Appendix C: Configuration Notes 183

To find out the LessTif or OSF/Motif version ddd was compiled against, invoke ddd with the
‘--configuration’ option.

In the ddd source, LessTif-specific hacks are controlled by the string ‘lesstif_version’.

184 Debugging with DDD

Appendix D: Dirty Tricks 185

Appendix D Dirty Tricks

Do you miss anything in this manual? Do you have any material that should be added? Please
send any contributions to ddd@gnu.org.

mailto:ddd@gnu.org

186 Debugging with DDD

Appendix E: Extending DDD 187

Appendix E Extending DDD

If you have any contributions to be incorporated into ddd, please send them to ddd@gnu.org.
For suggestions on what might be done, see the file ‘TODO’ in the ddd distribution.

mailto:ddd@gnu.org

188 Debugging with DDD

Appendix F: Frequently Answered Questions 189

Appendix F Frequently Answered Questions

See the ddd www page for frequently answered questions not covered in this manual.

http://www.gnu.org/software/ddd/

190 Debugging with DDD

Appendix G: GNU General Public License 191

Appendix G GNU General Public License

Version 3, 29 June 2007
Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your free-
dom to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program—to make sure it remains free
software for all its users. We, the Free Software Foundation, use the GNU General Public License
for most of our software; it applies also to any other work released this way by its authors. You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs, and that you know you can do
these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions be
marked as changed, so that their problems will not be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs
in the area of products for individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those

192 Debugging with DDD

that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a rec-
ognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is
not part of that Major Component, and (b) serves only to enable use of the work with that Major
Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on

Appendix G: GNU General Public License 193

which the executable work runs, or a compiler used to produce the work, or an object code
interpreter used to run it.
The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s Sys-
tem Libraries, or general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked subprograms that the
work is specifically designed to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and
are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work
is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so
long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any appli-
cable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights under
this License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appro-
priate copyright notice; keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact all notices of the absence
of any warranty; and give all recipients a copy of this License along with the Program.

194 Debugging with DDD

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant
date.

b. The work must carry prominent notices stating that it is released under this License and
any conditions added under section 7. This requirement modifies the requirement in sec-
tion 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other way,
but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by a written offer, valid for at least three years and valid for
as long as you offer spare parts or customer support for that product model, to give anyone
who possesses the object code either (1) a copy of the Corresponding Source for all the
software in the product that is covered by this License, on a durable physical medium cus-
tomarily used for software interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

Appendix G: GNU General Public License 195

d. Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal prop-
erty which is normally used for personal, family, or household purposes, or (2) anything de-
signed or sold for incorporation into a dwelling. In determining whether a product is a con-
sumer product, doubtful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial, industrial or non-consumer uses,
unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on
the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

196 Debugging with DDD

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

Appendix G: GNU General Public License 197

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by modifying or prop-
agating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

198 Debugging with DDD

A contributor’s “essential patent claims” are all patent claims owned or controlled by the con-
tributor, whether already acquired or hereafter acquired, that would be infringed by some man-
ner, permitted by this License, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or prop-
agate by procuring conveyance of, a covered work, and grant a patent license to some of the
parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software, under
which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and
in connection with specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under

Appendix G: GNU General Public License 199

this License and any other pertinent obligations, then as a consequence you may not convey
it at all. For example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public Li-
cense into a single combined work, and to convey the resulting work. The terms of this License
will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version
ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version perma-
nently authorizes you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

200 Debugging with DDD

FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in
an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI inter-
face, you would use an “about box”.

Appendix G: GNU General Public License 201

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

202 Debugging with DDD

Appendix H: Help and Assistance 203

Appendix H Help and Assistance

We have set up a mailing list for general ddd discussions. If you need help and assistance for
solving a ddd problem, you find the right people here.

Send message to all receivers of the mailing list to:
ddd@gnu.org

This mailing list is also the place where new ddd releases are announced. If you want to
subscribe the list, or get more information, send a mail to

ddd-request@gnu.org

See also the ddd www page for recent announcements and other news related to ddd.

mailto:ddd@gnu.org
mailto:ddd-request@gnu.org
http://www.gnu.org/software/ddd/

204 Debugging with DDD

Appendix I: GNU Free Documentation License 205

Appendix I GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”.
A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and

206 Debugging with DDD

edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the general

Appendix I: GNU Free Documentation License 207

network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one stating the title, year, au-
thors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.
K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

208 Debugging with DDD

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.
N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a

Appendix I: GNU Free Documentation License 209

single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an “aggregate”, and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

210 Debugging with DDD

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts be-

ing list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Label Index 211

Label Index

(
() . 158

3
3-D Lines . 137

A
Abort . 31, 48
About ddd . 52
Align on Grid . 51
All Signals . 105
Apply . 48
Attach . 96
Attach to Process . 45, 96
Auto-align Displays on Nearest Grid

Point . 133
Automatic Display of Button Hints . . 63
Automatic Display of Variable Values

. 108

B
Backtrace . 49
Bash Console . 46
Bash Reference . 52, 61
Break . 55, 83
Breakpoints . 49
Button . 157

C
Cache Machine Code . 145
Cache source files . 82
Change Directory . 45, 94
Clear . 46, 55, 84, 85
Clear Line . 49
Clear Undo Buffer . 66
Clear Window . 49
Close . 45
Close data window when deleting last

display . 120
Cluster . 116
Cluster Data Displays 116
clustered . 117
Color . 136
Command . 139, 157
Command History . 48
Command Tool . 46
Commands . 44, 48
Complete . 48

Cont . 59
Continue . 47, 98, 100
Continue Automatically when Mouse

Pointer is Frozen 91
Continue Until Here . 85
Continue Without Signal 48, 105
Contour . 137
Copy . 46, 120
Ctrl+A is . 53
Ctrl+C is . 53
Cut . 45, 120

D
Data . 44, 50
Data Scrolling . 133
Data Window . 47
DBX Console . 46
DBX Reference . 52, 61
DBX Settings . 46
DDD www Page . 62
DDD License . 52
DDD News . 52
DDD Reference . 52, 61
DDD Splash Screen . 66
DDD WWW Page . 52
Debug ddd . 51
Debug DDD . 51
Debugger Reference 52, 61
Debugger Settings . 46
Debugger Type . 37
Define Command . 49
Delete . 34, 46, 84, 86
Delete Breakpoint . 84
Detach Process . 45, 97
Detect Aliases . 50, 123
Determine Automatically from

Arguments . 37
Disable . 85, 86
Disable Breakpoint . 85
Disp * . 123
Display . 55, 109
Display () . 50
Display * . 123
Display *() . 123
Display Arguments 51, 113
Display Line Numbers . 50
Display Local Variables 51, 113
Display Machine Code . 50
Display Source Line Numbers 81
Display Two-Dimensional Arrays as

Tables . 121

212 Debugging with DDD

Displays . 50
Do Nothing . 52
Down . 49, 59, 102
Dump Core . 52
Dump Core Now . 51

E
Edit . 44, 45, 59, 147
Edit >> . 88, 157
Edit << . 157
Edit Buttons . 49, 153
Edit Menu . 125
Edit Source . 50, 147
Edit Sources . 147
Edit Themes . 130
Enable . 85, 86
Enable Breakpoint . 85
Enable supported buttons only 153
End . 88, 157
Execute . 157
Execution Window . 46, 96
Exit . 31, 45

F
File . 43, 44
File Name . 135
Find >> . 54, 78
Find >> () . 49
Find << . 78
Find << () . 50
Find Backward . 48
Find Case Sensitive . 50
Find Forward . 48
Find Words Only . 50, 78
Finish . 47, 58, 99

G
GDB Console . 46
GDB Reference . 52, 61
GDB Settings . 46
Get Core File . 34
GNU Make Console . 46
Green background . 128

H
Help . 44, 52, 61
Hide . 55, 111, 112

I
Iconify all windows at once 72
Ignore Count . 87
Include Core Dump . 31
Intel x86 flab gits and registers . . 128
Interrupt . 48, 58, 90

J
JDB Console . 46
JDB Reference . 52, 61
JDB Settings . 46

K
Kill . 48, 59, 106

L
Ladebug Console . 46
Ladebug Reference . 52, 61
Ladebug Settings . 46
Landscape . 138
Layout Graph . 51, 133
Left to right . 115
List Processes . 97
Lookup . 54, 77, 86
Lookup () . 49

M
Machine Code Indentation 145
Machine Code Window . 47
Maintenance . 44, 51
Make . 45, 59, 148
Memory . 50, 141

N
New Display . 126
New Game . 51
Next . 47, 48, 58, 98
Next Instruction . 47, 144
Nexti . 58, 144

Label Index 213

O
On item . 52
Open . 75, 76
Open Class . 44, 75
Open Core Dump . 44
Open Program . 44, 75, 97
Open Recent . 44, 76
Open Session . 33, 45
Open Source . 45, 76
Orientation . 136
Other . 125
Overview . 52

P
Paper Size . 136, 138
Pass . 104
Paste . 46, 120
Perl Console . 46
Perl Reference . 52, 61
Perl Settings . 46
Placement . 115, 117
Plot . 55, 137, 140
Plot Window . 140
Portrait . 138
Preferences . 46
Previous . 48
Print . 55, 90, 104, 108
Print () . 50
Print Command . 135
Print Graph . 45, 135
Print Plot . 138
Program . 44, 47
PYDB Console . 46
PYDB Reference . 52, 61
PYDB Settings . 46

Q
Quit Search . 48

R
Record . 87, 157
Red Background 127, 128, 130
Redo . 45, 59, 62, 78, 102
Refer to Program Sources 82
Refresh . 51
Refresh Displays 115, 121
Registers . 49, 144
Reload Source . 50, 147
Remove Menu . 52

Reset . 105
Restart . 45
Rotate . 55
Rotate Graph . 51, 134
Run . 47, 58, 93
Run Again . 47, 93
Run in Execution Window 47, 95

S
Save Data As . 139
Save Options . 46, 105
Save Session As 31, 45, 105
Scale . 137
Search path for source files 79
Select All . 46
Selected Only . 135, 138
Send . 105
Set . 55, 122
Set Execution Position 99
Set Temporary Breakpoint 85
Set Value . 122
Show . 55, 111
Show All . 112
Show Just . 112
Show More . 112
Show Position and Breakpoints 80
Signals . 49, 104
Small Titles . 127
Small Values . 127
Source . 44, 49
Source indentation . 81
Source Window . 47
Status . 44, 49
Status Displays . 51, 114
Step . 47, 58, 98
Step Instruction . 47, 144
Stepi . 58, 144
Stop . 104
Suppress Values . 119, 127
Suppress X warnings . 30

T
Tab Width . 81
Temp . 86
Theme . 129
Themes . 130
Threads . 49, 103
Threshold for repeated print

elements . 121
Tic Tac Toe . 51

214 Debugging with DDD

Tiny Values . 127
Tip of the Day . 52
Tool Bar Appearance . 68
Tool Buttons Location 59
Top to bottom . 115

U
Uncluster . 117
Uncompress . 65
Undisp . 55, 119
Undisplay . 109
Undo 45, 59, 62, 78, 102, 112, 120
Undo Buffer Size . 66
Uniconify When Ready . 98
Until . 47, 58, 99
Unwatch . 55
Up . 49, 59, 102

V

View . 44, 46, 137

W
Warn if Multiple DDD Instances are

Running . 30
Watch . 55, 90
Watchpoints . 50
Web Browser . 65
What Now? . 52, 61
When DDD Crashes . 51
Window Layout . 67
Writing into executable and core

files . 148

X
XDB Console . 46
XDB Reference . 52, 61
XDB Settings . 46

Key Index 215

Key Index

A
Alt+1 . 46
Alt+2 . 47
Alt+3 . 47
Alt+4 . 47, 50
Alt+8 . 46
Alt+9 . 46
Alt+A . 50
Alt+G . 51
Alt+I . 50
Alt+L . 51
Alt+N . 50
Alt+R . 51
Alt+U . 51
Alt+W . 50
Alt+Y . 51

C
Ctrl+, . 50
Ctrl+- . 50
Ctrl+. 49
Ctrl+/ . 49
Ctrl+= . 50
Ctrl+\ . 31, 48
Ctrl+A . 46
Ctrl+B . 48, 151
Ctrl+C . 31, 46, 48, 53, 90
Ctrl+D . 31
Ctrl+Down . 49, 102
Ctrl+F . 48, 151
Ctrl+F1 . 61
Ctrl+Ins . 46
Ctrl+L . 51
Ctrl+M . 45
Ctrl+N . 45
Ctrl+O . 44
Ctrl+Q . 17, 31, 45
Ctrl+S . 45
Ctrl+Shift+A . 46, 53
Ctrl+U . 46, 49
Ctrl+Up . 49, 102
Ctrl+V . 46
Ctrl+W . 45
Ctrl+X . 45
Ctrl+Y . 45
Ctrl+Z . 45

D
Down . 48, 110, 132, 150

E
Esc . 48
ESC . 31, 53, 90, 151

F
F1 . 61
F12 . 51
F2 . 47
F3 . 47
F4 . 48
F5 . 47
F6 . 47
F7 . 47
F8 . 47
F9 . 47

H
Home . 53

L
Left . 110, 132

R
Return . 48, 150
Right . 110, 132

S
Shift . 110
Shift+Ctrl+L . 50
Shift+Ctrl+U . 49
Shift+Ctrl+V . 50
Shift+Del . 45
Shift+F5 . 47
Shift+F6 . 47
Shift+F9 . 48
Shift+Ins . 46

T
Tab . 48
TAB . 54

U
Up . 48, 110, 132, 150

216 Debugging with DDD

Command Index 217

Command Index

C
cont . 91, 102
contuntil . 158

D
directory . 79
down . 102

F
file . 36

G
gcore . 34
gd . 159
graph apply theme . 130
graph disable display 112
graph display . 110, 114
graph enable display 112
graph plot . 136
graph refresh . 115
graph toggle theme . 130
graph unapply theme . 130
gunzip . 65
gzip . 65

H
hbreak . 89
help . 61

K
kill . 91

M
mwm . 140

P
print . 108

Q
quit . 31, 91

R
remsh . 35
replot . 139
rsh . 35
run . 93

S
set environment . 94
set output . 139
set term . 139

T
target remote . 36
thbreak . 89
tty . 42

U
unset environment . 94
up . 102

Z
zcat . 65

218 Debugging with DDD

Resource Index 219

Resource Index

A
activeButtonColorKey 56
align2dArrays . 121
appDefaultsVersion . 173
arrayOrientation . 113
autoCloseDataWindow 131
autoDebugger . 37
autoRaiseMenu . 53
autoRaiseMenuDelay . 53
autoRaiseTool . 60

B
bash . 38, 39
bashDisplayShortcuts 127
bashInitCommands . 37
blockTTYInput . 41
break_at . 167
bufferGDBOutput . 41
bumpDisplays . 131
buttonCaptionGeometry 57
buttonCaptions . 57
buttonColorKey . 57
buttonDocs . 64
buttonImageGeometry . 57
buttonImages . 57
buttonTips . 64

C
cacheGlyphImages . 80
cacheMachineCode . 145
cacheSourceFiles . 82
checkConfiguration . 173
checkGrabDelay . 91
checkGrabs . 91
checkOptions . 30
CLASSPATH . 79
clear_at . 167
clusterDisplays . 131
commandToolBar . 60
commonToolBar . 69
consoleButtons . 154
consoleHasFocus . 151
contInterruptDelay . 41
cutCopyPasteBindings 53

D
dataButtons . 155
dataFont . 71
dataFontSize . 71
dbxDisplayShortcuts 126
dbxInitCommands . 38
dbxSettings . 38
ddd . 167
DDD . 94
DDD_NO_SIGNAL_HANDLERS 173
DDD_SESSION . 63
DDD_SESSIONS . 34
DDD_STATE . 62
dddinitVersion . 173
debugCoreDumps . 174
debugger . 37
debuggerCommand . 37
decorateTool . 61
defaultFont . 70
defaultFontSize . 70
delete . 167
deleteAliasDisplays 124
detectAliases . 124
disable . 167
disassemble . 145
display . 167
DISPLAY . 26, 34
displayGlyphs . 80
displayLineNumbers . 81
displayPlacement . 116
displayTimeout . 41
dispref . 167
drag_arrow . 167
drag_cond . 167
drag_stop . 167
drag_temp . 167
dumpCore . 174

E
editCommand . 147
EDITOR . 147
enable . 167
expandRepeatedValues 121

F
filterFiles . 82
find_backward . 167
find_forward . 167
findCaseSensitive . 81
findWordsOnly . 81

220 Debugging with DDD

fixedWidthFont . 71
fixedWidthFontSize . 71
flatDialogButtons . 57
flatToolbarButtons . 57
fontSelectCommand . 71

G
gdbDisplayShortcuts 126
gdbInitCommands . 38
gdbSettings . 38
getCoreCommand . 34
globalTabCompletion 150
glyphUpdateDelay . 80
grabAction . 91
grabActionDelay . 91
grey_arrow . 167
grey_cond . 168
grey_stop . 168
grey_temp . 168
groupIconify . 72

H
hide . 168
hideInactiveDisplays 131

I
indentCode . 145
indentScript . 81
indentSource . 81
initSymbols . 40

J
jdbDisplayShortcuts 127
jdbInitCommands . 39
jdbSettings . 39

L
labelDelimiter . 156
lessTifVersion . 182
lineBufferedConsole . 95
lineNumberWidth . 81
linesAboveCursor . 82
linesBelowCursor . 82
listCoreCommand . 36
listDirCommand . 36
listExecCommand . 36
listSourceCommand . 36

lookup . 168

M
maintenance . 174
makeInitCommands . 39
maketemp . 168
maxDisassemble . 145
maxGlyphs . 80
maxUndoDepth . 66
maxUndoSize . 66

N
new_break . 168
new_display . 168
new_watch . 168

O
openDataWindow . 72
openDebuggerConsole . 72
openSelection . 41
openSourceWindow . 72

P
PAGER . 94, 174
pannedGraphEditor . 133
paperSize . 136
perlDisplayShortcuts 127
perlInitCommands . 39
perlSettings . 39
plain_arrow . 168
plain_cond . 168
plain_stop . 168
plain_temp . 168
plot2dSettings . 141
plot3dSettings . 141
plotCommand . 140
plotInitCommands . 140
plotTermType . 140
plotWindowClass . 140
plotWindowDelay . 140
popdownHistorySize . 72
positionTimeout . 41
print . 168
printCommand . 136
properties . 168
psCommand . 97
pydbDisplayShortcuts 127
pydbInitCommands . 40

Resource Index 221

pydbSettings . 40

Q
questionTimeout . 41

R
rotate . 169
rshCommand . 35
runInterruptDelay . 41

S
saveHistoryOnExit . 151
saveOptionsOnExit . 63
selectAllBindings . 54
separateDataWindow . 68
separateExecWindow . 96
separateSourceWindow 68
set . 169
SHELL . 94
show . 169
showBaseDisplayTitles 131
showConfiguration . 174
showDependentDisplayTitles 131
showFonts . 174
showInvocation . 174
showLicense . 174
showManual . 174
showMemberNames . 113
showNews . 174
showVersion . 174
signal_arrow . 169
sortPopdownHistory . 72
sourceButtons . 155
sourceEditing . 147
sourceInitCommands . 39
splashScreen . 67
splashScreenColorKey 67
startupTipCount . 64
startupTips . 64
statusAtBottom . 69
stickyTool . 60
stopAndContinue . 42
structOrientation . 113
suppressTheme . 131
suppressWarnings 30, 174
synchronousDebugger . 42

T
tabWidth . 81
TERM . 94, 96
TERMCAP . 94
termCommand . 96
terminateOnEOF . 42
termType . 96
themes . 131
tipn . 64
toolbarsAtBottom . 68
toolButtons . 156
toolRightOffset . 60
toolTopOffset . 60
trace . 175
typedAliases . 125

U
uncompressCommand . 65
undisplay . 169
uniconifyWhenReady . 73
unwatch . 169
useSourcePath . 82
useTTYCommand . 42

V
valueDocs . 108
valueTips . 108
variableWidthFont . 70
variableWidthFontSize 70
verifyButtons . 156
vslBaseDefs . 131
vslDefs . 132
vslLibrary . 132
vslPath . 132

W
warnIfLocked . 30
watch . 169
WWWBROWSER . 65
wwwCommand . 65
wwwPage . 66

X
xdbDisplayShortcuts 127
xdbInitCommands . 40
xdbSettings . 40
XEDITOR . 147

222 Debugging with DDD

File Index 223

File Index

.

.emacs . 152

.gdbinit . 27, 36, 173

~
~ . 25, 62

C
ChangeLog . 4

D
dbx . 19
Ddd . 62, 73, 161
ddd-3.3.12-rc2-html-manual.tar.gz

. 2
ddd-3.3.12-rc2-pics.tar.gz 2
ddd-3.3.12-rc2.tar.gz 2
ddd-version-html-manual.tar.gz 3
ddd-version-pics.tar.gz 4
ddd-version.tar.gz . 3

E
emacs . 65, 147, 152
emacsclient . 147
emacsserver . 147

F
fig2dev . 135
file . 36
firefox . 65

G
gdb . 19
gdbserver . 36
gnuclient . 147
gnudoit . 65
gnuplot . 137
gnuserv . 147

I
init . 62

J
java.prof . 29
jdb . 19

L
ladebug . 19
less . 174
log . 23, 25, 139, 172
lynx . 65

M
make . 148
mdb . 19
more . 174
mozilla . 65

N
netscape . 65

O
on . 35

P
perl . 19
ps . 97
pydb . 19

R
remsh . 35
rsh . 35

S
sample . 7
sample.c . 7, 16
sessions . 34
ssh . 35
stty . 95
suppress.vsl . 131

T
TODO . 4
transfig . 135

224 Debugging with DDD

V
vi . 147

W
wdb . 19

X

xdb . 19
xemacs . 65, 147, 152
xfig . 135
xfontsel . 71
xmgr . 139
xsm . 33
xterm . 96
xxgdb . 153

Concept Index 225

Concept Index

A
Aborting execution . 31, 48
Ada . 1
Aliases, detecting . 123
Animating plots . 139
Arguments, displaying . 113
Arguments, of the debugged program 94
Arguments, program . 93
Array slices . 120
Array, artificial . 120
Array, plotting . 136
Artificial arrays . 120
Assertions and breakpoints . 87
Assertions and watchpoints . 89
Assignment . 122
Assistance . 203
Auto-command . 159
Automatic Layout . 134

B
Balloon help . 61
Bash . 1
Bash, invoking ddd with . 17
Box library . 4
Breakpoint . 83
Breakpoint commands . 87
Breakpoint commands, vs. conditions 87
Breakpoint conditions . 86
Breakpoint ignore counts . 87
Breakpoint properties . 86
Breakpoint, copying . 88
Breakpoint, deleting . 84
Breakpoint, disabling . 85
Breakpoint, dragging . 88
Breakpoint, editing . 86
Breakpoint, enabling . 85
Breakpoint, hardware-assisted 89
Breakpoint, looking up . 88
Breakpoint, moving . 88
Breakpoint, setting . 83
Breakpoint, temporary . 85
Breakpoint, toggling . 55
Breakpoints, editing . 88
Button editor . 153
Button tip . 61
Button tip, turning off . 63
Buttons, defining . 153

C
C . 1
C++ . 1
Call stack . 100
Chill . 1
Class, opening . 75
Clipboard . 45
Clipboard, putting displays . 120
Cluster . 116
Cluster, and plotting . 138
Clustered display, creating . 110
Command completion . 149
Command history . 150
Command tool . 43
Command, argument . 158
Command, auto . 159
Command, breakpoint . 87
Command, defining . 156
Command, defining in gdb . 157
Command, defining with other debuggers 159
Command, recording . 157
Command, repeating . 150
Command, searching . 150
Command, user-defined . 156
Command-line debugger . 1
Compact Layout . 134
Completion of commands . 149
Completion of quoted strings 150
Conditions on breakpoints . 86
Context-sensitive help . 61
Continue, at different address 99
Continue, one line . 98
Continue, to location . 99
Continue, to next line . 98
Continue, until function returns 99
Continue, until greater line is reached 99
Continuing execution . 98
Continuing process execution 97
Contour lines, in plots . 137
Contributors . 4
Copying displays . 120
Core dump, opening . 76
Core file, in sessions . 31
Cutting displays . 120

226 Debugging with DDD

D
Data Theme . 127
Data window . 43
Data Window . 109
dbx . 1
dbx, invoking ddd with . 18
Debugger console . 43
Debugger, on remote host . 35
Debugging ddd . 173
Debugging flags . 148
Debugging optimized code . 75
Default session . 33
Deferred display . 110
Deferred display, in sessions . 32
Deleting displays . 55, 119
Deleting displays, undoing . 120
Dependent display . 110
Dereferencing . 123
Detail toggling with ‘Show/Hide’ 55
Detail, hiding . 111
Detail, showing . 111
Directory, of the debugged program 94
Disabled displays . 112
Disabling displays, undoing 112
Display . 109
Display Editor . 117
Display name . 110
Display position . 110
Display selection . 110
Display title . 110
Display value . 110
Display, aligning on grid . 133
Display, clustered . 110
Display, clustering . 116
Display, copying . 120
Display, creating . 55, 109
Display, customizing . 127
Display, cutting . 120
Display, deferred . 110
Display, deleting . 55, 119
Display, dependent . 110, 122
Display, disabled . 112
Display, frozen . 91
Display, hiding details . 111
Display, locked . 91
Display, moving . 132
Display, pasting . 120
Display, placement . 115
Display, plotting the history 138
Display, refreshing . 115
Display, rotating . 55, 112
Display, selecting . 110

Display, setting . 34, 55
Display, setting when invoking ddd 26
Display, showing details . 111
Display, suppressing . 119
Display, toggling detail . 55
Display, updating . 115
Displaying values . 107, 109
Displaying values with ‘Display’ 55
Dumping values . 107

E
Edge . 122
Edge hint . 123, 134
Editing source code . 147
Emacs, integrating ddd . 152
Emergency repairs . 148
Environment, of the debugged program 94
eprom code debugging . 89
Examining memory contents 141
Execution position, dragging 99
Execution window . 43, 95
Execution, “undoing” . 102
Execution, aborting . 31, 48
Execution, at different address 99
Execution, continuing . 98
Execution, interrupting . 31
Execution, interrupting automatically 42
Execution, one line . 98
Execution, to location . 99
Execution, to next line . 98
Execution, until function returns 99
Execution, until greater line is reached 99
Exiting . 31
Extending display selection 110

F
FIG file, printing as . 135
Files, opening . 75
Finding items . 54
Fonts . 69
FORTRAN . 1
Frame . 100
Frame changes, undoing . 102
Frame number . 101
Frame pointer . 101
Frame, selecting . 102

Concept Index 227

G
GCC . 75
gdb . 1
gdb, invoking ddd with . 18
Glyph . 80
GNU Make . 1
GNU Make, invoking ddd with 18
GPL . 3
Grabbed pointer . 91
Graph, printing . 134
Graph, rotating . 134
Grid, aligning displays . 133
Grid, in plots . 137

H
Help . 61, 203
Help, in the status line . 61
Help, on buttons . 61
Help, on commands . 61
Help, on items . 61
Help, when stuck . 61
Hiding display details . 111
Historic mode . 102
History . 4
History, plotting . 138
Host, remote . 34
HTML manual . 2

I
IBMGL file, printing as . 135
Icon, invoking ddd as . 26
Ignore count . 87
Indent, source code . 81
Inferior debugger . 1
Info manual . 2
Initial frame . 100
Innermost frame . 100
Input of the debugged program 94
Instruction, stepping . 144
Integrating ddd . 152
Interrupting ddd . 31
Interrupting execution . 31
Interrupting execution, automatically 42
Invoking . 17

J
Java . 1
jdb . 1
jdb, invoking ddd with . 17
Jump to different address . 99

K
Killing ddd . 31
Killing the debugged program 106

L
Lütkehaus, Dorothea . 4
Ladebug . 1
Ladebug, invoking ddd with . 18
License . 3, 191
License, Documentation . 205
License, showing on standard output 21
Line numbers . 81
Local variables, displaying . 113
Logging . 172
Logging, disabling . 173
Looking up breakpoints . 88
Looking up items . 54
Lookups, redoing . 78
Lookups, undoing . 78

M
Machine code window . 43
Machine code, examining . 143
Machine code, executing . 144
Mailing list . 203
Make, invoking . 148
Manual, showing on standard output 22
Memory, dumping contents 107
Memory, examining . 141
Modula-2 . 1
Modula-3 . 1
Mouse pointer, frozen . 91

N
Name, display . 110
News, showing on standard output 22
NORA . 4

228 Debugging with DDD

O
Optimized code, debugging . 75
Option . 17
Outermost frame . 100
Output of the debugged program 94

P
Pascal . 1
Pasting displays . 120
Patching . 148
PDF manual . 2
Perl . 2
Perl, invoking ddd with . 18
PIC file, printing as . 135
Pipe . 94
Placement . 115
Plot appearance . 137
Plot, animating . 139
Plot, exporting . 139
Plot, printing . 138
Plot, scrolling . 137
Plotting style . 137
Plotting values . 55, 107, 136
Pointers, dereferencing . 123
Position, of display . 110
PostScript manual . 2
PostScript, printing as . 135
Print, output formats . 108
Printing plots . 138
Printing the Graph . 134
Printing values . 107, 108
Printing values with ‘Print’ 55
Process, attaching . 96
Program arguments . 93
Program counter, displaying 144
Program output, confusing . 95
Program, on remote host . 36
Program, opening . 75
Program, patching . 148
PSG . 4
pydb . 2
pydb, invoking ddd with . 18
Python . 2

Q
Quitting . 31
Quotes in commands . 150

R
Readline . 152
Recompiling . 148
Recording commands . 157
Redirecting I/O of the debugged program 94
Redirecting I/O to the execution window 95
Redirection . 94
Redirection, to execution window 42, 95
Redoing commands . 62
Redoing lookups . 78
Refreshing displayed values 115
Registers, examining . 144
Reloading source code . 147
Remote debugger . 35
Remote host . 34
Remote program . 36
Resource, setting when invoking ddd 26
Resources . 62
rom code debugging . 89
Rotating displays with ‘Rotate’ 55
Rotating the graph . 134
Running the debugged program 93

S
Scalars, plotting . 137
Scales, in plots . 137
Scrolling . 133
Search, using ‘Find >>’ . 54
Searching commands . 150
Selecting frames . 102
Selecting multiple displays . 110
Selecting single displays . 110
Session . 31
Session, active . 32
Session, default . 33
Session, deleting . 34
Session, opening . 33
Session, resuming . 33
Session, saving . 31
Session, setting when invoking ddd 24
Setting variables . 122
Setting variables with ‘Set’ . 55
Shared structures, detecting 123
Showing display details . 111
SIGABRT signal . 31, 48
SIGALRM signal . 104
SIGINT signal . 90, 104
Signal settings, editing . 104
Signal settings, saving . 105
Signal, fatal . 104
Signal, sending to ddd . 31

Concept Index 229

Signals . 104
SIGSEGV signal . 104
SIGTRAP signal . 105
SIGUSR1 signal . 51, 173
Source code, editing . 147
Source code, recompiling . 148
Source code, reloading . 147
Source directory . 78
Source file, opening . 76
Source file, typing into . 151
Source path . 79
Source path, specifying . 79
Source window . 43
Source, accessing . 78
Stack frame . 100
Stack Frame . 100
Stack, moving within . 102
Status display . 114
Status line . 61
Status line, location . 69
Suppressing values . 119

T
Tab width . 81
TEX file, printing as . 135
TEXinfo manual . 2
Theme, Data . 127
Theme, editing . 130
Theme, for suppressing values 119
Threads . 103
Tic Tac Toe game . 51
Tip of the day . 62
Tip of the day, turning off . 64
Tip, on buttons . 61
Tip, value . 107
Title, display . 110
Tool Bar, location . 68
Tool tip . 61
Tornado . 177
tty interface . 152
tty mode, setting when invoking ddd 25
tty settings . 95

U
Undo deleting displays . 120
Undo disabling displays . 112
Undoing commands . 62
Undoing frame changes . 102
Undoing lookups . 78
Undoing program execution 102
Undoing signal handling . 105

Updating displayed values . 115
User-defined command . 156

V
Value tip . 107
Value, display . 110
Value, displaying . 107, 109
Value, dumping . 107
Value, plotting . 107
Value, plotting the history . 138
Value, printing . 107, 108
Values, displaying with ‘Display’ 55
Values, plotting . 136
Values, plotting with ‘Plot’ 55
Values, printing with ‘Print’ 55
Values, suppressing . 119
Variables, setting . 122
Variables, setting with ‘Set’ 55
virtual machine . 28
VM . 28
VSL . 4

W
Watchpoint . 83, 89
Watchpoint properties . 90
Watchpoint, deleting . 90
Watchpoint, editing . 90
Watchpoint, setting . 90
Watchpoint, toggling . 55
Watchpoints, editing . 90
WDB . 177
wdb, invoking ddd with 18, 177
WildeBeest . 177
WindRiver GDB . 177
Working directory, of the debugged program 94

X
X programs, stopping . 91
X server, frozen . 91
X server, locked . 91
X session . 33
X Warnings, suppressing . 30
xdb . 1
xdb, invoking ddd with . 18
XEmacs, integrating ddd . 152
xxgdb, integrating ddd . 153

Z
Zeller, Andreas . 4

230 Debugging with DDD

	Summary of DDD
	About this Manual
	Typographic conventions
	Free software
	Getting DDD
	Contributors to DDD
	History of DDD
	A Sample DDD Session
	Sample Program

	Getting In and Out of DDD
	Invoking DDD
	Choosing an Inferior Debugger
	DDD Options
	X Options
	Inferior Debugger Options
	GDB Options
	DBX and Ladebug Options
	XDB Options
	JDB Options
	Bash Options
	GNU Make Options
	Perl Options
	PYDB Options

	Multiple DDD Instances
	X warnings

	Quitting DDD
	Persistent Sessions
	Saving Sessions
	Resuming Sessions
	Deleting Sessions
	Customizing Sessions

	Remote Debugging
	Running DDD on a Remote Host
	Using DDD with a Remote Inferior Debugger
	Customizing Remote Debugging

	Debugging a Remote Program

	Customizing Interaction with the Inferior Debugger
	Invoking an Inferior Debugger
	Initializing the Inferior Debugger
	Bash Initialization
	DBX Initialization
	GDB Initialization
	JDB Initialization
	GNU Make Initialization
	Perl Initialization
	PYDB Initialization
	XDB Initialization
	Finding a Place to Start
	Opening the Selection

	Communication with the Inferior Debugger

	The DDD Windows
	The Menu Bar
	The File Menu
	The Edit Menu
	The View Menu
	The Program Menu
	The Commands Menu
	The Status Menu
	The Source Menu
	The Data Menu
	The Maintenance Menu
	The Help Menu
	Customizing the Menu Bar
	Auto-Raise Menus
	Customizing the Edit Menu

	The Tool Bar
	Customizing the Tool Bar

	The Command Tool
	Customizing the Command Tool
	Disabling the Command Tool

	Command Tool Position
	Customizing Tool Decoration

	Getting Help
	Undoing and Redoing Commands
	Customizing DDD
	How Customizing DDD Works
	Resources
	Changing Resources
	Saving Options

	Customizing DDD Help
	Button Tips
	Tip of the day
	Help Helpers

	Customizing Undo
	Customizing the DDD Windows
	Splash Screen
	Window Layout
	Customizing Fonts
	Toggling Windows
	Text Fields
	Icons
	Adding Buttons
	More Customizations

	Debugger Settings

	Navigating through the Code
	Compiling for Debugging
	Opening Files
	Opening Programs
	Opening Core Dumps
	Opening Source Files
	Filtering Files

	Looking up Items
	Looking up Definitions
	Textual Search
	Looking up Previous Locations
	Specifying Source Directories

	Customizing the Source Window
	Customizing Glyphs
	Customizing Searching
	Customizing Source Appearance
	Customizing Source Scrolling
	Customizing Source Lookup
	Customizing File Filtering

	Stopping the Program
	Breakpoints
	Setting Breakpoints
	Setting Breakpoints by Location
	Setting Breakpoints by Name
	Setting Regexp Breakpoints

	Deleting Breakpoints
	Disabling Breakpoints
	Temporary Breakpoints
	Editing Breakpoint Properties
	Breakpoint Conditions
	Breakpoint Ignore Counts
	Breakpoint Commands
	Moving and Copying Breakpoints
	Looking up Breakpoints
	Editing all Breakpoints
	Hardware-Assisted Breakpoints

	Watchpoints
	Setting Watchpoints
	Editing Watchpoint Properties
	Editing all Watchpoints
	Deleting Watchpoints

	Interrupting
	Stopping X Programs
	Customizing Grab Checking

	Running the Program
	Starting Program Execution
	Your Program's Arguments
	Your Program's Environment
	Your Program's Working Directory
	Your Program's Input and Output

	Using the Execution Window
	Customizing the Execution Window

	Attaching to a Running Process
	Customizing Attaching to Processes

	Program Stops
	Resuming Execution
	Continuing
	Stepping one Line
	Continuing to the Next Line
	Continuing Until Here
	Continuing Until a Greater Line is Reached
	Continuing Until Function Returns

	Continuing at a Different Address
	Examining the Stack
	Stack Frames
	Backtraces
	Selecting a Frame

	``Undoing'' Program Execution
	Examining Threads
	Handling Signals
	Killing the Program

	Examining Data
	Showing Simple Values using Value Tips
	Printing Simple Values in the Debugger Console
	Displaying Complex Values in the Data Window
	Display Basics
	Creating Single Displays
	Selecting Displays
	Showing and Hiding Details
	Rotating Displays
	Displaying Local Variables
	Displaying Program Status
	Refreshing the Data Window
	Display Placement
	Clustering Displays
	Creating Multiple Displays
	Editing all Displays
	Deleting Displays

	Arrays
	Array Slices
	Repeated Values
	Arrays as Tables

	Assignment to Variables
	Examining Structures
	Displaying Dependent Values
	Dereferencing Pointers
	Shared Structures
	Display Shortcuts

	Customizing Displays
	Using Data Themes
	Applying Data Themes to Several Values
	Editing Themes
	Writing Data Themes
	Display Resources
	VSL Resources

	Layouting the Graph
	Moving Displays
	Scrolling Data
	Aligning Displays
	Automatic Layout
	Rotating the Graph

	Printing the Graph

	Plotting Values
	Plotting Arrays
	Changing the Plot Appearance
	Plotting Scalars and Composites
	Plotting Display Histories
	Printing Plots
	Entering Plotting Commands
	Exporting Plot Data
	Animating Plots
	Customizing Plots
	Gnuplot Invocation
	Gnuplot Settings

	Examining Memory

	Machine-Level Debugging
	Examining Machine Code
	Machine Code Execution
	Examining Registers
	Customizing Machine Code

	Changing the Program
	Editing Source Code
	Customizing Editing
	In-Place Editing

	Recompiling
	Patching

	The Command-Line Interface
	Entering Commands
	Command Completion
	Command History
	Typing in the Source Window

	Entering Commands at the TTY
	Integrating DDD
	Using DDD with Emacs
	Using DDD with XEmacs
	Using DDD with XXGDB

	Defining Buttons
	Customizing Buttons

	Defining Commands
	Defining Simple Commands using GDB
	Defining Argument Commands using GDB
	Defining Commands using Other Debuggers

	Application Defaults
	Actions
	General Actions
	Data Display Actions
	Debugger Console Actions
	Source Window Actions

	Images
	Bugs and How To Report Them
	Where to Send Bug Reports
	Is it a DDD Bug?
	How to Report Bugs
	What to Include in a Bug Report
	Getting Diagnostics
	Logging
	Disabling Logging

	Debugging DDD
	Customizing Diagnostics

	Configuration Notes
	Using DDD with GDB
	Using DDD with WDB
	Using DDD with WindRiver GDB (Tornado)

	Using DDD with Bash
	Using DDD with DBX
	Using DDD with Ladebug
	Using DDD with JDB
	Using DDD with GNU Make
	Using DDD with Perl
	Using DDD with Python
	Using DDD with XDB
	Using DDD with LessTif
	Dirty Tricks
	Extending DDD
	Frequently Answered Questions
	GNU General Public License
	Help and Assistance
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Label Index
	Key Index
	Command Index
	Resource Index
	File Index
	Concept Index

