
Package ‘tinycodet’
May 7, 2024

Title Functions to Help in your Coding Etiquette

Version 0.5.0

Description Adds some functions to help in your coding etiquette.
'tinycodet' primarily focuses on 4 aspects.
1) Safer decimal (in)equality testing,
standard-evaluated alternatives to with() and aes(),
and other functions for safer coding.
2) A new package import system,
that attempts to combine the benefits of using a package without attaching it,
with the benefits of attaching a package.
3) Extending the string manipulation capabilities of the 'stringi' R package.
4) Reducing repetitive code.
Besides linking to 'Rcpp', 'tinycodet' has only one other dependency, namely 'stringi'.

License MIT + file LICENSE

Encoding UTF-8

LinkingTo Rcpp

RoxygenNote 7.3.1

Suggests tinytest, ggplot2, mgcv, nlme, collapse, kit, knitr,
rmarkdown, roxygen2

Depends R (>= 4.1.0)

Imports Rcpp (>= 1.0.11), stringi (>= 1.7.12)

URL https://github.com/tony-aw/tinycodet/,

https://tony-aw.github.io/tinycodet/

BugReports https://github.com/tony-aw/tinycodet/issues/

Language en-gb

NeedsCompilation yes

Author Tony Wilkes [aut, cre, cph] (<https://orcid.org/0000-0001-9498-8379>)

Maintainer Tony Wilkes <tony_a_wilkes@outlook.com>

Repository CRAN

Date/Publication 2024-05-07 21:20:03 UTC

1

https://github.com/tony-aw/tinycodet/
https://tony-aw.github.io/tinycodet/
https://github.com/tony-aw/tinycodet/issues/
https://orcid.org/0000-0001-9498-8379


2 aaa0_tinycodet_help

R topics documented:
aaa0_tinycodet_help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
aaa1_tinycodet_safer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
aaa2_tinycodet_import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
aaa3_tinycodet_strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
aaa4_tinycodet_dry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
aaa5_tinycodet_misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
atomic_conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
decimal_truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
import_as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
import_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
import_inops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
import_inops.control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
import_LL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
inplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
logic_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
matrix_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
pkgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
pversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
report_inops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
safer_partialmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
source_selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
strcut_loc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
stri_join_mat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
stri_locate_ith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
str_arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
str_search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
str_subset_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
subset_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
s_pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
transform_if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
with_pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
x.import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Index 71

aaa0_tinycodet_help tinycodet: Functions to Help in your Coding Etiquette

Description

Welcome to the ’tinycodet’ introduction help page!

’tinycodet’ adds some functions to help in your coding etiquette.
It primarily focuses on 4 aspects:



aaa0_tinycodet_help 3

(1) Safer decimal (in)equality testing, standard-evaluated alternatives to with() and aes(), and
other functions for safer coding;
see tinycodet_safer.

(2) A new package import system, that attempts to combine the benefits of using a package without
attaching it, with the benefits of attaching a package;
see tinycodet_import

(3) Extending the string manipulation capabilities of the ’stringi’ R-package;
see tinycodet_strings.

(4) Reducing repetitive code;
see tinycodet_dry.

And some miscellaneous functionality; see tinycodet_misc.

Please check the Change-log (see links below) regularly for updates (such as bug fixes).

’tinycodet’ adheres to the tinyverse philosophy. Besides linking to ’Rcpp’, ’tinycodet’ only has
one other dependency: ’stingi’. No other dependencies, thus avoiding "dependency hell". Most
functions in this R-package are vectorized and optimised.

Author(s)

Maintainer: Tony Wilkes <tony_a_wilkes@outlook.com> (ORCID)

References

The badges shown in the documentation of this R-package were made using the services of: https:
//shields.io/

See Also

Useful links:

• ’tinycodet’ GitHub main page and Read-Me: https://github.com/tony-aw/tinycodet/

• ’tinycodet’ package website: https://tony-aw.github.io/tinycodet/

• Report bugs at: https://github.com/tony-aw/tinycodet/issues/

• Changelog: https://github.com/tony-aw/tinycodet/blob/main/NEWS.md/ or
https://tony-aw.github.io/tinycodet/news/index.html

• The ’fastverse’, which is related to the ’tinyverse’: https://github.com/fastverse/fastverse/

https://www.tinyverse.org/
https://orcid.org/0000-0001-9498-8379
https://shields.io/
https://shields.io/
https://github.com/tony-aw/tinycodet/
https://tony-aw.github.io/tinycodet/
https://github.com/tony-aw/tinycodet/issues/
https://github.com/tony-aw/tinycodet/blob/main/NEWS.md/
https://tony-aw.github.io/tinycodet/news/index.html
https://github.com/fastverse/fastverse/


4 aaa2_tinycodet_import

aaa1_tinycodet_safer Overview of the ’tinycodet’ "Safer" Functionality

Description

To help make your code safer, the ’tinycodet’ R-package introduces a few functions:

• Safer decimal (in)equality testing.

• The lock_TF function to set and lock T and F to TRUE and FALSE, respectively.

• The %<-c% operator to assign locked constants.

• Standard evaluated versions of some common expression-evaluation functions:
with_pro and aes_pro.

• safer_partialmatch to set options for safer dollar, arguments, and attribute matching.

See Also

tinycodet_help

Examples

x <- c(0.3, 0.6, 0.7)
y <- c(0.1*3, 0.1*6, 0.1*7)
x == y # gives FALSE, but should be TRUE
x %d==% y # here it's done correctly

aaa2_tinycodet_import Overview of the ’tinycodet’ Import System

Description

The ’tinycodet’ R-package introduces a new package import system.

One can use a package without attaching the package - for example by using the :: operator.
Or, one can explicitly attach a package - for example by using the library function.
The advantages and disadvantages of using without attaching a package versus attaching a pack-
age, at least those relevant here, are compactly presented in the following list:

(1) Prevent masking functions from other packages:
use without attach: Yes(advantage); attaching: No(disadvantage);



aaa2_tinycodet_import 5

(2) Prevent masking core R functions:
use without attach: Yes(advantage); attaching: No(disadvantage);

(3) Clarify which function came from which package:
use without attach: Yes(advantage); attaching: No(disadvantage);

(4) Enable functions only in current/local environment instead of globally:
use without attach: Yes(advantage); attaching: No(disadvantage);

(5) Prevent namespace pollution:
use without attach: Yes(advantage); attaching: No(disadvantage);

(6) Minimise typing - especially for infix operators
(i.e. typing package::`%op%`(x, y) instead of x %op% y is cumbersome):
use without attach: No(disadvantage); attaching: Yes(advantage);

(7) Use multiple related packages, without constantly switching between package prefixes
(i.e. doing packagename1::some_function1();
packagename2::some_function2();
packagename3::some_function3() is chaotic and cumbersome):
use without attach: No(disadvantage); attaching: Yes(advantage);

What ’tinycodet’ attempts to do with its import system, is to somewhat find the best of both worlds.
It does this by introducing the following functions:

• import_as: Import a main package, and optionally its re-exports + its direct dependencies + its
direct extensions, under a single alias. This essentially combines the attaching advantage of
using multiple related packages (item 7 on the list), whilst keeping most advantages of using
without attaching a package.

• import_inops: Expose infix operators from a package or an alias object to the current environ-
ment. This gains the attaching advantage of less typing (item 6 on the list), whilst simultane-
ously avoiding the disadvantage of attaching functions from a package globally (item 4 on the
list).

• import_data: Directly return a data set from a package, to allow straight-forward assignment.

Furthermore, there are two miscellaneous import_ - functions: import_LL and import_int.

The import system also includes general helper functions:

• The x.import functions: helper functions specifically for the ’tinycodet’ import system.

• The pversion_ functions: check mismatch between loaded package version and package ver-
sion in library path.

• The pkgs - functions: general helper functions regarding packages.

See the examples section below to get an idea of how the ’tinycodet’ import system works in prac-
tice. More examples can be found on the website (https://tony-aw.github.io/tinycodet/)

https://tony-aw.github.io/tinycodet/


6 aaa2_tinycodet_import

Details

When to Use or Not to Use the ’tinycodet’ Import System
The ’tinycodet’ import system is helpful particularly for packages that have at least one of the
following properties:

• The namespace of the package(s) conflicts with other packages.

• The namespace of the package(s) conflicts with core R, or with those of recommended R
packages.

• The package(s) have function names that are generic enough, such that it is not obvious which
function came from which package.

See examples below.

There is no necessity for using the ’tinycodet’ import system with every single package. One can
safely attach the ’stringi’ package, for example, as ’stringi’ uses a unique and immediately recog-
nisable naming scheme (virtually all ’stringi’ functions start with "stri_"), and this naming scheme
does not conflict with core R, nor with most other packages.

Of course, if one wishes to use a package (like ’stringi’) only within a specific environment, like
only inside a function, it becomes advantageous to still import the package using the ’tinycodet’
import system. In that case the import_LL function would be most applicable.

Some Additional Comments on the ’tinycodet’ Import System

• (S3) Methods will automatically be registered.

• Pronouns, such as the .data and .env pronouns from the ’rlang’ package, will work without
any prefixes required.

• All functions imported by the import_as, import_inops, or import_LL functions have a "pack-
age" attribute, so you will always know which function came from which package.

See Also

tinycodet_help

Examples

all(c("dplyr", "powerjoin", "magrittr") %installed in% .libPaths())

# NO packages are being attached in any of the following code

# import 'dplyr' + its re-exports + extension 'powerjoin', under alias "dpr.":
import_as(

~ dpr., "dplyr", re_exports = TRUE, extensions = "powerjoin"



aaa3_tinycodet_strings 7

)

# exposing infix operators from 'magrrittr' to current environment:
import_inops("magrittr")

# directly assigning dplyr's "starwars" dataset to object "d":
d <- import_data("dplyr", "starwars")

# See it in Action:
d %>% dpr.$filter(species == "Droid") %>%

dpr.$select(name, dpr.$ends_with("color"))

male_penguins <- dpr.$tribble(
~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g,
"Giordan", "Gentoo", "Biscoe", 222L, 5250L,
"Lynden", "Adelie", "Torgersen", 190L, 3900L,
"Reiner", "Adelie", "Dream", 185L, 3650L

)

female_penguins <- dpr.$tribble(
~name, ~species, ~island, ~flipper_length_mm, ~body_mass_g,
"Alonda", "Gentoo", "Biscoe", 211, 4500L,
"Ola", "Adelie", "Dream", 190, 3600L,
"Mishayla", "Gentoo", "Biscoe", 215, 4750L,

)
dpr.$check_specs()

dpr.$power_inner_join(
male_penguins[c("species", "island")],
female_penguins[c("species", "island")]

)

mypaste <- function(x, y) {
import_LL("stringi", selection = "stri_c")
stringi::stri_c(x, y)

}
mypaste("hello ", "world")

aaa3_tinycodet_strings

Overview of the ’tinycodet’ Extension of ’stringi’

Description

Virtually every programming language, even those primarily focused on mathematics, will at some
point have to deal with strings. R’s atomic classes boil down to some form of either numbers or
characters. R’s numerical functions are generally very fast. But R’s native string functions are



8 aaa3_tinycodet_strings

somewhat slow, do not have a unified naming scheme, and are not as comprehensive as R’s impres-
sive numerical functions. The primary R-package that fixes this is ’stringi’.

’stringi’ is arguably the fastest and most comprehensive string manipulation package available at the
time of writing. Many string related packages fully depend on ’stringi’ (see its reverse-dependencies
on CRAN).

As string manipulation is so important to programming languages, ’tinycodet’ adds a little bit new
functionality to ’stringi’.

’tinycodet’ adds the following functions to extend ’stringi’:

• Find ith pattern occurrence (stri_locate_ith), or ith text boundary (stri_locate_ith_boundaries).
• Concatenate a character matrix row- or column-wise.

’tinycodet’ adds the following operators, to complement the already existing ’stringi’ operators:

• Infix operators for string arithmetic.
• Infix operators for string sub-setting, which get or remove the first and/or last n characters

from strings.
• Infix operators for detecting patterns, and strfind()<- for locating/extracting/replacing found

patterns.

And finally, ’tinycodet’ adds the somewhat separate strcut_-functions, to cut strings into pieces
without removing the delimiters.

Regarding Vector Recycling in the ’stringi’-based Functions

Generally speaking, vector recycling is supported as ’stringi’ itself supports it also.
There are, however, a few exceptions.
First, matrix inputs (like in strcut_loc and string sub-setting operators) will generally not be re-
cycled.
Second, the i argument in stri_locate_ith does not support vector recycling.
Scalar recycling is virtually always supported.

References

Gagolewski M., stringi: Fast and portable character string processing in R, Journal of Statistical
Software 103(2), 2022, 1–59, doi:10.18637/jss.v103.i02

See Also

tinycodet_help, s_pattern

https://doi.org/10.18637/jss.v103.i02


aaa4_tinycodet_dry 9

Examples

# character vector:
x <- c("3rd 1st 2nd", "5th 4th 6th")
print(x)

# detect if there are digits:
x %s{}% "\\d"

# find second last digit:
loc <- stri_locate_ith(x, i = -2, regex = "\\d")
stringi::stri_sub(x, from = loc)

# cut x into matrix of individual words:
mat <- strcut_brk(x, "word")

# sort rows of matrix using the fast %row~% operator:
rank <- stringi::stri_rank(as.vector(mat)) |> matrix(ncol = ncol(mat))
sorted <- mat %row~% rank
sorted[is.na(sorted)] <- ""

# join elements of every row into a single character vector:
stri_c_mat(sorted, margin = 1, sep = " ")

aaa4_tinycodet_dry Overview of the ’tinycodet’ "Don’t Repeat Yourself" Functionality

Description

"Don’t Repeat Yourself", sometimes abbreviated as "DRY", is the coding principle not to write
unnecessarily repetitive code. To help in that effort, the ’tinycodet’ R-package introduces a few
functions:

• The transform_if function

• Atomic type casting without stripping attributes.

• The subset_if operators and the in-place unreal modifier operator.

• The general in-place (mathematical) modification operator.

See Also

tinycodet_help

Examples

object <- matrix(c(-9:8, NA, NA) , ncol=2)



10 atomic_conversions

# in base R:
ifelse( # repetitive, and gives unnecessary warning

is.na(object > 0), -Inf,
ifelse(
object > 0, log(object), object^2

)
)
mtcars$mpg[mtcars$cyl>6] <- (mtcars$mpg[mtcars$cyl>6])^2 # long

# with tinycodet:
object |> transform_if(\(x) x > 0, log, \(x) x^2, \(x) -Inf) # compact & no warning
mtcars$mpg[mtcars$cyl > 6] %:=% \(x) x^2 # short

aaa5_tinycodet_misc Overview of the ’tinycodet’ Miscellaneous Functionality

Description

Some additional functions provided by the ’tinycodet’ R-package:

• Infix logical operators for exclusive-or, not-and, not-in, number-type, and string-type.

• Infix operators for row- and column-wise re-ordering of matrices.

• Report infix operators present in the current environment, or a specified environment.

• source_selection to source only selected objects.

See Also

tinycodet_help()

atomic_conversions Atomic Type Casting Without Stripping Attributes

Description

Atomic type casting in R is generally performed using the functions as.logical, as.integer, as.double,
as.character, as.complex, and as.raw.

Converting an object between atomic types using these functions strips the object of its attributes,
including attributes such as names and dimensions.

The functions provided here by the ’tinycodet’ package preserve all attributes - except the "class"
attribute.



atomic_conversions 11

The functions are as follows:

• as_bool(): converts object to atomic type logical (TRUE, FALSE, NA).

• as_int(): converts object to atomic type integer.

• as_dbl(): converts object to atomic type double (AKA decimal numbers).

• as_chr(): converts object to atomic type character.

• as_cplx(): converts object to atomic type complex.

• as_raw():converts object to atomic type raw.

Usage

as_bool(x, ...)

as_int(x, ...)

as_dbl(x, ...)

as_chr(x, ...)

as_cplx(x, ...)

as_raw(x, ...)

Arguments

x vector, matrix, array (or a similar object where all elements share the same type).

... further arguments passed to or from other methods.

Value

The converted object.

See Also

tinycodet_dry

Examples

x <- c(rep(0, 2), seq(0, 2.5, by=0.5)) |> matrix(ncol=2)
colnames(x) <- c("one", "two")
attr(x, "test") <- "test"
print(x)

# notice that in all following, attributes (except class) are conserved:
as_bool(x)
as_int(x)
as_dbl(x)



12 decimal_truth

as_chr(x)

decimal_truth Safer Decimal Number (In)Equality Testing Operators

Description

The %d==%, %d!=% %d<%, %d>%, %d<=%, %d>=% (in)equality operators perform decimal (type "dou-
ble") number truth testing.
They are virtually equivalent to the regular (in)equality operators,
==, !=, <, >, <=, >=,
except for 2 aspects:

1. The decimal number (in)equality operators assume that if the absolute difference between any
2 numbers x and y is smaller than the Machine tolerance, sqrt(.Machine$double.eps), then
x and y should be consider to be equal.
For example: 0.1*7 == 0.7 returns FALSE, even though they are equal, due to the way decimal
numbers are stored in programming languages like ’R’ and ’Python’.
But 0.1*7 %d==% 0.7 returns TRUE.

2. Only numeric input is allowed, so characters are not coerced to numbers.
I.e. 1 < "a" gives TRUE, whereas 1 %d<% "a" gives an error.
For character equality testing, see %s==% from the ’stringi’ package.

Thus these operators provide safer decimal number (in)equality tests.

There are also the x %d{}% bnd and x %d!{}% bnd operators, where bnd is a vector of length 2,
or a 2-column matrix (nrow(bnd)==length(x) or nrow(bnd)==1).
The x %d{}% bnd operator checks if x is within the closed interval with bounds defined by bnd.
The x %d!{}% bnd operator checks if x is outside the closed interval with bounds defined by bnd.

Moreover, the function is_wholenumber() is added, to safely test for whole numbers.

Usage

x %d==% y

x %d!=% y

x %d<% y

x %d>% y

x %d<=% y



decimal_truth 13

x %d>=% y

x %d{}% bnd

x %d!{}% bnd

is_wholenumber(x, tol = sqrt(.Machine$double.eps))

Arguments

x, y numeric vectors, matrices, or arrays.

bnd either a vector of length 2, or a matrix with 2 columns and 1 row, or else a ma-
trix with 2 columns where nrow(bnd)==length(x) (or can be recycled to be
nrow(bnd)==length(x)).
The first element/column of bnd gives the lower bound of the closed interval;
The second element/column of bnd gives the upper bound of the closed interval.

tol a single, strictly positive number close to zero, giving the tolerance.

Value

A logical vector with the same dimensions as x, indicating the result of the element by element
comparison.

See Also

tinycodet_safer

Examples

x <- c(0.3, 0.6, 0.7)
y <- c(0.1*3, 0.1*6, 0.1*7)
print(x); print(y)
x == y # gives FALSE, but should be TRUE
x!= y # gives TRUE, should be FALSE
x > y # not wrong
x < y # gives TRUE, should be FALSE
x %d==% y # here it's done correctly
x %d!=% y # correct
x %d<% y # correct
x %d>% y # correct
x %d<=% y # correct
x %d>=% y # correct

x <- c(0.3, 0.6, 0.7)
bnd <- cbind(x-0.1, x+0.1)
x %d{}% bnd
x %d!{}% bnd

# These operators work for integers also:



14 import_as

x <- 1L:5L
y <- 1L:5L
x %d==% y
x %d!=% y
x %d<% y
x %d>% y
x %d<=% y
x %d>=% y

x <- 1L:5L
y <- x+1
x %d==% y
x %d!=% y
x %d<% y
x %d>% y
x %d<=% y
x %d>=% y

x <- 1L:5L
y <- x-1
x %d==% y
x %d!=% y
x %d<% y
x %d>% y
x %d<=% y
x %d>=% y

# is_wholenumber:
is_wholenumber(1:10 + c(0, 0.1))

import_as Import R-package, its Re-exports, Dependencies, and/or Extensions,
Under a Single Alias

Description

The import_as() function imports the namespace of an R-package, and optionally also its re-
exports, dependencies, and extensions, all under the same alias. The specified alias, containing the
exported functions from the specified packages, will be placed in the current environment (like the
global environment, or the environment within a function).

Usage

import_as(
alias,
main_package,



import_as 15

re_exports = TRUE,
dependencies = NULL,
extensions = NULL,
lib.loc = .libPaths(),
import_order = c("dependencies", "main_package", "extensions")

)

Arguments

alias a syntactically valid non-hidden name giving the alias object where the pack-
age(s) are to be imported into.
This name can be given either as a single string (i.e. "alias."), or as a one-
sided formula with a single term (i.e. ~ alias.).

main_package a single string, giving the name of the main package to import under the given
alias.
Core R (i.e. "base", "stats", etc.) is not allowed.

re_exports TRUE or FALSE.
• If re_exports = TRUE the re-exports from the main_package are added to

the alias together with the main package. This is the default, as it is analo-
gous to the behaviour of base R’s :: operator.

• If re_exports = FALSE, these re-exports are not added together with the
main package. The user can still import the packages under the alias from
which the re-exported functions came from, by specifying them in the dependencies
argument.

dependencies an optional character vector, giving the names of the dependencies of the main_package
to be imported also under the alias.
Defaults to NULL, which means no dependencies are imported under the alias.
See pkg_get_deps to quickly get dependencies from a package.
Core R (i.e. "base", "stats", etc.) is not allowed.

extensions an optional character vector, giving the names of the extensions of the main_package
to be imported also under the alias.
Defaults to NULL, which means no extensions are imported under the alias.
Core R (i.e. "base", "stats", etc.) is not allowed.

lib.loc character vector specifying library search path (the location of R library trees to
search through).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

import_order the character vector
c("dependencies", "main_package", "extensions"),
or some re-ordering of this character vector, giving the relative import order of
the groups of packages.
See Details section for more information.

Details

Expanded Definitions of Some Arguments



16 import_as

• "Re-exports" are functions that are defined in the dependencies of the main_package, but are
re-exported in the namespace of the main_package.
Unlike the Dependencies argument, functions from core R are included in re-exports.

• "Dependencies" are here defined as any R-package appearing in the "Depends", "Imports", or
"LinkingTo" fields of the Description file of the main_package. So no recursive dependencies.

• "Extensions" are reverse-dependencies that actually extend the functionality of the main_package.
Programmatically, some package "E" is considered an extension of some "main_package", if
the following is TRUE:
"main_package" %in% pkg_get_deps_minimal("E")

Why Aliasing Multiple Packages is Useful
To use an R-package with its extension packages or dependencies, whilst avoiding the disadvan-
tages of attaching a package (see tinycodet_import), one would traditionally use the :: operator like
so:

main_package::some_function1()
dependency1::some_function2()
extension1::some_function3()

This becomes cumbersome as more packages are needed and/or as the package name(s) become
longer.
The import_as() function avoids this issue by allowing multiple related packages to be imported
under a single alias, allowing one to code like this:

import_as(
~ alias., "main_package",
dependencies = "dependency1", extensions = "extension1",
lib.loc = .libPaths()

)
alias.$some_function1()
alias.$some_function2()
alias.$some_function3()

Thus importing a package, or multiple directly related packages, under a single alias, which import_as()
provides, avoids the above issues. Importing a package under an alias is referred to as "aliasing" a
package.

Alias Naming Recommendation
To keep package alias object names easily distinguishable from other objects that can also be subset
with the $ operator, I recommend ending (not starting!) all alias names with a dot (.) or underscore
(_).

Regarding import_order



import_as 17

The order of the character vector given in the dependencies and extensions arguments matters.
If multiple packages share objects with the same name, the objects of the package named last will
overwrite those of the earlier named packages.

The import_order argument defaults to the character vector
c("dependencies", "main_package", "extensions"),
which is the recommended setting.
This setting results in the following importing order:

1. The dependencies, in the order specified by the depenencies argument.
2. The main_package (see argument main_package), including re-exports (if re_exports =

TRUE).

3. The extensions, in the order specified by the extensions argument.

Other Details
The import_as() function does not support importing base/core R under an alias.
Packages that appear in the "Suggests" or "Enhances" fields of packages are not considered depen-
dencies or extensions.
No more than 10 packages are allowed to be imported under a single alias.

Value

A locked environment object, similar to the output of loadNamespace, with the name as specified
in the alias argument, will be created.
This object, referred to as the "(package) alias object", will contain the exported functions from the
specified package(s).
The alias object will be placed in the current environment (like the global environment, or the envi-
ronment within a function).

To use, for example, function "some_function()" from alias "alias.", use:
alias.$some_function()
To see the special attributes of this alias object, use attr.import.
To "unimport" the package alias object, simply remove it (i.e. rm(list = "alias.")).

See Also

tinycodet_import

Examples

all(c("data.table", "tidytable") %installed in% .libPaths())

import_as( # this creates the 'tdt.' object



18 import_data

"tdt.", "tidytable", dependencies = "data.table"
)
# same as:
import_as(

~ tdt., "tidytable", dependencies = "data.table"
)

import_data Directly Return a Data-set From a Package

Description

The import_data() function gets a specified data set from a package.
Unlike utils::data(), the import_data() function returns the data set directly, and allows as-
signing the data set like so:
mydata <- import_data(...).

Usage

import_data(package, dataname, lib.loc = .libPaths())

Arguments

package a single string, giving the name of the R-package.
dataname a single string, giving the name of the data set.
lib.loc character vector specifying library search path (the location of R library trees to

search through).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

Value

Returns the data directly. Thus, one can assign the data like so: mydata <- import_data(...).

See Also

tinycodet_import

Examples

d <- import_data("datasets", "cars")
head(d)



import_inops 19

import_inops (Un)Expose Infix Operators From Package Namespace in the Current
Environment

Description

import_inops(expose = ...) exposes infix operators specified in a package or an alias object to
the current environment (like the global environment or the environment within a function).

import_inops(unexpose = ...) "unexposes" (i.e. removes) the infix operators specified in a pack-
age or an alias object from the current environment (like the global environment or the environment
within a function).
Note that in this case only infix operators exposed by the ’tinycodet’ import system will be removed
from the current environment; "regular" (i.e. user-specified) infix operators will not be touched.

Usage

import_inops(expose = NULL, unexpose = NULL, lib.loc = .libPaths(), ...)

Arguments
expose, unexpose

either one of the following:

• an alias object as produced by the import_as function.
• a string giving the package name. Core R (i.e. "base", "stats", etc.) is not

allowed.

lib.loc character vector specifying library search path (the location of R library trees to
search through).
Only used when supplying a string to expose / unexpose, and ignored when
supplying an alias object to expose / unexpose (the library is path already stored
inside the alias object).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

... additional arguments, only relevant if the expose argument is used.
See import_inops.control.

Details

Why Exposing Infix Operators Is Useful
To use a function from an R-package, while avoiding the disadvantages of attaching a package (see
tinycodet_import), one would traditionally use the :: operator like so:

packagename::function_name()



20 import_inops

This is, however, cumbersome with infix operators, as it forces one to code like this:

packagename::`%op%`(x,y)

Exposing infix operators to the current environment, using the import_inops() function, allows
one to use infix operators without using cumbersome code, and without having to attach the infix
operators globally.

Other Details
The import_inops() function does not support overloading base/core R operators.

When using import_inops() to remove infix operators from the current environment, it will use
the attributes of those operators to determine if the infix operator came from the ’tinycodet’ import
system or not. Only infix operators exposed by the ’tinycodet’ import system will be removed.

Value

If using argument expose:
The infix operators specified in the given package or alias will be placed in the current environment
(like the Global environment, or the environment within a function).

If using argument unexpose:
The infix operators specified in the given package or alias, exposed by import_inops(), will be
removed from the current environment (like the Global environment, or the environment within a
function).
If such infix operators could not be found, this function simply returns NULL.

See Also

tinycodet_import, import_inops.control(), report_inops()

Examples

import_inops(expose = "stringi") # expose infix operators from package
import_inops(unexpose = "stringi") # remove the exposed infix operators from environment

import_as(~ stri., "stringi")
import_inops(expose = stri.) # expose infix operators from alias
import_inops(unexpose = stri.) # unexposed infix operators from current environment

# additional arguments (only used when exposing, not unexposing):
import_inops(expose = "stringi", exclude = "%s==%")
import_inops(unexpose = "stringi")



import_inops.control 21

import_inops(expose = "stringi", overwrite = FALSE)
import_inops(unexpose = "stringi")

import_as(~ stri., "stringi")
import_inops(expose = stri., include.only = "%s==%")
import_inops(unexpose = stri.)
import_inops(expose = stri., overwrite = FALSE)
import_inops(unexpose = stri.)

import_inops.control import_inops.control

Description

Additional arguments to control exposing infix operators in the import_inops function.

Usage

import_inops.control(
exclude = NULL,
include.only = NULL,
overwrite = TRUE,
inherits = FALSE

)

Arguments

exclude a character vector, giving the infix operators NOT to expose to the current envi-
ronment.
This can be handy to prevent overwriting any (user defined) infix operators al-
ready present in the current environment.

include.only a character vector, giving the infix operators to expose to the current environ-
ment, and the rest of the operators will not be exposed.
This can be handy to prevent overwriting any (user defined) infix operators al-
ready present in the current environment.

overwrite logical, indicating if it is allowed to overwrite existing infix operators.

• If TRUE (default), a warning is given when operators existing in the current
environment are being overwritten, but the function continuous nonethe-
less.

• If FALSE, an error is produced when the to be exposed operators already
exist in the current environment, and the function is halted.



22 import_inops.control

inherits logical.
When exposing infix operators, import_inops checks if infix operators with the
same names are already present in the current environment.
If inherits = FALSE, only the current environment is checked for existing op-
erators.
If inherits = TRUE, enclosed environments, most notably package namespaces,
are also checked for existing operators.
Defaults to FALSE.
See also exists.

Details

You cannot specify both the exclude and include.only arguments. Only one or the other, or nei-
ther.

Value

This function is used internally in the import_inops function.

See Also

import_inops(), tinycodet_import()

Examples

# additional arguments (only used when exposing, not unexposing):
import_as(~ stri., "stringi")
import_inops(expose = stri., include.only = "%s==%")
import_inops(unexpose = stri.)
import_inops(expose = "stringi", exclude = "%s==%")
import_inops(unexpose = "stringi")
import_inops(expose = stri., overwrite = FALSE)
import_inops(unexpose = stri.)
import_inops(expose = "stringi", overwrite = FALSE)
import_inops(unexpose = "stringi")



import_LL 23

import_LL Miscellaneous import_ - Functions

Description

The import_LL() function places specific functions from a package in the current environment,
and also locks (see lockBinding) the specified functions to prevent modification.
The primary use-case for this function is for exposing functions inside a local environment, like the
environment within a function.

The import_int() function directly returns an internal function from a package.
It is similar to the ::: operator, but with 2 key differences:

1. import_int() includes the lib.loc argument.

2. import_int() only searches internal functions, not exported ones. This makes it clearer in
your code that you’re using an internal function, instead of making it ambiguous.

Usage

import_LL(package, selection, lib.loc = .libPaths())

import_int(form, lib.loc = .libPaths())

Arguments

package a single string, giving the name of the package to take functions from.
Core R (i.e. "base", "stats", etc.) is not allowed.

selection a character vector of function names (both regular functions and infix operators).
Internal functions or re-exported functions are not supported.

lib.loc character vector specifying library search path (the location of R library trees to
search through).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

form a two-sided formula, with one term on each side.
The term on the left hand side should give a single package name.
The term on the right hand side should give a single internal function.
Example: package_name ~ function_name
Core R (i.e. "base", "stats", etc.) is not allowed.

Details

Regarding the Locks in import_LL()
The import_as function returns a locked environment, just like loadNamespace, thus protecting the



24 import_LL

functions from accidental modification or re-assignment.
The import_inops function returns infix operators, and though these are not locked, one needs to
surround infix operators by back ticks to re-assign or modify them, which is unlikely to happen on
accident.
The import_LL() function, however, returns "loose" functions. And these functions (unless they
are infix operators) do not have the protection due to a locked environment or due to the syntax.
Therefore, to ensure safety from (accidental) modification or re-assignment, the import_LL()
function locks these functions (see lockBinding). For consistency, infix operators exposed by
import_LL() are also locked.

Other Details
The import_LL() and import_int() functions do not support importing functions from base/core
R.

Value

For import_LL():
The specified functions will be placed in the current environment (like the global environment, or
the environment within a function), and locked.
To unexpose or overwrite the functions, simply remove them; i.e.:
rm(list=c("some_function1", "some_function2")).

For import_int():
The function itself is returned directly.
So one can assign the function directly to some variable, like so:
myfun <- import_int(...)
or use it directly without re-assignment like so:
import_int(...)(...)

See Also

tinycodet_import

Examples

# Using import_LL ====
import_LL(

"stringi", "stri_sub"
)
# the stri_sub() function now cannot be modified, only used or removed, because it's locked:
bindingIsLocked("stri_sub", environment()) # TRUE

mypaste <- function(x, y) {
import_LL("stringi", selection = "stri_c")
stri_c(x, y)
}

mypaste("hello ", "world")



inplace 25

# Using internal function ====
# Through re-assignment:
fun <- import_int(tinycodet ~ .internal_paste, .libPaths())
fun("hello", "world")

# Or using directly:
import_int(

tinycodet ~ .internal_paste, .libPaths()
)("hello", "world")

inplace General In-place Modifier Operator

Description

The x %:=% f operator performs in-place modification of some object x with a function f.

For example this:

mtcars$mpg[mtcars$cyl > 6] <- mtcars$mpg[mtcars$cyl>6]^2

Can now be re-written as:

mtcars$mpg[mtcars$cyl > 6] %:=% \(x) x^2

Usage

x %:=% f

Arguments

x a variable.

f a (possibly anonymous) function to be applied in-place on x. The function must
take one argument only.

Value

This operator does not return any value:
It is an in-place modifier, and thus modifies the object directly.



26 lock

See Also

tinycodet_dry

Examples

set.seed(1)
object <- matrix(rpois(10, 10), ncol = 2)
print(object)
y <- 3
object %:=% \(x) x + y # same as object <- object + y
print(object)

lock Lock T, Lock F, or Create Locked Constants

Description

The lock_TF() function locks the T and F values and sets them to TRUE and FALSE, respectively, to
prevent the user from re-assigning them.
Removing the created T and F objects allows re-assignment again.

The X %<-c% A operator creates a constant X and assigns A to it.
Constants cannot be changed, only accessed or removed. So if you have a piece of code that re-
quires some unchangeable constant, use this operator to create said constant.
Removing constant X also removes its binding lock. Thus to change a constant, simply remove it
and re-create it.

Usage

lock_TF(env)

X %<-c% A

Arguments

env an optional environment to give, determining in which environment T and F
should be locked.
When not specified, the current environment (like the global environment, or the
environment within a function) is used.

X a syntactically valid unquoted name of the object to be created.

A any kind of object to be assigned to X.



lock 27

Details

Note that following statement

x %<-c% 2+2
print(x)

returns

[1] 2

due to R’s precedence rules. Therefore, in such cases, the right hand side of X %<-c% A need to be
surrounded with brackets. I.e.:

x %<-c% (2 + 2)

Note that the lock_TF() function and %s<-c% operator create constants through lockBinding.
The constants are protected from modification by copy, but they are not protected from modification
by reference (see for example collapse::setv).

Value

For lock_TF():
Two constants, namely T and F, set to TRUE and FALSE respectively, are created in the specified or
else current environment, and locked. Removing the created T and F objects allows re-assignment
again.

For X %<-c% A:
The object X containing A is created in the current environment, and this object cannot be changed.
It can only be accessed or removed.

See Also

tinycodet_safer

Examples

lock_TF()
X %<-c% data.frame(x = 3, y = 2) # this data.frame cannot be changed. Only accessed or removed.
X[1, ,drop=FALSE]



28 logic_ops

logic_ops Additional Logic Operators

Description

Additional logic operators:

The x %xor% y operator is the "exclusive-or" operator, the same as xor(x, y).

The x %n&% operator is the "not-and" operator, the same as (!x) & (!y).

The x %out% y operator is the same as !x %in% y.

The x %?=% y operator checks if x and y are both unreal or unknown (i.e. NA, NaN, Inf, -Inf).

The n %=numtype% numtype operator checks for every value of numeric vector n if it can be con-
sidered a number belonging to type numtype.

The s %=strtype% strtype operator checks for every value of character vector s if it can seen
as a certain strtype.

Usage

x %xor% y

x %n&% y

x %out% y

x %?=% y

n %=numtype% numtype

s %=strtype% strtype

Arguments

x, y see Logic.

n a numeric vector.

numtype a single string giving the numeric type to be checked.
See Details section for supported types.

s a character vector.

strtype a single string giving the string type to be checked.
See Details section for supported types.



logic_ops 29

Details

For argument numtype, the following options are supported:

• "~0": zero, or else a number whose absolute value is smaller than the Machine tolerance
(sqrt(.Machine$double.eps)).

• "B": binary numbers (exactly 0 or exactly 1);

• "prop": proportions - numbers between 0 and 1 (exactly 0 or 1 is also allowed);

• "I": Integers;

• "odd": odd integers;

• "even": even integers;

• "R": Real numbers;

• "unreal": infinity, NA, or NaN;

For argument strtype, the following options are supported:

• "empty": checks if the string only consists of empty spaces.

• "unreal": checks if the string is NA, or if it has literal string "NA", "NaN" or "Inf", regardless
if it has leading or trailing spaces.

• "numeric": checks if the string can be converted to a number, disregarding leading and trail-
ing spaces. I.e. the string "5.0" can be converted to the the actual number 5.0.

• "special": checks if the string consists of only special characters.

Value

A logical vector.

Examples

x <- c(TRUE, FALSE, TRUE, FALSE, NA, NaN, Inf, -Inf, TRUE, FALSE)
y <- c(FALSE, TRUE, TRUE, FALSE, rep(NA, 6))
outcome <- data.frame(

x = x, y = y,
"x %xor% y" = x %xor% y, "x %n&% y" = x %n&% y, "x %?=% y" = x %?=% y,
check.names = FALSE

)
print(outcome)

1:3 %out% 1:10
1:10 %out% 1:3



30 matrix_ops

n <- c(0:5, 0:-5, 0.1, -0.1, 0, 1, Inf, -Inf, NA, NaN)
1e-20 %=numtype% "~0"
n[n %=numtype% "B"]
n[n %=numtype% "prop"]
n[n %=numtype% "I"]
n[n %=numtype% "odd"]
n[n %=numtype% "even"]
n[n %=numtype% "R"]
n[n %=numtype% "unreal"]

s <- c(" AbcZ123 ", " abc ", " 1.3 ", " !#$%^&*() ", " ", " NA ", " NaN ", " Inf ")
s[s %=strtype% "empty"]
s[s %=strtype% "unreal"]
s[s %=strtype% "numeric"]
s[s %=strtype% "special"]

matrix_ops Row- or Column-wise Re-ordering of Matrices

Description

Infix operators for custom row- and column-wise re-ordering of matrices.

The x %row~% mat operator re-orders the elements of every row, each row ordered independently
from the other rows, of matrix x, according to the ordering ranks given in matrix mat.

The x %col~% mat operator re-orders the elements of every column, each column ordered inde-
pendently from the other columns, of matrix x, according to the ordering ranks given in matrix mat.

Usage

x %row~% mat

x %col~% mat

Arguments

x a matrix

mat a matrix with the same dimensions as x, giving the ordering ranks of every ele-
ment of matrix x.



matrix_ops 31

Details

If matrix x is a numeric matrix, and one wants to sort the elements of every row or column numeri-
cally, x %row~% x or x %col~% x would suffice, respectively.

If matrix x is not numeric, sorting the elements using x %row~% x and x %col~% x is still possi-
ble, but probably not the best option. In the non-numeric case, providing a matrix of ordering ranks
for mat would be faster and give more accurate ordering. See the examples section.

If mat is a matrix of non-repeating random integers, i.e.
mat <- sample(seq_along(x)) |> matrix(ncol = ncol(x)))
then the code
x %row~% mat
will randomly shuffle the elements of every row of x, where the shuffling order in each row is inde-
pendent from the shuffling order in the other rows.
Similarly,
x %col~% mat
will randomly shuffle the elements of every column of x, where the shuffling order in each column
is independent from the shuffling order in the other columns.

Re-ordering/sorting every row/column of a matrix with these operators is generally faster than do-
ing so through loops or apply-like functions.

Note that these operators strip all attributes except dimensions.

Value

A modified matrix.

See Also

tinycodet_misc

Examples

# numeric matrix ====

x <- matrix(sample(1:25), nrow = 5)
print(x)
x %row~% x # sort elements of every row independently
x %row~% -x # reverse-sort elements of every row independently
x %col~% x # sort elements of every column independently
x %col~% -x # reverse-sort elements of every column independently

x <- matrix(sample(1:25), nrow = 5)
print(x)
mat <- sample(seq_along(x)) |> matrix(ncol = ncol(x))



32 pkgs

x %row~% mat # randomly shuffle every row independently
x %col~% mat # randomly shuffle every column independently

# character matrix ====

x <- matrix(sample(letters, 25), nrow = 5)
print(x)
mat <- stringi::stri_rank(as.vector(x)) |> matrix(ncol=ncol(x))
x %row~% mat # sort elements of every row independently
x %row~% -mat # reverse-sort elements of every row independently
x %col~% mat # sort elements of every column independently
x %col~% -mat # reverse-sort elements of every column independently

x <- matrix(sample(letters, 25), nrow = 5)
print(x)
mat <- sample(seq_along(x)) |> matrix(ncol = ncol(x))
x %row~% mat # randomly shuffle every row independently
x %col~% mat # randomise shuffle every column independently

pkgs Miscellaneous Package Related Functions

Description

The pkgs %installed in% lib.loc operator checks if one or more packages (pkgs) exist in a li-
brary location (lib.loc), without loading the packages.
The syntax of this operator forces the user to make it syntactically explicit where to look for in-
stalled R-packages.
As pkgs %installed in% lib.loc does not even load a package, the user can safely use it without
fearing any unwanted side-effects.

The pkg_get_deps() function gets the direct dependencies of a package from the Description
file. It works on non-CRAN packages also.

The pkg_get_deps_minimal() function is the same as pkg_get_deps(), except with base, recom,
rstudioapi, shared_tidy all set to FALSE, and the default value for deps_type is c("Depends",
"Imports").

The pkg_lsf() function gets a list of exported functions/operators from a package.
One handy use for this function is to, for example, globally attach all infix operators from a package
using library, like so:

library(packagename, include.only = pkg_lsf("packagename", type = "inops"))



pkgs 33

Usage

pkgs %installed in% lib.loc

pkg_get_deps(
package,
lib.loc = .libPaths(),
deps_type = c("LinkingTo", "Depends", "Imports"),
base = FALSE,
recom = TRUE,
rstudioapi = TRUE,
shared_tidy = TRUE

)

pkg_get_deps_minimal(
package,
lib.loc = .libPaths(),
deps_type = c("Depends", "Imports")

)

pkg_lsf(package, type, lib.loc = .libPaths())

Arguments

pkgs a character vector with the package name(s).

lib.loc character vector specifying library search path (the location of R library trees to
search through).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

package a single string giving the package name.

deps_type a character vector, giving the dependency types to be used.
The order of the character vector given in deps_type affects the order of the
returned character vector; see Details sections.

base logical, indicating whether base/core R should be included (TRUE), or not in-
cluded (FALSE).

recom logical, indicating whether the pre-installed ’recommended’ R-packages should
be included (TRUE), or not included (FALSE).

rstudioapi logical, indicating whether the ’rstudioapi’ R-package should be included (TRUE),
or not included (FALSE).

shared_tidy logical, indicating whether the shared dependencies of the ’tidyverse’ should be
included (TRUE), or not included (FALSE).
Details:
Some of the (often many) dependencies ’tidyverse’ packages have are shared
across the majority of the ’tidyverse’.
The "official" list of shared dependencies in the ’tidyverse’ currently is the fol-
lowing:
’rlang’, ’lifecycle’, ’cli’, ’glue’, and ’withr’.



34 pkgs

type The type of functions to list. Possibilities:

• "inops" or "operators": Only infix operators.
• "regfuns": Only regular functions (thus excluding infix operators).
• "all": All functions, both regular functions and infix operators.

Details

For pkg_get_deps():
For each string in argument deps_type, the package names in the corresponding field of the De-
scription file are extracted, in the order as they appear in that field.
The order given in argument deps_type also affects the order of the returned character vector:
For example, c("LinkingTo", "Depends", "Imports"),
means the package names are extracted from the fields in the following order:

1. "LinkingTo";

2. "Depends";

3. "Imports".

The unique (thus non-repeating) package names are then returned to the user.

Value

For pkgs %installed in% lib.loc:
Returns a named logical vector, with the names giving the package names, and where the value
TRUE indicates a package is installed, and the value FALSE indicates a package is not installed.

For pkg_get_deps():
A character vector of direct dependencies, without duplicates.

For pkg_lsf():
Returns a character vector of exported function names in the specified package.

References

O’Brien J., elegantly extract R-package dependencies of a package not listed on CRAN. Stack Over-
flow. (1 September 2023). https://stackoverflow.com/questions/30223957/elegantly-extract-r-package-dependencies-of-a-package-not-listed-on-cran

See Also

tinycodet_import

Examples

"dplyr" %installed in% .libPaths()

pkg_get_deps_minimal("dplyr")
pkgs <- pkg_get_deps("dplyr")
pkgs %installed in% .libPaths()

https://stackoverflow.com/questions/30223957/elegantly-extract-r-package-dependencies-of-a-package-not-listed-on-cran


pversion 35

pkg_lsf("dplyr", "all")

pversion Check for Package Versions Mismatch

Description

The pversion_check4mismatch() function checks if there is any mismatch between the currently
loaded packages and the packages in the specified library path.

The pversion_report() function gives a table of all specified packages, with their loaded and
installed versions, regardless if there is a mismatch or not.

Usage

pversion_check4mismatch(pkgs = NULL, lib.loc = .libPaths())

pversion_report(pkgs = NULL, lib.loc = .libPaths())

Arguments

pkgs a character vector with the package name(s).
Packages that are not actually loaded will be ignored.
Base/core R will also be ignored.
If NULL, all loaded packages (see loadedNamespaces) excluding core/base R will
be checked.

lib.loc character vector specifying library search path (the location of R library trees to
search through).
The lib.loc argument would usually be .libPaths().
See also loadNamespace.

Value

For pversion_check4mismatch():
If no mismatch between loaded versions and those in lib.loc were found, returns NULL.
Otherwise it returns a data.frame, with the loaded version and library version of the specified
packages.

For pversion_report():
Returns a data.frame, with the loaded version and library version of the specified packages, as
well as a logical column indicating whether the two versions are equal (TRUE), or not equal (FALSE).



36 report_inops

See Also

tinycodet_import

Examples

"dplyr" %installed in% .libPaths()

import_as(~dpr., "dplyr")
pversion_check4mismatch()
pversion_report()

report_inops Report Infix Operators

Description

The report_inops() function returns a data.frame listing the infix operators defined in the current
environment (like the global environment, or the environment within a function), or a user specified
environment. It also reports from which packages the infix operators came from.

Usage

report_inops(env)

Arguments

env an optional environment to give, where the function should look for infix oper-
ators.
When not specified, the current environment (like the global environment, or the
environment within a function) is used.

Value

A data.frame. The first column gives the infix operator names. The second column gives the
package the operator came from, or NA if it did not come from a package.

See Also

tinycodet_misc()



safer_partialmatch 37

Examples

report_inops()

`%paste%` <- function(x,y)paste0(x,y)

report_inops()

import_inops("stringi")

report_inops()

safer_partialmatch Set Safer Dollar, Arguments, and Attribute Matching

Description

The safer_partialmatch() function simply calls the following:

options(
warnPartialMatchDollar = TRUE,
warnPartialMatchArgs = TRUE,
warnPartialMatchAttr = TRUE

)

Thus it forces ’R’ to give a warning when partial matching occurs when using the dollar ($) opera-
tor, or when other forms of partial matching occurs.
The safer_partialmatch() function is intended for when running R interactively (see interac-
tive).

Usage

safer_partialmatch()

Value

Sets the options. Returns nothing.

See Also

tinycodet_safer



38 source_selection

Examples

interactive()

safer_partialmatch()
data(iris)
head(iris)
iris$Sepal.Length <- iris$Sepal.Length^2
head(iris)

source_selection Source Specific Objects from Script

Description

The source_selection() function is the same as base R’s source function, except that it allows
only placing the selected objects and functions into the current environment, instead of all objects.

The objects to be selected can be specified using any combination of the following:

• by supplying a character vector of exact object names to the select argument.

• by supplying a character vector of regex patterns to the regex argument.

• by supplying a character vector of fixed patterns to the fixed argument.

Note that the source_selection() function does NOT suppress output (i.e. plots, prints, mes-
sages) from the sourced script file.

Usage

source_selection(lst, select = NULL, regex = NULL, fixed = NULL)

Arguments

lst a named list, giving the arguments to be passed to the source function.
The local argument should not be included in the list.

select a character vector, giving the exact names of the functions or objects appearing
in the script, to expose to the current environment.

regex a character vector of regex patterns (see about_search_regex).
These should give regular expressions that match to the names of the functions
or objects appearing in the script, to expose to the current environment.
For example, to expose the following methods to the current environment,
mymethod.numeric() and mymethod.character() from generic mymethod(),
one could specify regex = "^mymethod".
about search: regex

https://stringi.gagolewski.com/rapi/about_search_regex.html


source_selection 39

fixed a character vector of fixed patterns (see about_search_fixed).
These should give fixed expressions that match to the names of the functions or
objects appearing in the script, to expose to the current environment.
For example, to expose the following methods to the current environment,
mymethod.numeric() and mymethod.character() from generic mymethod(),
one could specify fixed = "mymethod".
about search: fixed

Details

One can specify which objects to expose using arguments select, regex, or fixed.
The user can specify all 3 of them, but at least one of the 3 must be specified.
It is not a problem if the specifications overlap.

Value

Any specified objects will be placed in the current environment (like the Global environment, or the
environment within a function).

See Also

tinycodet_misc, base::source()

Examples

exprs <- expression({
helloworld = function()print("helloworld")
goodbyeworld <- function() print("goodbye world")
`%s+test%` <- function(x,y) stringi::`%s+%`(x,y)
`%s*test%` <- function(x,y) stringi::`%s*%`(x,y)
mymethod <- function(x) UseMethod("mymethod", x)
mymethod.numeric <- function(x)x * 2
mymethod.character <- function(x)chartr(x, old = "a-zA-Z", new = "A-Za-z")
})

source_selection(list(exprs=exprs), regex = "^mymethod")
mymethod(1)
mymethod("a")

temp.fun <- function(){
source_selection(list(exprs=exprs), regex = "^mymethod", fixed = c("%", ":="))
ls() # list all objects residing within the function definition

}
temp.fun()

temp.fun <- function(){

https://stringi.gagolewski.com/rapi/about_search_fixed.html


40 strcut_loc

source_selection(list(exprs=exprs), select = c("helloworld", "goodbyeworld"))
ls() # list all objects residing within the function definition

}
temp.fun()

strcut_loc Cut Strings

Description

The strcut_loc() function cuts every string in a character vector around a location range loc,
such that every string is cut into the following parts:

• the sub-string before loc;

• the sub-string at loc itself;

• the sub-string after loc.

The location range loc would usually be matrix with 2 columns, giving the start and end points of
some pattern match.

The strcut_brk() function (a wrapper around stri_split_boundaries(..., tokens_only = FALSE))
cuts every string into individual text breaks (like character, word, line, or sentence boundaries).

Usage

strcut_loc(str, loc)

strcut_brk(str, type = "character", tolist = FALSE, n = -1L, ...)

Arguments

str a string or character vector.

loc Either one of the following:

• the result from the stri_locate_ith function.
• a matrix of 2 integer columns, with nrow(loc)==length(str), giving the

location range of the middle part.
• a vector of length 2, giving the location range of the middle part.

type either one of the following:

• a single string giving the break iterator type (i.e. "character", "line_break",
"sentence", "word", or a custom set of ICU break iteration rules).

• a list with break iteration options, like a list produced by stri_opts_brkiter.



strcut_loc 41

about search: boundaries

tolist logical, indicating if strcut_brk should return a list (TRUE), or a matrix (FALSE,
default).

n see stri_split_boundaries.

... additional arguments to be passed to stri_split_boundaries.

Details

The main difference between the strcut_ - functions and stri_split / strsplit, is that the latter gen-
erally removes the delimiter patterns in a string when cutting, while the strcut_-functions do not
attempt to remove parts of the string by default, they only attempt to cut the strings into separate
pieces. Moreover, the strcut_ - functions return a matrix by default.

Value

For strcut_loc():
A character matrix with length(str) rows and 3 columns, where for every row i it holds the
following:

• the first column contains the sub-string before loc[i,], or NA if loc[i,] contains NA;

• the second column contains the sub_string at loc[i,], or the uncut string if loc[i,] contains
NA;

• the third and last column contains the sub-string after loc[i,], or NA if loc[i,] contains NA.

For strcut_brk(..., tolist = FALSE):
A character matrix with length(str) rows and a number of columns equal to the maximum num-
ber of pieces str was cut in.
Empty places are filled with NA.

For strcut_brk(..., tolist = TRUE):
A list with length(str) elements, where each element is a character vector containing the cut
string.

See Also

tinycodet_strings

Examples

x <- rep(paste0(1:10, collapse = ""), 10)

https://stringi.gagolewski.com/rapi/about_search_boundaries.html


42 stri_join_mat

print(x)
loc <- stri_locate_ith(x, 1:10, fixed = as.character(1:10))
strcut_loc(x, loc)
strcut_loc(x, c(5,5))
strcut_loc(x, c(NA, NA))
strcut_loc(x, c(5, NA))
strcut_loc(x, c(NA, 5))

test <- "The\u00a0above-mentioned features are very useful. " %s+%
"Spam, spam, eggs, bacon, and spam. 123 456 789"
strcut_brk(test, "line")
strcut_brk(test, "word")
strcut_brk(test, "sentence")
strcut_brk(test)
strcut_brk(test, n = 1)
strcut_brk(test, "line", tolist = TRUE)
strcut_brk(test, "word", tolist = TRUE)
strcut_brk(test, "sentence", tolist = TRUE)

brk <- stringi::stri_opts_brkiter(
type = "line"

)
strcut_brk(test, brk)

stri_join_mat Concatenate Character Matrix Row-wise or Column-wise

Description

The stri_join_mat() function (and their aliases stri_c_mat and stri_paste_mat) perform row-
wise (margin = 1; the default) or column-wise (margin = 2) joining of a matrix of strings, thereby
transforming a matrix of strings into a vector of strings.

Usage

stri_join_mat(mat, margin = 1, sep = "", collapse = NULL)

stri_c_mat(mat, margin = 1, sep = "", collapse = NULL)

stri_paste_mat(mat, margin = 1, sep = "", collapse = NULL)

Arguments

mat a matrix of strings

margin the margin over which the strings must be joined.

• If margin = 1, the elements within each row of matrix mat are joined into
a single string. Thus if the matrix has 10 rows, it returns a vector of 10
strings.



stri_join_mat 43

• If margin = 2, the elements within each column of matrix mat are joined
into a single string. Thus if the matrix has 10 columns, it returns a vector
of 10 strings.

sep, collapse as in stri_join.

Value

The stri_join_mat() function, and its aliases, return a vector of strings.

See Also

tinycodet_strings

Examples

#############################################################################

# Basic example

x <- matrix(letters[1:25], ncol = 5, byrow = TRUE)
print(x)
stri_join_mat(x, margin = 1)

x <- matrix(letters[1:25], ncol = 5, byrow = FALSE)
print(x)
stri_join_mat(x, margin = 2)

#############################################################################
# sorting characters in strings ====

x <- c(paste(sample(letters), collapse = ""),
paste(sample(letters), collapse = ""))

print(x)
mat <- strcut_brk(x)
rank <- stringi::stri_rank(as.vector(mat)) |> matrix(ncol=ncol(mat))
sorted <- mat %row~% rank
sorted[is.na(sorted)] <- ""
print(sorted)
stri_join_mat(sorted, margin = 1)
stri_join_mat(sorted, margin = 2)

#############################################################################

# sorting words ====

x <- c("2nd 3rd 1st", "Goodbye everyone")
print(x)
mat <- strcut_brk(x, "word")



44 stri_locate_ith

rank <- stringi::stri_rank(as.vector(mat)) |> matrix(ncol=ncol(mat))
sorted <- mat %row~% rank
sorted[is.na(sorted)] <- ""
stri_c_mat(sorted, margin = 1, sep = " ") # <- alias for stri_join_mat
stri_c_mat(sorted, margin = 2, sep = " ")

#############################################################################

# randomly shuffling sentences ====

x <- c("Hello, who are you? Oh, really?! Cool!",
"I don't care. But I really don't.")

print(x)
mat <- strcut_brk(x, "sentence")
rank <- sample(1:length(mat)) |> matrix(ncol = ncol(mat))
sorted <- mat %row~% rank
sorted[is.na(sorted)] <- ""
stri_paste_mat(sorted, margin = 1) # <- another alias for stri_join_mat
stri_paste_mat(sorted, margin = 2)

stri_locate_ith Locate iˆth Pattern Occurrence or Text Boundary

Description

The stri_locate_ith() function locates the ith occurrence of a pattern in each string of some
character vector.

The stri_locate_ith_boundaries() function locates the ith text boundary (like character, word,
line, or sentence boundaries).

Usage

stri_locate_ith(str, i, ..., regex, fixed, coll, charclass)

stri_locate_ith_regex(str, pattern, i, ..., opts_regex = NULL)

stri_locate_ith_fixed(str, pattern, i, ..., opts_fixed = NULL)

stri_locate_ith_coll(str, pattern, i, ..., opts_collator = NULL)

stri_locate_ith_charclass(str, pattern, i, merge = TRUE, ...)

stri_locate_ith_boundaries(str, i, ..., opts_brkiter = NULL)



stri_locate_ith 45

Arguments

str a string or character vector.

i an integer scalar, or an integer vector of appropriate length (vector recycling is
not supported).
Positive numbers count occurrences from the left/beginning of the strings.
Negative numbers count occurrences from the right/end of the strings.
I.e.:

• stri_locate_ith(str, i = 1, ...)
gives the position (range) of the first occurrence of a pattern.

• stri_locate_ith(str, i = -1, ...)
gives the position (range) of the last occurrence of a pattern.

• stri_locate_ith(str, i = 2, ...)
gives the position (range) of the second occurrence of a pattern.

• stri_locate_ith(str, i = -2, ...)
gives the position (range) of the second-last occurrence of a pattern.

If abs(i) is larger than the number of pattern occurrences n, the first (if i < -n)
or last (if i > n) instance will be given.
For example: suppose a string has 3 instances of some pattern;
then if i >= 3 the third instance will be located,
and if i <= -3 the first instance will be located.

... more arguments to be supplied to stri_locate_all or stri_locate_all_boundaries.
Do not supply the arguments omit_no_match or get_length, as they are al-
ready specified internally. Supplying these arguments anyway will result in an
error.

pattern, regex, fixed, coll, charclass

a character vector of search patterns, as in stri_locate_all.
about search: regex
about search: fixed
about search: coll
about search: charclass

opts_regex, opts_fixed, opts_collator, opts_brkiter

named list used to tune up the selected search engine’s settings.
see stri_opts_regex, stri_opts_fixed, stri_opts_collator, and stri_opts_brkiter.
NULL for the defaults.
about search: regex
about search: fixed
about search: coll
about search: charclass
about search: boundaries

merge logical, indicating if charclass locations should be merged or not.
Details:
For the charclass pattern type, the stri_locate_ith() function gives the
start and end of consecutive characters by default, just like stri_locate_all.

https://stringi.gagolewski.com/rapi/about_search_regex.html
https://stringi.gagolewski.com/rapi/about_search_fixed.html
https://stringi.gagolewski.com/rapi/about_search_coll.html
https://stringi.gagolewski.com/rapi/about_search_charclass.html
https://stringi.gagolewski.com/rapi/about_search_regex.html
https://stringi.gagolewski.com/rapi/about_search_fixed.html
https://stringi.gagolewski.com/rapi/about_search_coll.html
https://stringi.gagolewski.com/rapi/about_search_charclass.html
https://stringi.gagolewski.com/rapi/about_search_boundaries.html


46 stri_locate_ith

To give the start and end positions of single characters, much like stri_locate_first
or stri_locate_last, set merge = FALSE.

Details

The ’stringi’ functions only support operations on the first, last, or all occurrences of a pattern.
The stri_locate_ith() function allows locating the ith occurrence of a pattern.
This allows for several workflows for operating on the ith pattern occurrence.
See also the examples section.

Extract ith Occurrence of a Pattern
For extracting the ith pattern occurrence:
Locate the the ith occurrence using stri_locate_ith(), and then extract it using, for example,
stri_sub.

Replace/Transform ith Occurrence of a Pattern
For replacing/transforming the ith pattern occurrence:

1. Locate the the ith occurrence using stri_locate_ith().

2. Extract the occurrence using stri_sub.

3. Transform or replace the extracted sub-strings.

4. Return the transformed/replaced sub-string back, using again stri_sub.

Capture Groups of ith Occurrence of a Pattern
The capture_groups argument for regex is not supported within stri_locate_ith().
To capture the groups of the ith occurrences:

1. Use stri_locate_ith() to locate the ith occurrences without group capture.

2. Extract the occurrence using stri_sub.

3. Get the matched group capture on the extracted occurrences using stri_match.

Value

The stri_locate_ith() function returns an integer matrix with two columns, giving the start and
end positions of the ith matches, two NAs if no matches are found, and also two NAs if str is NA.

If an empty string or empty pattern is supplied, a warning is given and a matrix with 0 rows is
returned.

Note

Long Vectors
The stri_locate_ith-functions do not support long vectors (i.e. character vectors with more



stri_locate_ith 47

than 2^31 - 1 strings).

Performance
The performance of stri_locate_ith() is close to that of stri_locate_all.

See Also

tinycodet_strings

Examples

#############################################################################

# practical example: transform regex pattern ====

# input character vector:
x <- c(paste0(letters[1:13], collapse = ""), paste0(letters[14:26], collapse = ""))
print(x)

# locate ith (second and second-last) vowel locations:
p <- rep("A|E|I|O|U", 2) # vowels
loc <- stri_locate_ith(x, c(2, -2), regex = p, case_insensitive = TRUE)
print(loc)

# extract ith vowels:
extr <- stringi::stri_sub(x, loc)
print(extr)

# transform & replace ith vowels with numbers:
repl <- chartr("aeiou", "12345", extr)
stringi::stri_sub(x, loc) <- repl

# result (notice ith vowels are now numbers):
print(x)

#############################################################################

# practical example: group-capture regex pattern ====

# input character:
# first group: c(breakfast=eggs, breakfast=bacon)
# second group: c(lunch=pizza, lunch=spaghetti)
x <- c('breakfast=eggs;lunch=pizza',

'breakfast=bacon;lunch=spaghetti',
'no food here') # no group here

print(x)

# locate ith=2nd group:



48 stri_locate_ith

p <- '(\\w+)=(\\w+)'
loc <- stri_locate_ith(x, i = 2, regex = p)
print(loc)

# extract ith=2nd group:
extr <- stringi::stri_sub(x, loc)
print(extr)

# capture ith=2nd group:
stringi::stri_match(extr, regex = p)

#############################################################################

# practical example: replace words using boundaries ====

# input character vector:
x <- c("good morning and good night",
"hello ladies and gentlemen")
print(x)

# report ith word locations:
loc <- stri_locate_ith_boundaries(x, c(-3, 3), type = "word")
print(loc)

# extract ith words:
extr <- stringi::stri_sub(x, from=loc)
print(extr)

# transform and replace words (notice ith words have inverted case):
tf <- chartr(extr, old = "a-zA-Z", new = "A-Za-z")
stringi::stri_sub(x, loc) <- tf

# result:
print(x)

#############################################################################

# find pattern ====

extr <- stringi::stri_sub(x, from=loc)
repl <- chartr(extr, old = "a-zA-Z", new = "A-Za-z")
stringi::stri_sub_replace(x, loc, replacement=repl)

#############################################################################

# simple pattern ====

x <- rep(paste0(1:10, collapse=""), 10)
print(x)
out <- stri_locate_ith(x, 1:10, regex = as.character(1:10))



stri_locate_ith 49

cbind(1:10, out)

x <- c(paste0(letters[1:13], collapse=""),
paste0(letters[14:26], collapse = ""))

print(x)
p <- rep("a|e|i|o|u",2)
out <- stri_locate_ith(x, c(-1, 1), regex = p)
print(out)
substr(x, out[,1], out[,2])

#############################################################################

# ignore case pattern ====

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
p <- rep("A|E|I|O|U", 2)
out <- stri_locate_ith(x, c(1, -1), regex = p, case_insensitive = TRUE)
substr(x, out[,1], out[,2])

#############################################################################

# multi-character pattern ====

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
# multi-character pattern:
p <- rep("AB", 2)
out <- stri_locate_ith(x, c(1, -1), regex = p, case_insensitive = TRUE)
print(out)
substr(x, out[,1], out[,2])

#############################################################################

# Replacement transformation using stringi ====

x <- c("hello world", "goodbye world")
loc <- stri_locate_ith(x, c(1, -1), regex = "a|e|i|o|u")
extr <- stringi::stri_sub(x, from = loc)
repl <- chartr(extr, old = "a-zA-Z", new = "A-Za-z")
stringi::stri_sub_replace(x, loc, replacement = repl)

#############################################################################



50 str_arithmetic

# Boundaries ====

test <- c(
paste0("The\u00a0above-mentioned features are very useful. ",

"Spam, spam, eggs, bacon, and spam. 123 456 789"),
"good morning, good evening, and good night"
)

loc <- stri_locate_ith_boundaries(test, i = c(1, -1), type = "word")
stringi::stri_sub(test, from = loc)

str_arithmetic String Arithmetic Operators

Description

String arithmetic operators.

The x %s+% y operator is exported from ’stringi’, and concatenates character vectors x and y.

The x %s-% p operator removes character/pattern defined in p from x.

The x %s*% n operator is exported from ’stringi’, and duplicates each string in x n times, and con-
catenates the results.

The x %s/% p operator counts how often character/pattern defined in p occurs in each element of x.

The x %s//% brk operator counts how often the text boundary specified in list brk occurs in each
element of x.

The e1 %s$% e2 operator is exported from ’stringi’, and provides access to stri_sprintf in the form
of an infix operator.

The x %ss% p operator splits the strings in x by a delimiter character/pattern defined in p, and re-
moves p in the process.
For cutting strings by text boundaries, or around a location, see strcut_brk and strcut_loc.

Usage

x %s-% p

x %s/% p

x %s//% brk

x %ss% p



str_arithmetic 51

Arguments

x a string or character vector.

p either a list with ’stringi’ arguments (see s_pattern), or else a character vector
with regular expressions.
about search: regex
about search: fixed
about search: coll
about search: charclass

brk a list with break iteration options, like a list produced by stri_opts_brkiter.
about search: boundaries

Value

The %s+%, %s-%, and %s*% operators return a character vector of the same length as x.
The %s/% and %s//% both return an integer vector of the same length as x.
The %s$% operator returns a character vector.
The %ss% operator returns a list of the split strings - or, if simplify = TRUE / simplify = NA, returns
a matrix of the split strings.

See Also

tinycodet_strings

Examples

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
y <- c("a", "b")
p <- rep("a|e|i|o|u", 2) # same as p <- list(regex = rep("a|e|i|o|u", 2))
n <- c(3, 2)

x %s+% y # = paste0(x,y)
x %s-% p # remove all vowels from x
x %s*% n
x %s/% p # count how often vowels appear in each string of vector x
x %ss% p # split x around vowels, removing the vowels in the process
x %ss% s_regex(p, simplify = NA) # same as above, but in matrix form

test <- c(
paste0("The\u00a0above-mentioned features are very useful. ",
"Spam, spam, eggs, bacon, and spam. 123 456 789"),
"good morning, good evening, and good night"
)
test %s//% list(type = "character")

https://stringi.gagolewski.com/rapi/about_search_regex.html
https://stringi.gagolewski.com/rapi/about_search_fixed.html
https://stringi.gagolewski.com/rapi/about_search_coll.html
https://stringi.gagolewski.com/rapi/about_search_charclass.html
https://stringi.gagolewski.com/rapi/about_search_boundaries.html


52 str_search

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
y <- "a"
# pattern that ignores case:
p <- list(regex = rep("A|E|I|O|U", 2), case_insensitive = TRUE)
n <- c(2, 3)

x %s+% y # = paste0(x,y)
x %s-% p # remove all vowels from x
x %s*% n
x %s/% p # count how often vowels appears in each string of vector x.

x <- c(paste(letters, collapse = ", "), paste(LETTERS, collapse = ", "))
print(x)
x %ss% ", "
t(x %ss% s_fixed(", ", simplify = NA))

str_search ’stringi’ Pattern Search Operators

Description

The x %s{}% p operator checks for every string in character vector x if the pattern defined in p is
present.
When supplying a list on the right hand side (see s_pattern), one can optionally include the list
element at = "start" or at = "end":

• Supplying at = "start" will check if the pattern appears at the start of a string (like stri_startswith).

• Supplying at = "end" will check if the pattern appears at the end of a string (like stri_endswith).

The x %s!{}% p operator is the same as x %s{}% p, except it checks for absence of the pattern, rather
than presence.

For string (in)equality operators, see %s==% from the ’stringi’ package.

strfind()<- locates, extracts, or replaces found patterns.
It complements the other string-related operators, and uses the same s_pattern API.
It functions as follows:

• strfind() finds all pattern matches, and returns the extractions of the findings in a list, just
like stri_extract_all.

• strfind(..., i = "all" ), finds all pattern matches like stri_locate_all.

• strfind(..., i = i), where i is an integer vector, locates the ith occurrence of a pattern,
and reports the locations in a matrix, just like stri_locate_ith.



str_search 53

• strfind() <- value finds pattern matches in variable x, replaces the pattern matches with
the character vector specified in value, and assigns the transformed character vector back to
x.
This is somewhat similar to stri_replace, though the replacement is done in-place.

Usage

x %s{}% p

x %s!{}% p

strfind(x, p, ..., i, rt)

strfind(x, p, ..., i, rt) <- value

Arguments

x a string or character vector.
For strfind()<-, x must obviously be the variable containing the character
vector/string, since strfind()<- performs assignment in-place.

p either a list with ’stringi’ arguments (see s_pattern), or else a character vector
with regular expressions.
See also the Details section.
about search: regex
about search: fixed
about search: coll
about search: charclass

... additional arguments to be specified.

i either one of the following can be given for i:

• if i is not given or NULL, strfind() extracts all found pattern occurrences.
• if i is the string "all", strfind() locates all found pattern occurrences.
• if i is an integer, strfind() locates the ith pattern occurrences.

See the i argument in stri_locate_ith for details.

For strfind() <- value, i must not be specified.

rt use rt to specify the Replacement Type that strfind()<- should perform.
Either one of the following can be given for rt:

• if rt is not given, NULL or "vec", strfind()<- performs regular, vector-
ized replacement of all occurrences.

• if rt = "dict", strfind()<- performs dictionary replacement of all oc-
currences.

• if rt = "first", strfind()<- replaces only the first occurrences.

https://stringi.gagolewski.com/rapi/about_search_regex.html
https://stringi.gagolewski.com/rapi/about_search_fixed.html
https://stringi.gagolewski.com/rapi/about_search_coll.html
https://stringi.gagolewski.com/rapi/about_search_charclass.html


54 str_search

• if rt = "last", strfind()<- replaces only the last occurrences.

Note: rt = "first" and rt = "last" only exist for convenience; for more spe-
cific locational replacement, use stri_locate_ith or strfind(..., i) with nu-
meric i (see the Examples section).
For strfind(), rt must not be specified.

value a character vector giving the replacement values.

Details

Right-hand Side List for the %s{}% and %s!{}% Operators
When supplying a list to the right-hand side of the %s{}% and %s!{}% operators, one can add the
argument at.
If at = "start", the operators will check if the pattern is present/absent at the start of the string.
If at = "end", the operators will check if the pattern is present/absent at the end of the string.
Unlike stri_startswith or stri_endswith, regex is supported by the %s{}% and %s!{}% operators.
See examples below.

Vectorized Replacement vs Dictionary Replacement

• Vectorized replacement:
x, p, and value are of the same length (or recycled to become the same length).
All occurrences of pattern p[j] in x[j] is replaced with value[j], for every j.

• Dictionary replacement:
p and value are of the same length, and their length is independent of the length of x.
For every single string in x, all occurrences of pattern p[1] are replaced with value[1],
all occurrences of pattern p[2] are replaced with value[2], etc.

Notice that for single replacement, i.e. rt = "first" or rt = "last", it makes no sense to distin-
guish between vectorized or dictionary replacement, since then only a single occurrence is being
replaced per string.
See examples below.

Value

For the x %s{}% p and x %s!{}% p operators:
Return logical vectors.

For strfind():
Returns a list with extractions of all found patterns.

For strfind(..., i = "all"):
Returns a list with all found pattern locations.



str_search 55

For strfind(..., i = i) with integer vector i:
Returns an integer matrix with two columns, giving the start and end positions of the ith matches,
two NAs if no matches are found, and also two NAs if str is NA.

For strfind() <- value:
Returns nothing, but performs in-place replacement (using R’s default in-place semantics) of the
found patterns in variable x.

Note
strfind()<- performs in-place replacement.
Therefore, the character vector or string to perform replacement on, must already exist as a variable.
So take for example the following code:

strfind("hello", p = "e") <- "a" # this obviously does not work

y <- "hello"
strfind(y, p = "e") <- "a" # this works fine

In the above code, the first strfind()<- call does not work, because the string needs to exist as a
variable.

See Also

tinycodet_strings

Examples

# example of %s{}% and %s!{}% ====

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
x %s{}% "a"
x %s!{}% "a"
which(x %s{}% "a")
which(x %s!{}% "a")
x[x %s{}% "a"]
x[x %s!{}% "a"]
x[x %s{}% "a"] <- 1
x[x %s!{}% "a"] <- 1
print(x)

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))



56 str_search

x %s{}% "1"
x %s!{}% "1"
which(x %s{}% "1")
which(x %s!{}% "1")
x[x %s{}% "1"]
x[x %s!{}% "1"]
x[x %s{}% "1"] <- "a"
x[x %s!{}% "1"] <- "a"
print(x)

#############################################################################

# Example of %s{}% and %s!{}% with "at" argument ====

x <- c(paste0(letters, collapse = ""),
paste0(rev(letters), collapse = ""), NA)

p <- s_fixed("abc", at = "start")
x %s{}% p
stringi::stri_startswith(x, fixed = "abc") # same as above

p <- s_fixed("xyz", at = "end")
x %s{}% p
stringi::stri_endswith(x, fixed = "xyz") # same as above

p <- s_fixed("cba", at = "end")
x %s{}% p
stringi::stri_endswith(x, fixed = "cba") # same as above

p <- s_fixed("zyx", at = "start")
x %s{}% p
stringi::stri_startswith(x, fixed = "zyx") # same as above

#############################################################################

# Example of transforming ith occurrence ====

# new character vector:
x <- c(paste0(letters[1:13], collapse = ""),

paste0(letters[14:26], collapse = ""))
print(x)

# report ith (second and second-last) vowel locations:
p <- s_regex( # vowels

rep("A|E|I|O|U", 2),
case_insensitive = TRUE

)
loc <- strfind(x, p, i = c(2, -2))
print(loc)



str_search 57

# extract ith vowels:
extr <- stringi::stri_sub(x, from = loc)
print(extr)

# replace ith vowels with numbers:
repl <- chartr("aeiou", "12345", extr) # transformation
stringi::stri_sub(x, loc) <- repl
print(x)

#############################################################################

# Example of strfind for regular vectorized replacement ====

x <- rep('The quick brown fox jumped over the lazy dog.', 3)
print(x)
p <- c('quick', 'brown', 'fox')
rp <- c('SLOW', 'BLACK', 'BEAR')
x %s{}% p
strfind(x, p)
strfind(x, p) <- rp
print(x)

#############################################################################

# Example of strfind for dictionary replacement ====

x <- rep('The quick brown fox jumped over the lazy dog.', 3)
print(x)
p <- c('quick', 'brown', 'fox')
rp <- c('SLOW', 'BLACK', 'BEAR')
# thus dictionary is:
# quick => SLOW; brown => BLACK; fox => BEAR
strfind(x, p, rt = "dict") <- rp
print(x)

#############################################################################

# Example of strfind for first and last replacement ====

x <- rep('The quick brown fox jumped over the lazy dog.', 3)
print(x)
p <- s_fixed("the", case_insensitive = TRUE)
rp <- "One"
strfind(x, p, rt = "first") <- rp
print(x)

x <- rep('The quick brown fox jumped over the lazy dog.', 3)
print(x)



58 str_subset_ops

p <- s_fixed("the", case_insensitive = TRUE)
rp <- "Some Other"
strfind(x, p, rt = "last") <- rp
print(x)

str_subset_ops String Subsetting Operators

Description

String subsetting operators.

The x %sget% ss operator gets a certain number of the first and last characters of every string
in character vector x.

The x %strim% ss operator trims a certain number of the first and last characters of every string in
character vector x.

Usage

x %sget% ss

x %strim% ss

Arguments

x a character vector.

ss a vector of length 2, or a matrix with 2 columns with nrow(ss) == length(x).
The object ss should consist entirely of non-negative and non-missing integers,
or be coerce-able to such integers. (thus negative integers, and missing values
are not allowed; decimal numbers will be converted to integers).
The first element/column of ss gives the number of characters counting from
the left side to be extracted/removed from x.
The second element/column of ss gives the number of characters counting from
the right side to be extracted/removed from x.

Details

These operators serve as a way to provide straight-forward string sub-setting.



subset_if 59

Value

The x %sget% ss operator gives a certain number of the first and last characters of character vector
x.

The x %strim% ss operator removes a certain number of the first and last characters of charac-
ter vector x.

See Also

tinycodet_strings

Examples

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
ss <- c(2,3)
x %sget% ss

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
ss <- c(1,0)
x %sget% ss

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
ss <- c(2,3)
x %strim% ss

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
ss <- c(1,0)
x %strim% ss

subset_if Conditional Sub-setting and In-place Replacement of Unreal Values

Description

The x %[if]% cond operator selects elements from vector/matrix/array x, for which the result of
cond(x) returns TRUE.
And the x %[!if]% cond operator selects elements from vector/matrix/array x, for which the result



60 subset_if

of cond(x) returns FALSE.

The x %unreal =% repl operator modifies all unreal (NA, NaN, Inf, -Inf) values of x with re-
placement value repl.
Thus,
x %unreal =% repl,
is the same as,
x[is.na(x) | is.nan(x) | is.infinite(x)] <- repl

Usage

x %[if]% cond

x %[!if]% cond

x %unreal =% repl

Arguments

x a vector, matrix, or array.

cond a (possibly anonymous) function that returns a logical vector of the same
length/dimensions as x.
For example: \(x)x>0.

repl the replacement value.

Value

For the x %[if]% cond and x %[!if]% cond operators:
The subset_if - operators all return a vector with the selected elements.

For the x %unreal =% repl operator:
The x %unreal =% repl operator does not return any value:
It is an in-place modifier, and thus modifies x directly. The object x is modified such that all NA,
NaN, Inf, and -Inf elements are replaced with repl.

See Also

tinycodet_dry

Examples

x <- c(-10:9, NA, NA)
object_with_very_long_name <- matrix(x, ncol=2)
print(object_with_very_long_name)
object_with_very_long_name %[if]% \(x)x %in% 1:10
object_with_very_long_name %[!if]% \(x)x %in% 1:10

x <- c(1:9, NA, NaN, Inf)



s_pattern 61

print(x)
x %unreal =% 0 # same as x[is.na(x)|is.nan(x)|is.infinite(x)] <- 0
print(x)

s_pattern Pattern Specifications for String Related Operators

Description

The %s-%, %s/%, %ss% operators, as well as the string search operators (str_search), perform pat-
tern matching for some purpose, where the pattern is given in the second argument (p).
When a character vector or string is given as the second argument (p), this is interpreted as case-
sensitive regex patterns from ’stringi’.

Instead of giving a string or character vector of regex patterns, one can also supply a list to specify
exactly how the pattern should be interpreted. The list should use the exact same argument conven-
tion as ’stringi’.

For example:

• list(regex = p, case_insensitive = FALSE, ...)

• list(fixed = p, ...)

• list(coll = p, ...)

• list(charclass = p, ...)

All arguments in the list are simply passed to the appropriate functions in ’stringi’.
For example:

x %s/% p

counts how often regular expression specified in character vector p occurs in x, whereas the follow-
ing,

x %s/% list(fixed = p, case_insensitive = TRUE)

will do the same, except it uses fixed (i.e. literal) expression, and it does not distinguish between
upper case and lower case characters.

’tinycodet’ adds some convenience functions based on the stri_opts_ - functions in ’stringi’:

• s_regex(p, ...) is equivalent to list(regex = p, ...)

• s_fixed(p, ...) is equivalent to list(fixed = p, ...)

• s_coll(p, ...) is equivalent to list(coll = p, ...)

• s_chrcls(p, ...) is equivalent to list(charclass = p, ... )



62 s_pattern

With the ellipsis (...) being passed to the appropriate ’stringi’-functions when it matches their ar-
guments.

’stringi’ infix operators start with "%s", though they all have an alias starting with "%stri". In
analogy to that, the above functions start with "s_" rather than "stri_", as they are all meant for
operators only.

Usage

s_regex(
p,
case_insensitive,
comments,
dotall,
multiline,
time_limit,
stack_limit,
...

)

s_fixed(p, case_insensitive, overlap, ...)

s_coll(
p,
locale,
strength,
alternate_shifted,
french,
uppercase_first,
case_level,
numeric,
normalization,
...

)

s_chrcls(p, ...)

Arguments

p a character vector giving the pattern to search for.
about search: regex
about search: fixed
about search: coll
about search: charclass

case_insensitive

see stri_opts_regex and stri_opts_fixed.

https://stringi.gagolewski.com/rapi/about_search_regex.html
https://stringi.gagolewski.com/rapi/about_search_fixed.html
https://stringi.gagolewski.com/rapi/about_search_coll.html
https://stringi.gagolewski.com/rapi/about_search_charclass.html


s_pattern 63

comments, dotall, multiline

see stri_opts_regex.
time_limit, stack_limit

see stri_opts_regex.

... additional arguments not part of the stri_opts - functions to be passed here.
For example: the at argument for the str_search operators.

overlap see stri_opts_fixed.
locale, strength, alternate_shifted

see stri_opts_collator.
french, normalization, numeric

see stri_opts_collator.
uppercase_first, case_level

see stri_opts_collator.

Value

A list with arguments to be passed to the appropriate operators.

See Also

tinycodet_strings

Examples

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
p <- rep("a|e|i|o|u", 2) # same as p <- list(regex = rep("a|e|i|o|u", 2))
x %s/% p # count how often vowels appear in each string of vector x.

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
x %s/% list(regex = rep("A|E|I|O|U", 2), case_insensitive = TRUE)
x %s/% s_regex(rep("A|E|I|O|U", 2), case_insensitive = TRUE)

x <- c(paste0(letters[1:13], collapse = ""),
paste0(letters[14:26], collapse = ""))

print(x)
p <- list(fixed = c("A", "A"), case_insensitive = TRUE)
x %s{}% p
x %s!{}% p
p <- s_fixed(c("A", "A"), case_insensitive = TRUE)
x %s{}% p
x %s!{}% p

x <- c(paste0(letters[1:13], collapse = ""),



64 transform_if

paste0(letters[14:26], collapse = ""), NA)
p <- s_fixed("abc", at = "start")
x %s{}% p
stringi::stri_startswith(x, fixed = "abc") # same as above

p <- s_fixed("xyz", at = "end")
x %s{}% p
stringi::stri_endswith(x, fixed = "xyz") # same as above

transform_if transform_if: Conditional Sub-set Transformation of Atomic objects

Description

The transform_if() function transforms an object x, based on the logical result (TRUE, FALSE,
NA) of condition function cond(x) or logical vector cond, such that:

• For every value where cond(x)==TRUE / cond==TRUE, function yes(x) is run or scalar yes is
returned.

• For every value where cond(x)==FALSE / cond==FALSE, function no(x) is run or scalar no is
returned.

• For every value where cond(x)==NA / cond==NA, function other(x) is run or scalar other is
returned.

For a more ifelse-like function where yes, no, and other are vectors, see kit::iif.

Usage

transform_if(x, cond, yes = function(x) x, no = function(x) x, other = NA)

Arguments

x a vector, matrix, or array.

cond either an object of class logical with the same length as x,
or a (possibly anonymous) function that returns an object of class logical with
the same length as x.
For example: \(x)x>0.

yes the (possibly anonymous) transformation function to use when function cond(x)==TRUE
/ logical cond==TRUE.
Alternatively, one can also supply an atomic scalar.
If argument yes is not specified, it defaults to \(x)x.



transform_if 65

no the (possibly anonymous) transformation function to use when function cond(x)==FALSE
/ logical cond==FALSE.
Alternatively, one can also supply an atomic scalar.
If argument no is not specified, it defaults to \(x)x.

other the (possibly anonymous) transformation function to use when function cond(x)
/ logical cond returns NA.
Alternatively, one can also supply an atomic scalar.
If argument other is not specified, it defaults to NA.
Note that function other(x) is run or scalar other is returned when function
cond(x) or logical cond is NA, not necessarily when x itself is NA.

Details

Be careful with coercion! For example the following code:

x <- c("a", "b")
transform_if(x, \(x) x == "a", as.numeric, as.logical)

returns:

[1] NA NA

due to the same character vector being given 2 incompatible classes.

Value

The transformed vector, matrix, or array (attributes are conserved).

See Also

tinycodet_dry

Examples

x <- c(-10:9, NA, NA)
object <- matrix(x, ncol = 2)
attr(object, "helloworld") <- "helloworld"
print(object)
y <- 0
z <- 1000

object |> transform_if(\(x) x > y, log, \(x) x^2, \(x) -z)
object |> transform_if(object > y, log, \(x) x^2, -z) # same as previous line



66 with_pro

with_pro Standard Evaluated Versions of Some Common Expression-Evaluation
Functions

Description

The with_pro() and aes_pro() functions are standard-evaluated versions of the expression-evaluation
functions with and ggplot2::aes, respectively.

These alternative functions are more programmatically friendly:
They use proper standard evaluation, through the usage of one-sided formulas, instead of non-
standard evaluation, tidy evaluation, or similar programmatically unfriendly evaluations.

Usage

with_pro(data, form)

aes_pro(...)

Arguments

data a list, environment, or data.frame.

form a one-sided formula giving the expression to evaluate in with_pro.
If the formula has an environment, that environment is used to find any variables
or objects not present in data.

... arguments to be passed to ggplot2::aes, but given as one-sided formulas.

Details

The aes_pro() function is the standard evaluated alternative to ggplot2::aes.
Due to the way aes_pro() is programmed, it should work even if the tidy evaluation technique
changes in ’ggplot2’.
To support functions in combinations with references of the variables, the input used here are for-
mula inputs, rather than string inputs.
See the Examples section below.

Value

For with_pro(): see with.
For aes_pro(): see ggplot2::aes.



with_pro 67

Non-Standard Evaluation

Non-Standard Evaluation (sometimes abbreviated as "NSE"), is somewhat controversial.
Consider the following example:

aplot <- "ggplot2"
library(aplot)

What package will be attached? It will not be ’ggplot2’, nor will an error occur. Instead, the pack-
age ’aplot’ will be attached.
This is due to evaluating the expression ’aplot’ as a quoted expression, instead of evaluating the
contents (i.e. string or formula) of the variable. In other words: Non-Standard Evaluation.

Regular Standard Evaluation does not have the above problem.
Standard evaluation in ’R’ is not limited to atomic objects like character vectors; formulas can also
be used.

Note

The with_pro() function, like the original with function, is made for primarily for convenience.
When using modelling or graphics functions with an explicit data argument (and typically using
formulas), it is typically preferred to use the data argument of that function, rather than to use either
with(data, ...) or with_pro(data, ...).

See Also

tinycodet_safer

Examples

requireNamespace("ggplot2")

d <- import_data("ggplot2", "mpg")

# mutate data:
myform <- ~ displ + cyl + cty + hwy
d$mysum <- with_pro(d, myform)
summary(d)

# plotting data:
x <- ~ cty
y <- ~ sqrt(hwy)
color <- ~ drv

ggplot2::ggplot(d, aes_pro(x, y, color = color)) +
ggplot2::geom_point()



68 x.import

x.import Helper Functions for the ’tinycodet’ Package Import System

Description

The help.import() function finds the help file for functions or topics, including exposed func-
tions/operators as well as functions in a package alias object.

The is.tinyimport() function checks if an alias object or an exposed function is of class tinyimport;
i.e. if it is an object produced by the import_as, import_inops, or import_LL function.

The attr.import() function gets one or all special attribute(s) from an alias object returned by
import_as.

Usage

help.import(..., i, alias)

is.tinyimport(x)

attr.import(alias, which = NULL)

Arguments

... further arguments to be passed to help.

i either one of the following:

• a function (use back-ticks when the function is an infix operator). Exam-
ples: myfun , `%operator%` , myalias.$some_function . If a function,
the alias argument is ignored.

• a string giving the function name or topic (i.e. "myfun", "thistopic"). If
a string, argument alias must be specified also.

alias the alias object as created by the import_as function.

x an existing object (i.e. an assigned variable or a locked constant) to be tested.

which The attributes to list. If NULL, all attributes will be returned.
Possibilities: "pkgs", "conflicts", "args", and "ordered_object_names".



x.import 69

Details

For help.import(...):
Do not use the topic / package and i / alias argument sets together. It’s either one set or the
other.
For example:

import_as(~ mr., "magrittr")
import_inops(mr.)
help.import(i = mr.$add)
help.import(i = `%>%`)
help.import(i = "add", alias = mr.)
help.import(topic = "%>%", package = "magrittr")
help.import("%>%", package = "magrittr") # same as previous line

Value

For help.import():
Opens the appropriate help page.

For is.tinyimport():
Returns TRUE if the function is produced by import_as, import_inops, or import_LL, and returns
FALSE if it is not.

For attr.import(alias, which = NULL):
All special attributes of the given alias object are returned as a list.

For attr.import(alias, which = "pkgs"):
Returns a list with 3 elements:

• packages_order: a character vector of package names, giving the packages in the order they
were imported in the alias object.

• main_package: a string giving the name of the main package. Re-exported functions, if
present, are taken together with the main package.

• re_exports.pkgs: a character vector of package names, giving the packages from which the
re-exported functions in the main package were taken.

For attr.import(alias, which = "conflicts"):
The order in which packages are imported in the alias object (see attribute pkgs$packages_order)
matters: Functions from later named packages overwrite those from earlier named packages, in case
of conflicts.
The "conflicts" attribute returns a data.frame showing exactly which functions overwrite functions
from earlier named packages, and as such "win" the conflicts.

For attr.import(alias, which = "args"):
Returns a list of input arguments. These were the arguments supplied to import_as when the alias



70 x.import

object in question was created.

For attr.import(alias, which = "ordered_object_names"):
Gives the names of the objects in the alias, in the order as they were imported.
For conflicting objects, the last imported ones are used for the ordering.
Note that if argument re_exports is TRUE, re-exported functions are imported when the main pack-
age is imported, thus changing this order slightly.

See Also

tinycodet_import

Examples

import_as(~ to., "tinycodet")
import_inops(to.)
`%s==%` <- stringi::`%s==%`

is.tinyimport(to.) # returns TRUE
is.tinyimport(`%:=%`) # returns TRUE
is.tinyimport(`%s==%`) # returns FALSE: not imported by tinycodet import system

attr.import(to., which = "conflicts")



Index

∗ join_mat
stri_join_mat, 42

::, 4, 15, 16, 19
:::, 23
$, 16, 37
%:=% (inplace), 25
%<-c% (lock), 26
%=numtype% (logic_ops), 28
%=strtype% (logic_ops), 28
%?=% (logic_ops), 28
%[!if]% (subset_if), 59
%[if]% (subset_if), 59
%col~% (matrix_ops), 30
%d!=% (decimal_truth), 12
%d<=% (decimal_truth), 12
%d<% (decimal_truth), 12
%d==% (decimal_truth), 12
%d>=% (decimal_truth), 12
%d>% (decimal_truth), 12
%installed in% (pkgs), 32
%n&% (logic_ops), 28
%out% (logic_ops), 28
%row~% (matrix_ops), 30
%s-% (str_arithmetic), 50
%s//% (str_arithmetic), 50
%s/% (str_arithmetic), 50
%sget% (str_subset_ops), 58
%ss% (str_arithmetic), 50
%strim% (str_subset_ops), 58
%unreal =% (subset_if), 59
%xor% (logic_ops), 28
%<-c%, 4
%s-%, %s/%, %ss%, 61
%s==%, 12, 52

aaa0_tinycodet_help, 2
aaa1_tinycodet_safer, 4
aaa2_tinycodet_import, 4
aaa3_tinycodet_strings, 7
aaa4_tinycodet_dry, 9

aaa5_tinycodet_misc, 10
about_search_fixed, 39
about_search_regex, 38
aes, 66
aes_pro, 4
aes_pro (with_pro), 66
as.character, 10
as.complex, 10
as.double, 10
as.integer, 10
as.logical, 10
as.raw, 10
as_bool (atomic_conversions), 10
as_chr (atomic_conversions), 10
as_cplx (atomic_conversions), 10
as_dbl (atomic_conversions), 10
as_int (atomic_conversions), 10
as_raw (atomic_conversions), 10
Atomic type casting without stripping

attributes, 9
atomic_conversions, 10
attaching, 4, 5
attr.import, 17
attr.import (x.import), 68

base::source(), 39

Concatenate a character matrix row- or
column-wise, 8

decimal_truth, 12
detecting patterns, 8

exists, 22

formula, 67

general in-place (mathematical)
modification operator, 9

help, 68

71



72 INDEX

help.import (x.import), 68

iif, 64
import_as, 5, 6, 14, 19, 23, 68, 69
import_data, 5, 18
import_inops, 5, 6, 19, 21, 22, 24, 68, 69
import_inops(), 22
import_inops.control, 19, 21
import_inops.control(), 20
import_int, 5
import_int (import_LL), 23
import_LL, 5, 6, 23, 68, 69
Infix logical operators, 10
Infix operators for row- and

column-wise re-ordering of
matrices, 10

inplace, 25
interactive, 37
is.tinyimport (x.import), 68
is_wholenumber (decimal_truth), 12

library, 4
loadedNamespaces, 35
loadNamespace, 15, 17–19, 23, 33, 35
lock, 26
lock_TF, 4
lock_TF (lock), 26
lockBinding, 23, 24, 27
Logic, 28
logic_ops, 28

matrix_ops, 30

pkg_get_deps, 15
pkg_get_deps (pkgs), 32
pkg_get_deps_minimal, 16
pkg_get_deps_minimal (pkgs), 32
pkg_lsf (pkgs), 32
pkgs, 5, 32
pversion, 5, 35
pversion_check4mismatch (pversion), 35
pversion_report (pversion), 35

Report infix operators present in the
current environment, or a
specified environment., 10

report_inops, 36
report_inops(), 20

s_chrcls (s_pattern), 61

s_coll (s_pattern), 61
s_fixed (s_pattern), 61
s_pattern, 8, 51–53, 61
s_regex (s_pattern), 61
Safer decimal (in)equality testing, 4
safer_partialmatch, 4, 37
setv, 27
source, 38
source_selection, 10, 38
str_arithmetic, 50
str_search, 52, 61, 63
str_subset_ops, 58
strcut_-functions, 8
strcut_brk, 50
strcut_brk (strcut_loc), 40
strcut_loc, 40, 50
strfind (str_search), 52
strfind()<-, 8
strfind<- (str_search), 52
stri_c_mat (stri_join_mat), 42
stri_endswith, 52, 54
stri_extract_all, 52
stri_join, 43
stri_join_mat, 42
stri_locate_all, 45, 47, 52
stri_locate_all_boundaries, 45
stri_locate_first, 46
stri_locate_ith, 8, 40, 44, 52–54
stri_locate_ith_boundaries, 8
stri_locate_ith_boundaries

(stri_locate_ith), 44
stri_locate_ith_charclass

(stri_locate_ith), 44
stri_locate_ith_coll (stri_locate_ith),

44
stri_locate_ith_fixed

(stri_locate_ith), 44
stri_locate_ith_regex

(stri_locate_ith), 44
stri_locate_last, 46
stri_match, 46
stri_opts_brkiter, 40, 45, 51
stri_opts_collator, 45, 63
stri_opts_fixed, 45, 62, 63
stri_opts_regex, 45, 62, 63
stri_paste_mat (stri_join_mat), 42
stri_replace, 53
stri_split, 41



INDEX 73

stri_split_boundaries, 40, 41
stri_sprintf, 50
stri_startswith, 52, 54
stri_sub, 46
string arithmetic, 8
string sub-setting, 8
string sub-setting operators, 8
strsplit, 41
subset_if, 59
subset_if operators and the in-place

unreal modifier operator, 9

tinycodet (aaa0_tinycodet_help), 2
tinycodet-package

(aaa0_tinycodet_help), 2
tinycodet_dry, 3, 11, 26, 60, 65
tinycodet_dry (aaa4_tinycodet_dry), 9
tinycodet_help, 4, 6, 8, 9
tinycodet_help (aaa0_tinycodet_help), 2
tinycodet_help(), 10
tinycodet_import, 3, 16–20, 24, 34, 36, 70
tinycodet_import

(aaa2_tinycodet_import), 4
tinycodet_import(), 22
tinycodet_misc, 3, 31, 39
tinycodet_misc (aaa5_tinycodet_misc), 10
tinycodet_misc(), 36
tinycodet_safer, 3, 13, 27, 37, 67
tinycodet_safer (aaa1_tinycodet_safer),

4
tinycodet_strings, 3, 41, 43, 47, 51, 55, 59,

63
tinycodet_strings

(aaa3_tinycodet_strings), 7
transform_if, 9, 64

use without attach, 4, 5

with, 66, 67
with_pro, 4, 66

x.import, 5, 68
xor, 28


	aaa0_tinycodet_help
	aaa1_tinycodet_safer
	aaa2_tinycodet_import
	aaa3_tinycodet_strings
	aaa4_tinycodet_dry
	aaa5_tinycodet_misc
	atomic_conversions
	decimal_truth
	import_as
	import_data
	import_inops
	import_inops.control
	import_LL
	inplace
	lock
	logic_ops
	matrix_ops
	pkgs
	pversion
	report_inops
	safer_partialmatch
	source_selection
	strcut_loc
	stri_join_mat
	stri_locate_ith
	str_arithmetic
	str_search
	str_subset_ops
	subset_if
	s_pattern
	transform_if
	with_pro
	x.import
	Index

