swaglm: Fast Sparse Wrapper Algorithm for Generalized Linear Models and Testing Procedures for Network of Highly Predictive Variables

Provides a fast implementation of the SWAG algorithm for Generalized Linear Models which allows to perform a meta-learning procedure that combines screening and wrapper methods to find a set of extremely low-dimensional attribute combinations. The package then performs test on the network of selected models to identify the variables that are highly predictive by using entropy-based network measures.

Version: 0.0.1
Imports: Rcpp, fastglm, stats, igraph, gdata, plyr, progress, DescTools, scales, fields
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, MASS, rmarkdown
Published: 2025-09-18
Author: Lionel Voirol ORCID iD [aut, cre], Yagmur Ozdemir [aut]
Maintainer: Lionel Voirol <lionelvoirol at hotmail.com>
License: AGPL-3
NeedsCompilation: yes
Materials: README
CRAN checks: swaglm results

Documentation:

Reference manual: swaglm.html , swaglm.pdf
Vignettes: Run the SWAG algorithm for generalized linear models (source, R code)

Downloads:

Package source: swaglm_0.0.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=swaglm to link to this page.