
Package ‘rlppinv’
January 30, 2026

Type Package

Title Linear Programming via Regularized Least Squares

Version 0.2.0

Description The Linear Programming via Regularized Least Squares (LPPinv) is a
two-stage estimation method that reformulates linear programs as
structured least-squares problems. Based on the Convex Least
Squares Programming (CLSP) framework, LPPinv solves linear
inequality, equality, and bound constraints by (1) constructing a
canonical constraint system and computing a pseudoinverse
projection, followed by (2) a convex-programming correction stage
to refine the solution under additional regularization (e.g.,
Lasso, Ridge, or Elastic Net). LPPinv is intended for
underdetermined and ill-posed linear problems, for which standard
solvers fail.

License MIT + file LICENSE

Encoding UTF-8

Language en-US

Depends R (>= 4.2)

Imports rclsp (>= 0.3.0)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/econcz/rlppinv

BugReports https://github.com/econcz/rlppinv/issues

RoxygenNote 7.3.3

NeedsCompilation no

Author Ilya Bolotov [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1148-7144>)

Maintainer Ilya Bolotov <ilya.bolotov@vse.cz>

Repository CRAN

Date/Publication 2026-01-30 20:50:02 UTC

1

https://github.com/econcz/rlppinv
https://github.com/econcz/rlppinv/issues
https://orcid.org/0000-0003-1148-7144

2 lppinv

Contents
lppinv . 2

Index 5

lppinv Solve a linear program via Convex Least Squares Programming
(CLSP).

Description

Solve a linear program via Convex Least Squares Programming (CLSP).

Usage

lppinv(
c = NULL,
A_ub = NULL,
b_ub = NULL,
A_eq = NULL,
b_eq = NULL,
non_negative = TRUE,
bounds = NULL,
replace_value = NA_real_,
tolerance = sqrt(.Machine$double.eps),
final = TRUE,
alpha = NULL,
...

)

Arguments

c numeric vector of length p, optional. Objective-function coefficients. Included
for API parity with Python’s pylppinv; not used by CLSP.

A_ub numeric matrix of size i× p, optional. Matrix of inequality constraints Aubx ≤
bub.

b_ub numeric vector of length i, optional. Right-hand side for the inequality con-
straints.

A_eq numeric matrix of size j × p, optional. Matrix of equality constraints Aeqx =
beq .

b_eq numeric vector of length j, optional. Right-hand side for the equality con-
straints.

non_negative logical scalar, default = TRUE. If FALSE, no default nonnegativity bound is ap-
plied.

lppinv 3

bounds NULL, numeric(2), or list of numeric(2). Bounds on variables. If a single
pair c(low, high) is given, it is applied to all variables. If NULL, defaults to
c(0, NA) for each variable (non-negativity).

replace_value numeric scalar or NA, default = NA. Final replacement value for any variable that
violates the bounds by more than the given tolerance.

tolerance numeric scalar, default = sqrt(.Machine$double.eps). Convergence toler-
ance for bounds.

final logical scalar, default = TRUE If FALSE, only the first step of the CLSP estimator
is performed.

alpha numeric scalar, numeric vector, or NULL, Regularization parameter for the sec-
ond step of the CLSP estimator.

... Additional arguments passed to the rclsp solver.

Value

An object of class "clsp" containing the fitted CLSP model.

See Also

clsp

CVXR-package

Examples

Linear Programming via Regularized Least Squares (LPPinv)
Underdetermined and potentially infeasible LP system

RNGkind("L'Ecuyer-CMRG")
set.seed(123456789)

sample (dataset)
A_ub <- matrix(rnorm(50 * 500), nrow = 50L, ncol = 500L)
A_eq <- matrix(rnorm(25 * 500), nrow = 25L, ncol = 500L)
b_ub <- matrix(rnorm(50), ncol = 1L)
b_eq <- matrix(rnorm(25), ncol = 1L)

model (no default non-negativity, unique MNBLUE solution)
model <- lppinv(

A_ub = A_ub,
A_eq = A_eq,
b_ub = b_ub,
b_eq = b_eq,
non_negative = FALSE,
final = TRUE,
alpha = 1.0 # unique MNBLUE estimator

)

coefficients
print("x hat (x_M hat):")

4 lppinv

print(round(model$x, 4))

numerical stability (if available)
if (!is.null(model$kappaC)) {

cat("\nNumerical stability:\n")
cat(" kappaC :", round(model$kappaC, 4), "\n")

}
if (!is.null(model$kappaB)) {

cat(" kappaB :", round(model$kappaB, 4), "\n")
}
if (!is.null(model$kappaA)) {

cat(" kappaA :", round(model$kappaA, 4), "\n")
}

goodness-of-fit diagnostics (if available)
if (!is.null(model$nrmse)) {

cat("\nGoodness-of-fit:\n")
cat(" NRMSE :", round(model$nrmse, 6), "\n")

}
if (!is.null(model$x_lower)) {

cat(" Diagnostic band (min):", round(min(model$x_lower), 4), "\n")
}
if (!is.null(model$x_upper)) {

cat(" Diagnostic band (max):", round(max(model$x_upper), 4), "\n")
}

bootstrap NRMSE t-test (if supported by rclsp)
if ("ttest" %in% names(model)) {

cat("\nBootstrap t-test:\n")
tt <- model$ttest(sample_size = 30L,

seed = 123456789,
distribution = "normal")

for (nm in names(tt)) {
cat(" ", nm, ": ", round(tt[[nm]], 6), "\n", sep = "")

}
}

Index

clsp, 3
CVXR-package, 3

lppinv, 2

5

	lppinv
	Index

