Package ‘rlppinv’
January 30, 2026

Type Package
Title Linear Programming via Regularized Least Squares
Version 0.2.0

Description The Linear Programming via Regularized Least Squares (LPPinv) is a
two-stage estimation method that reformulates linear programs as
structured least-squares problems. Based on the Convex Least
Squares Programming (CLSP) framework, LPPinv solves linear
inequality, equality, and bound constraints by (1) constructing a
canonical constraint system and computing a pseudoinverse
projection, followed by (2) a convex-programming correction stage
to refine the solution under additional regularization (e.g.,

Lasso, Ridge, or Elastic Net). LPPinv is intended for
underdetermined and ill-posed linear problems, for which standard
solvers fail.

License MIT + file LICENSE
Encoding UTF-8

Language en-US

Depends R (>=4.2)

Imports rclsp (>=0.3.0)
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

URL https://github.com/econcz/rlppinv

BugReports https://github.com/econcz/rlppinv/issues
RoxygenNote 7.3.3
NeedsCompilation no

Author Ilya Bolotov [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1148-7144>)

Maintainer Ilya Bolotov <ilya.bolotov@vse.cz>
Repository CRAN
Date/Publication 2026-01-30 20:50:02 UTC

https://github.com/econcz/rlppinv
https://github.com/econcz/rlppinv/issues
https://orcid.org/0000-0003-1148-7144

2 Ippinv

Contents
Ippinv . . . e 2
Index 5
lppinv Solve a linear program via Convex Least Squares Programming
(CLSP).
Description

Solve a linear program via Convex Least Squares Programming (CLSP).

Usage
lppinv(
¢ = NULL,
A_ub = NULL,
b_ub = NULL,
A_eq = NULL,
b_eq = NULL,

non_negative = TRUE,

bounds = NULL,

replace_value = NA_real_,

tolerance = sqrt(.Machine$double.eps),

final = TRUE,
alpha = NULL,
)
Arguments
c numeric vector of length p, optional. Objective-function coefficients. Included
for API parity with Python’s pylppinv; not used by CLSP.
A_ub numeric matrix of size ¢ X p, optional. Matrix of inequality constraints A ,;x <
buys.
b_ub numeric vector of length ¢, optional. Right-hand side for the inequality con-
straints.
A_eq numeric matrix of size j x p, optional. Matrix of equality constraints A.,x =
be,.
b_eq numeric vector of length j, optional. Right-hand side for the equality con-
straints.

non_negative logical scalar, default = TRUE. If FALSE, no default nonnegativity bound is ap-
plied.

Ippinv

bounds

NULL, numeric(2), or list of numeric(2). Bounds on variables. If a single
pair c(low, high) is given, it is applied to all variables. If NULL, defaults to
c(@, NA) for each variable (non-negativity).

replace_value numeric scalar or NA, default = NA. Final replacement value for any variable that

tolerance

final

alpha

Value

violates the bounds by more than the given tolerance.

numeric scalar, default = sqrt(.Machine$double.eps). Convergence toler-
ance for bounds.

logical scalar, default = TRUE If FALSE, only the first step of the CLSP estimator
is performed.

numeric scalar, numeric vector, or NULL, Regularization parameter for the sec-
ond step of the CLSP estimator.

Additional arguments passed to the relsp solver.

An object of class "clsp” containing the fitted CLSP model.

See Also

clsp

CVXR-package

Examples

Linear Programming via Regularized Least Squares (LPPinv)
Underdetermined and potentially infeasible LP system

RNGkind ("L 'Ecuyer-CMRG")
set.seed(123456789)

sample (dataset)

A_ub <- matrix(rnorm(50 * 500), nrow = 50L, ncol

500L)

A_eq <- matrix(rnorm(25 * 500), nrow = 25L, ncol = 500L)

b_ub <- matrix(rnorm(50), ncol
b_eq <- matrix(rnorm(25), ncol

1L)
L)

model (no default non-negativity, unique MNBLUE solution)

model <- lppinv(
A_ub = A_ub,
A_eq = A_eq,
b_ub = b_ub,
b_eq = b_eq,
non_negative = FALSE,
final = TRUE,
alpha = 1.0 # unique MNBLUE estimator

)

coefficients
print("x hat (x_M hat):")

Ippinv

print(round(model$x, 4))

numerical stability (if available)
if (!is.null(model$kappaC)) {
cat("\nNumerical stability:\n")

cat(” kappaC :", round(model$kappaC, 4), "\n")
}
if (!is.null(model$kappaB)) {

cat(” kappaB :", round(model$kappaB, 4), "\n")
}

if (!is.null(model$kappaA)) {
cat(” kappaA :", round(model$kappaA, 4), "\n")
}

goodness-of-fit diagnostics (if available)
if (!is.null(model$nrmse)) {
cat("\nGoodness-of-fit:\n")

cat(” NRMSE :", round(model$nrmse, 6), "\n")
}
if (!is.null(model$x_lower)) {

cat(” Diagnostic band (min):"”, round(min(model$x_lower), 4), "\n")
}

if (!is.null(model$x_upper)) {
cat(” Diagnostic band (max):", round(max(model$x_upper), 4), "\n")

}

bootstrap NRMSE t-test (if supported by rclsp)
if ("ttest” %in% names(model)) {
cat("\nBootstrap t-test:\n")
tt <- model$ttest(sample_size = 30L,
seed = 123456789,
distribution = "normal”)
for (nm in names(tt)) {
cat(” ", nm, ": ", round(tt[[nm]], 6), "\n", sep = "")
}

Index

clsp, 3
CVXR-package, 3

lppinv, 2

	lppinv
	Index

