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Abstract

pvars offers a seamless implementation of vector autoregressive (VAR) methods for
heterogeneous panel data. The R-package comprises panel cointegration rank tests which
can account for cross-sectional dependence and for structural breaks in the deterministic
terms. The implemented panel SVAR models can be estimated under these specifications
with pooled cointegrating vectors and identified by various panel identification procedures.
In this article, we review these methods and present their modular implementation in R.
Two empirical illustrations reproduce examples from the literature step-by-step and guide
the pvars user into conducting own analyses.
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1. Introduction

The ever-increasing availability of macroeconomic data and recent developments in the mul-
tivariate time series analysis for panels have popularized panel vector autoregressive methods
in applied econometric research. The pvars package summarizes a toolkit for the empirical
analysis on panels in the narrow sense, where the same time series variables are repetitively
observed across several individual entities such as countries. This three-dimensional data
structure thus contrasts with panels in a wider sense, where time series are just arranged along
the same periods. Although pvars’ application is not bounded to financial or macroeconomet-
ric research, it addresses the data properties typically found in macroeconomic panels, namely
(i) mostly heterogeneous (ii) endogenous interactions between (iii) potentially non-stationary
variables. Since (iv) the time dimension is distinctively larger than the cross-section, the time
series are prone to (v) a complex deterministic term with structural breaks in their mean and
linear trend. The individual entities are usually subject to (vi) cross-sectional dependencies.1

In order to deal with these data properties, the econometric literature extends individual
time series methods by the cross-sectional dimension under selective pooling assumptions.
For example, the panel methods implemented by the Stata commands xtcointtest (StataCorp
2019), xtwest (Persyn and Westerlund 2008), and xtpmg (Blackburne and Frank 2007) orig-

1See Pedroni (2019) for an intuition and discussion of these panel properties and an overview on recent
developments of single-equation and system-based methods. The data characteristics can be found in the
applied econometrics of climate (Pretis 2020), energy (Smyth and Narayan 2015), and growth linked to financial
development (Christopoulos and Tsionas 2004) or public capital (Empting and Herwartz 2025).
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inate from the single-equation framework comprising residual-based cointegration tests and
autoregressive distributive lag (ARDL) models in error-correction representation. In con-
trast, pvars relies on vector autoregressive (VAR) models as a system of equations. This
approach has the advantage of avoiding restrictive exogeneity assumptions on the variables
and modeling their dynamics and interactions explicitly. The model in vector error correction
representation (VECM) can further accommodate multiple long-run relations and different
types of deterministic regressors within the cointegration. Particularly the cointegration rela-
tions are reasonable candidates for a panel-wide pooling, while short-run dynamics are usually
assumed to differ across individuals.

The synthesis of VAR models and methods for heterogeneous panels has not been imple-
mented yet, but many packages for R (2020) can already contribute specifications results and
individual counter-checks. Hence, they may be subsumed into two pillars for pvars: Firstly,
the vars-ecosystem with urca (Pfaff 2008a), vars (Pfaff 2008b), and svars (Lange, Dalheimer,
Herwartz, and Maxand 2021) covers individual VAR methods such as VECM and structural
identification. The second pillar are the single-equation panel methods from plm (Croissant
and Millo 2008) such as dynamic panel regression models and panel unit root tests. Uni-
variate panel time series can be tested for common or idiosyncratic non-stationarity using
the more specialized package PANICr (Bronder 2016). Like pvars, the R-package panelvar

(Sigmund and Ferstl 2019) and its Stata-equivalent pvar (Abrigo and Love 2016) rest on the
two pillars. However, they focus on stationary panels that contain more individuals than
periods (N > T ), and the implemented estimators rely on slope coefficients that are homo-
geneous across all individuals in the PVAR model. Hence, they rather suit microeconomic
applications, and their primary task is to deal with the Nickell bias (1981).2

The objective of pvars is to close the gap in the vars-ecosystem and provide a seamless imple-
mentation of the fruitful panel VAR methodology. For this, three fields of VAR applications
are integrated into pvars, namely panel estimation, cointegration testing, and structural iden-
tification. The implemented methods particularly noteworthy for each application field are
(1) panel VECM with pooled cointegrating vectors from Breitung’s (2005) two-step estima-
tor. (2) The new panel cointegration rank tests by Arsova and Örsal (2017; 2018) respect
cross-sectional dependencies stemming from common factors. Arsova and Örsal (2021) con-
sider also structural breaks in the deterministic term. (3) Data-driven identification methods
based on independent component analysis (ICA) are extended for panels by Calhoun, Adali,
Pearlson, and Pekar (2001) and Herwartz and Wang (2024).

The remainder of this article is structured as follows: Section 2 is a review on the econometric
methods which are relevant for using this R-package. Section 3 highlights the available func-
tions in pvars, their implementation, and their library of auxiliary functions. In Section 4, we
demonstrate two empirical applications of pvars to exemplary data from the reviewed articles.
Finally, Section 5 summarizes this article.

2. Review of the econometric methodology

A main motivation for combining multivariate time series from individual entities by panel
methods is to increase the sample size and thereby extend the available information set for
a more precise estimation and higher test power. Table 1 provides an overview of the lit-

2See also Canova and Ciccarelli (2013) for a survey on panel VAR models.
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erature of panel cointegration rank tests. In this unifying framework, the rows of the table
classify the pooling approach according the different stages of hypothesis testing, at which
the the cross-section information is presumed to be homogeneous. The listed pooling ap-
proaches allow for increasing heterogeneity between the individuals: (1) Panel-homogeneous
cointegrating vectors enable a pooled estimation of these long-run coefficients. (2) The aver-
aged statistic is standardized by moments of the distribution which the individual statistics
have in common.3 Finally, (3) the meta-analytical combination of individual p-values is the
most flexible approach, where the commonality aims at a consistent test decision under an
increasing number of individuals. If the alternative hypothesis is true, a non-vanishing share
of individuals must actually exhibit this property.

Table 1: Panel tests for the rank of cointegration.
First generation Second generation Third generation

Cross-sectional dependence: Independence Correlated errors PANIC (2004) Correlated probits
Pooling approach:

(1) Pooled coefficients Breitung (2005) a) LR(ΠC | ΠA) — ×
(2) Averaged test statistics Larsson et al. (2001) a) LR(ΠB | ΠA) Arsova, Örsal (2018) ×

Örsal, Droge (2014) b) PMSBZ

(3) Meta-analytically Maddala, Wu (1999) — Örsal, Arsova (2017) Hartung (1999)
combined p-values Choi (2001) b) PMSBF, PMSBC Arsova, Örsal (2021)

Not implemented in pvars: The panel tests by a) Groen, Kleibergen (2003) and b) Carrion-i Silvestre, Surdeanu (2011).

The columns of Table 1 represent the generations, through which panel tests have evolved,
and reflect the increasing complexity of the assumed data generating process. The first ar-
ticles propose the plain approach for combining independent individual tests and thus are
naive towards any dependencies between the individual entities. This cross-sectional depen-
dence can emerge e.g. between countries due to their trade and financial relations and is a
research topic itself with regard to the global business cycle, the crude oil price, or other
important commodities of the world market. The prevalent data property decreases the ac-
tual information content in macroeconomic panels compared to cross-independent samples of
same size. First-generation tests then reject a correct null hypothesis more often than the
nominal significance level and are thus “over-sized”. In contrast, panel tests of the second
generation maintain a correct test size and third-generation tests are robust against structural
breaks additionally. For cointegration rank tests, the econometric literature considers struc-
tural breaks in the mean or linear trend of the cointegration relations. Empirical examples
which are associated with shifts and with breaks in the linear time trend are the German
reunification, the beginning of the Great Moderation, and its discussed end in the wake of
the Great Recession. For a proper data representation, the VAR model must respect those
changes in the long-run equilibrium, towards the error correction mechanism adjusts. Oth-
erwise, the cointegration tests would miss to detect a reversion to the new equilibrium and
thus understate the cointegration rank.

A third dimension of panel test construction is constituted by the underlying individual pro-
cedures, which have not been mapped onto Table 1. These branches are heterogeneous and

3In fact, the univariate counterpart by Im, Pesaran, and Shin (2003, p. 59, Remark 3.1) allows for individual-
specific test distributions if their third moments exist. The approximating gamma distribution with its well-
defined moments suggests that this holds true for cointegration rank tests. By the Lyapunov central limit
theorem, the cross-sectional average of their first and second moments can then be used instead. In light of
this, future studies may extend JMN (2000) and KN (2019) to panel tests with individual deterministic terms.
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often used side-by-side in a panel test article such that they do not follow such a clear pat-
tern as the other two panel test properties do. This does not only hold for the example
of cointegration tests, but also for VAR estimation and structural identification. All panel
applications are confronted with similar construction problems and thus follow these dimen-
sions in principle. Since the individual methods elude any classification scheme for Table 1,
Section 2.1 explains their technical details firstly and lays the foundation for Section 2.2 pre-
senting the panel methods along the two dimensions of Table 1. The sections have the same
structure according to estimation, testing, and identification as established in the individual
and extended to the panel context respectively.

Notations. We adhere to the following rules. Subscript t = 1, . . . , T denotes the periods
and k = 1, . . . , K refers to the endogenous variables in a multivariate time series. In order
to simplify notation, Section 2.1 on the individual methods omits subscript i = 1, . . . , N
as the label specific to each of the N individuals. In contrast, Section 2.2 uses subscript
i to distinguish individual-specific elements also from homogeneous elements. Without any
individual identifier i, the latter must stay the same over the complete cross-section. Moreover,
symbol d−→ designates convergence in distribution. The (K × (K − r)) matrix A⊥ is the
orthogonal complement of a (K × r) matrix A such that rk{[A : A⊥]} = K indicates full
rank and A′

⊥
A = 0. By convention, the orthogonal complement of a nonsigular square matrix

is the zero matrix 0 and the orthogonal complement of zero matrix 0 is an identity matrix
IK . With slight abuse of notation, integer r⊥ refers to the number of stochastic trends in a
multivariate time series, corresponding to the cointegration rank r.

2.1. Individual methods

The basic unit for all presented panel methods is an individual VAR model of the form

yt = Φdt + A1yt−1 + ... + Apyt−p + ut with ut ∼ (0, Σu), (1)

where yt is a vector of K stacked time series, Aj , j = 1, . . . , p, are K × K coefficient matrices
for the VAR process of order p, and Φ is a coefficient matrix for the deterministic regressors
dt. The errors ut are assumed to be serially, but not necessarily contemporaneously indepen-
dent. Hence, the covariance matrix Σu is usually non-diagonal as the VAR model is estimated
in reduced-form initially. Finding the structural shocks ϵt = B−1ut, which exhibit no con-
temporaneous correlation, is the matter of structural identification in the the decomposition
problem Σu = BB′. The K variances of the structural shocks can be normalized to unity such
that ϵt ∼ (0, IK). Consequently, the unique identification of the impact matrix B requires at
least K(K − 1)/2 restrictions on the K2 − K covariances in Σu.

If yt is integrated of order I(1) at most and its first-differences ∆yt are thus stationary, the
VAR Model (1) in levels can be rewritten in its vector error correction representation

∆yt = Φdt + ΠKyt−1 +
p−1∑

j=1

Γj∆yt−j + ut with ut ∼ (0, Σu)

using ΠK := −IK +
p∑

j=1

Aj and Γj := −
p∑

j∗=j+1

Aj∗ , j = 1, . . . , p − 1.

(2)

The K × K coefficient matrix ΠK = αβ′

K of the error correction term summarizes the
K × r cointegrating matrix βK and loading matrix α, which adjusts the disequilibria in
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the r long-run cointegration relations β′

Kyt−1. The regressors dt of the deterministic term
Φdt = [Φ1 : Φ2]

(
d′

1t, d′

2t

)′ are either unrestricted (d2t) or restricted (d1t) to the cointegra-
tion relations such that the coefficients Φ1 emerge from Π := [ΠK : Φ1] = α [β′

K : β′
0] = αβ′.

Finally, each Γj is a K × K matrix of coefficients for short-run effects at lag j = 1, . . . , p − 1.

Estimating cointegrated VAR models

Johansen (1991, 1996) provides a comprehensive collection of Maximum-Likelihood methods
for the individual VECM (2). His ML-estimators and LR-tests are the foundation for any
cointegrated VAR method of the pvars package. Hence, their definitions and components are
throughout used in this article and shall be introduced here briefly. For convenience, firstly
rewrite Model (2) in compact notation as

Z0 = αβ′Z1 + ΓZ2 + U now with ut ∼ N (0, Σu), (3)

where the matrix Γ := [Γ1 : · · · : Γp−1 : Φ2] lines up the coefficients for the short-run dynamics
and for the unrestricted deterministic regressors. The observed time series are collected in the
K ×T matrix Y := [y1, . . . , yT ] for a sample 1, . . . , T and the same holds for the error matrix
U := [u1, . . . , uT ], which contains no presample periods by construction of the estimation
with lagging regressors. Accordingly, the regressand matrix is given by Z0 := ∆Y and the
two regressor matrices with T columns alike by

Z1 :=

[
y0 . . . yT −1

d11 . . . d1T

]
and Z2 :=




∆y0 . . . ∆yT −1
...

∆y1−p+1 . . . ∆yT −p+1

d21 . . . d2T




. (4)

The variables for the error correction term enter Z1 in levels. Z2 stacks the first-differenced
and the unrestricted deterministic regressors. If p = 1, all lagged ∆yt drop out of Z2. In
conditional VECM, vectors of L (weakly) exogenous variables xt could be included as lagged
I(1) regressors into Z1 as well as instantaneous and up to q lagged short-run effects into Z2.
The estimation would follow the same proceeding (Pesaran, Shin, and Smith 2000; Lütkepohl
2005, p. 398), but we skip these terms here for the sake of notational brevity.

ML-estimation.4 The first order conditions from the maximized log-likelihood function

ln L (α, β, Γ, Σu) = − KT

2
ln (2π) − T

2
ln (det(Σu))

− 1

2
tr

[(
Z0 − αβ′Z1 − ΓZ2

)′
Σ−1

u

(
Z0 − αβ′Z1 − ΓZ2

)] (5)

are solved for the estimators of VECM (3), which corresponds to the following three steps:

1. Concentrate out short-run effects and the unrestricted deterministic term. The first
step of Π’s estimation is to remove the component Γz2t from ∆yt and yt by OLS-
regression of Z0 resp. Z1 on Z2. Using the Frisch-Waugh Theorem, the projection

4See Johansen (1996, Ch. 6), Lütkepohl (2005, Ch. 7.2.3) and Lütkepohl (2006, Ch. 3.1) for a more detailed
derivation and explanation.
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matrix M2 := IT − Z ′
2(Z2Z ′

2)−1Z2 generates the “long-run residuals” R0 = Z0M2 resp.
R1 = Z1M2 such that Model (3) collapses into the plain error correction model

Z0M2 = αβ′Z1M2 + ΓZ2M2 + UM2,

R0 = αβ′R1 + Ũ .
(6)

2. Estimate the concentrated Model (6) by reduced-rank regression (RRR) according to
Anderson (1951).5 For doing so, define the moment matrices

S00 :=
R0R′

0

T
, S01 :=

R0R′
1

T
, and S11 :=

R1R′
1

T
. (7)

Further inserting the OLS estimator (9) for α̃(β) into the concentrated likelihood func-
tion transforms the ML maximization into the generalized eigenvalue problem

det
(
λS11 − S′

01S−1
00 S01

)
= 0. (8)

This equation has K solutions with the ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λK ≥ 0,
which are the squared canonical correlation coefficients and indicate the “strength” of
cointegration in each solution. By the definition of cointegration, the correct coefficients
αβ′ must recombine the non-stationary R1 to the stationary R0. Hence, the estimator
β̃ equals the eigenvectors of the r largest λj and is super consistent converging with
rate T instead of the usual

√
T of the remaining OLS estimates. The r⊥ eigenvectors

with the smallest λj are associated with the underlying stochastic trends and thus must
cancel out from the henceforth rank-restricted VECM.

3. Maximize the log-likelihood function (5) conditional on a given β, for which the super-
consistent RRR-estimate β̃ can be inserted. The solution for the remaining estimators
of the reduced-form VECM (3) are in fact conditional OLS, namely

Π̃ = α̃β′ =

[
R0

(
β′R1

)′
((

β′R1

) (
β′R1

)′
)−1

]
β′ = S01β

(
β′S11β

)−1
β′,

Γ̃ =
(
Z0 − Π̃Z1

)
Z ′

2(Z2Z ′

2)−1,

Ũ = Z0 − Π̃Z1 − Γ̃Z2 = R0 − Π̃R1.

(9)

The residual covariance matrix is given by Σ̃u = ŨŨ ′

T = S00 − Π̃S′
01 for ML estimation and

is further corrected for n, the number of coefficients per equation, in the OLS estimator
Σ̂u = T

T −n · Σ̃u. From Eq. (9), it becomes clear that only the loadings α̃(β) adjust towards
the normalization of β, while all other estimators are conditional on the complete matrix
product Π̃ = α̃β′. This shows that the cointegrated VAR process (2) and its impulse response
functions (IRF) are invariant to any eligible normalization under a chosen rank r of Π.

GLS-based trend adjustment. For the unique purpose of determining the cointegration
rank, Lütkepohl and Saikkonen (2000) suggest to estimate and remove the deterministic
term prior to an LM-test. Saikkonen and Lütkepohl (2000c) apply the LR-statistic (15) to
the “detrended” time series, which may further improve the test power. This SL-procedure

5See also Anderson (2003, Ch. 12.7) and Izenman (1975).
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entails a series of publications proposing different specifications of the deterministic term,
which can be subsumed by the additive data generating process

yt = Mµdt + ydt
t ,

ydt
t = A1ydt

t−1 + ... + Apydt
t−p + udt

t .
(10)

Therein, the VAR process of the “pure” stochastic component ydt
t is usually abbreviated by a

lag polynomial A(L) = IK −A1L− . . .−ApLp. The K ×nµ matrix Mµ collects the coefficients
of the deterministic term in the moving-average representation of VAR (1). Specifications of
dt pursuant to the SL literature are listed in Table 2 and illustrated in Section 4.2.

All SL-procedures consider a GLS estimator to determine Mµ. It becomes feasible by a
preceding ML-estimation of VECM (2), for which Table 2 indicates also the conforming
deterministic cases. Each hypothesis rH0 = 0, . . . , K −1 in the test sequence then requires its
specific rank-restriction on the ML-estimates and an own GLS estimation of Mµ. For this,
the ML-estimates of the rank-restricted VECM are converted into Ã1, . . . , Ãp of the VAR in
levels and inserted into the transformed model

Q′A(L)yt = Q′A(L)Mµdt + Q′udt
t for t = 1, . . . , T. (11)

Therein, dt and yt are set to initial zeros in any presample period t ≤ 0 and the feasible
transformation matrix Q̃ is obtainable by inserting ML-estimates into

Q =

[
Σ−1

u α
(
α′Σ−1

u α
)−1/2

: α⊥

(
α′

⊥Σuα⊥

)−1/2
]

. (12)

The left-multiplication of Q′A(L) to (10) in (11) allows for subtracting the confounding effects
of the VAR dynamics and transforms the residual covariance matrix into IK . After vectorizing
Model(11), Mµ can thus be estimated by OLS. Alternatively, Saikkonen and Lütkepohl (2000c,
p. 438) show that

QQ′ = Σ−1
u α

(
α′Σ−1

u α
)−1

α′Σ−1
u + α⊥

(
α′

⊥Σuα⊥

)−1
α′

⊥ = Σ−1
u . (13)

Accordingly, the GLS estimator based on the estimated covariance matrix Σ̃u can be applied
directly to the data unaltered by Q̃, but still corrected for Ã(L). Both proceedings lead to
identical estimation results M̂µ. Finally, the deterministic term is subtracted and the VECM
of the stochastic component ŷdt

t = yt − M̂µdt is estimated by ML again – now without any
deterministic term. The usual LR-statistic (15) can assess the sole null hypothesis of rH0,
but its test distribution (18) differs from the Johansen procedure.

Deterministic term. Johansen and Nielsen (2018) distinguish between the innovative and
the additive formulation of the deterministic term in Model (2) for the Johansen procedure
resp. in Model (10) for the SL-procedure. Table 2 adopts these labels and lists the model
specifications. Like in a stable VAR process, the deterministic regressors dt in VECM (2) can
contain either no deterministic component, an intercept, or an additional linear trend. Beyond
these “standard” types, non-stationarity and cointegration do complicate the estimation and
testing in the presence of deterministic terms. For example, if a constant is assigned to d2t,
the unit roots in the VECM do not only accumulate the innovations ut into stochastic trends,
but also this deterministic constant into a linear trend. On the other hand, the deterministic
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Table 2: Verified specifications of the deterministic term.
Deterministic regressors Type Literature

restricted d1t unrestricted d2t innovativea) additiveb)

• conventional:

none none Case 1 (needless) —
constant none Case 2 SL_mean L&S (2000, p. 185)
none constant Case 3 SL_ortho S&L (2000a) is irrelevant for pvars

linear trend constant Case 4 SL_trend L&S (2000)
none constant & linear trend Case 5 — —

• period-specific:

none seasonal dummies + Case 2-5 + all Johansen (1996, p. 84) || . . .
impulse dummy none + all + all . . . TSL (2008, p. 348)
shift dummy impulse dummies + Case 2 c) + SL_mean, SL_trend JMN (2000, Ch. 3.2) || S&L (2000b)d)

trend break shift & impulse dummies + Case 4 + SL_trend JMN (2000, Ch. 3.1) || TSL (2008)

a) Case labeling in accordance with Juselius (2007, Ch. 6.3) and Hlouskova and Wagner (2010, p. 193).
b) Overview on SL-test specifications from Trenkler (2008, p. 24, Tab. 1; p. 25, Tab. 2).
c) For shifts in Case 4, Johansen et al. (JMN, 2000, Ch. 4) assess rH0 under trend breaks and then restrictions on β0.
d) Lütkepohl, Saikkonen, and Trenkler (TSL, 2004) propose estimators of the unknown shift periods τ .

regressors d1t are restricted to the stationary cointegration relation and, thus, a linear trend
in d1t does not generate a quadratic trend in the data. In the additive formulation of the SL-
procedure, the stochastic component contains the unit roots so that they do not interfere with
the deterministic component. Irrespective of the accumulating innovations, the deterministic
term thereby retains its intended specification, as it is visible in the data, and can be easily
subtracted after FGLS estimation. For this, each row in Table 2 juxtaposes the specifications
of the additive model and the corresponding term in the innovative VECM (2) which provides
the parameters in Eq. (11) to (13) for feasible GLS estimation.

Additionally to the conventional types, there can be period-specific shifts in the mean and
breaks in the linear trend as well as impulse dummies for a single period or a repeated
pattern of dummies for deterministic seasonality. Both test procedures retain the conventional
asymptotics in Eq. (19) if solitary impulse dummies are added or if the seasonal dummies
in d2t are centered around zero and thus accumulate along a constant. In contrast, only
the distributions Zr⊥

of the SL-procedure are invariant to the inclusion of shift dummies
irrespective of their known or estimated shift period and both procedures must cope with the
nuisance introduced by broken trend slopes. Johansen, Mosconi, and Nielsen (JMN, 2000),
Kurita and Nielsen (KN, 2019) as well as Trenkler, Saikkonen, and Lütkepohl (TSL, 2008)
provide solutions for the Johansen- and SL-procedure respectively. Note that, beyond these
specification whose asymptotics are verified by the literature of Table 2 and described in
Section 2.1.2, pvars accepts all period-specific extensions technically and does not check their
validity for the cointegration tests.

Like for the conventional types in Table 2, any regressor d1t in the cointegration term has a
first-differenced counterpart in d2t. While the additive model separates clearly between de-
terministic and stochastic components, the innovative VECM (2) mixes the structural breaks
into the autoregressive dynamics. Hence, the innovative model implies not only a single, but
additional lagged first-differences of the break over the periods τ, τ + 1, . . . , τ + (p − 1) after
the break occurring in period τ . Their coefficients depend on the other model parameters
and would require non-linear estimation. Against this, all authors of the reviewed literature
accept a minor loss in degrees of freedom and prefer to estimate these coefficients separately
without those restrictions. Like TSL (2008, p. 335), pvars sets lagged impulse dummies for
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τ, . . . , τ + p − 1 in d2t even after a trend break because, in combination with the shift in τ ,
they control for these non-linear dynamics the same way as lagged shift dummies. In return,
a subsequent FGLS estimation of Mµ in the additive Model (10) uses the regressor matrix
dt without these lagged first-differences. Besides the conventional term, it contains only the
trend break and shift at the very same period τ as illustrated in Eq. (38).

Testing the cointegration rank

In order to determine the cointegration rank r in the K-dimensional System (2), all testing
procedures imply a sequential decision making according to the hypotheses

H0 : rk (Π) = rH0 versus H1 : rk (Π) > rH0, rH0 = 0, . . . , K − 1. (14)

As long as a null hypothesis is rejected, rH0 is increased by 1 and tested again. The procedure
stops for an accepted r = rH0 or if the maximal rH0 = K − 1 has been rejected in favor of
r = K. Correspondingly, the number of stochastic trends6 r⊥ = K −rH0 declines in each step
from K down to 1. Note that, under a given rH0, the maximum eigenvalue test builds on the
H1 of rk(Π) = rH0 + 1 and the trace test on rk(Π) = K. Although both tests are applicable
to panel extensions, only variants of the trace test have been adopted by the panel literature
and are thus introduced here.

LR-test. Johansen (1988) develops a nowadays predominant likelihood ratio test which com-
pares the maximized likelihood L(rH0) from the rank-restricted model against the likelihood
L(K) from the full-rank model with K variables. This trace statistic denotes as

λLR (rH0) = −2 [ln L(rH0) − ln L(K)]

= −T
K∑

j=rH0+1

ln(1 − λ̂j)
d−→ Zr⊥

.
(15)

The estimated eigenvalues λ̂ are the squared canonical correlation coefficients obtained from
the RRR in Section 2.1.1 and resemble the ordered eigenvalues of coefficient matrix Π. Cor-
respondingly, this test assesses whether any of the r⊥ smallest eigenvalues is significantly
different from zero and thus increases the rank of Π. Under H0, the asymptotic test distri-
bution is a function of r⊥-dimensional Brownian motions as outlined in Eq. (18).

LM-test. Albeit its shadow existence in the individual time series methodology, the Lagrange
multiplier test adopted by Luukkonen, Ripatti, and Saikkonen (1999) has proven useful for
the panel test procedure proposed by Breitung (2005) as it can serve as a vehicle to introduce
the panel-homogeneous cointegrating vectors into an individual testing procedure. In order
to make the cointegration rank rH0 testable by LM, the concentrated Model (6) is extended
by ϕβ′

⊥
R1 and multiplied by α′

⊥
. Consequently in the auxiliary model

R0 = αβ′R1 + ϕβ′

⊥R1 + ULM

resp. α′

⊥R0 = ϕ∗β′

⊥R1 + α′

⊥ULM ,
(16)

the extension is H0 : α′

⊥
ϕ = ϕ∗ = 0r⊥×r⊥

under rH0, but converts Π = αβ′ + ϕβ′

⊥
into a

full-rank matrix if the data suggest the alternative H1 : rk(Π) = K. After inserting suitable

6Note that in the R code of pvars and also often in the considered literature the variable d denotes the
number of stochastic trends instead of the less ambiguous r⊥.
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estimates for the orthogonal complements,7 the coefficient matrix ϕ∗ is estimated by OLS
with regressand E := α̂⊥

′R0 and regressor W := β̂⊥

′

R1. The test statistic for H0 : ϕ∗ = 0
is constructed according to the here all-equivalent LR-, Wald-, or LM-principle and is thus
directly calculated with

λLM (rH0) = T tr
[
EW ′

(
WW ′

)−1
WE′

(
EE′

)−1
]

d−→ Zr⊥
. (17)

This LM-test statistic and Johansen’s LR-test statistic from Eq. (15) are asymptotically
identical and so are their test distributions.

Test distribution.8 Under H0 and T → ∞, the theoretical distributions converge to

Zr⊥
= tr

[∫ 1

0

(
dW ◦

r⊥

)
W •

′

r⊥

(∫ 1

0
W •

r⊥
W •

′

r⊥

)−1 ∫ 1

0
W •

r⊥

(
dW ◦

r⊥

)′

]
(18)

with W •

r⊥
:=





Wr⊥
(s) for Case 1 or SL_mean

Wr⊥
(s) − ∫ 1

0 Wr⊥
(s)ds for Case 2[

Wr
⊥

−1(s)
s

]
− ∫ 1

0

[
Wr

⊥
−1(s)
s

]
ds for Case 3

Wr⊥
(s) − sWr⊥

(1) for Case 4 or SL_trend

and dW ◦

r⊥
:=

{
dWr⊥

(s) for SL_mean or any Case

dWr⊥
(s) − dsWr⊥

(1) for SL_trend.

(19)

The r⊥-dimensional vector Wr⊥
(s) stacks the independent standard Brownian motions. In

Eq. (18), their vector products are integrated over their complete domain s ∈ [0, 1]. If
the VECM accommodates deterministic regressors, W •

r⊥
(s) must be specified accordingly.

Eq. (19) lists the Brownian motions resp. bridges for the conventional cases from Table 2.
In contrast to those, trend breaks are specific to the periods of their occurrence and the
relative position of these periods within the sample affects Zr⊥

additionally. Also note that
any unrestricted deterministic term which is accumulated under I(1), e.g. the constant in
Case 3, dominates the stochastic trends and thus replaces a Brownian motion in Wr⊥

(s).

The asymptotic distribution of Zr⊥
is non-standard, therefore critical values have been simu-

lated e.g. by Osterwald-Lenum (1992). For this, Wr⊥
is substituted by a repetitive simulation

of r⊥-dimensional vectors of Gaussian random walks with sufficiently9 large sample size. Also,
Zr⊥

can be approximated by the gamma distribution Γ(s, r), whose continuous probability
density function offers the advantage of retrieving p-values conveniently. In order to do so,
its shape- and rate-parameters are equated with

s =
E(Zr⊥

)2

Var(Zr⊥
)

and r =
E(Zr⊥

)

Var(Zr⊥
)
. (20)

Simulated values for the moments E(Zr⊥
) and Var(Zr⊥

) can be found for example in Larsson
et al. (2001) and Breitung (2005).10 Like the unknown theoretical distribution Zr⊥

, their
7For his panel cointegration test, Breitung (2005) uses the individual first-step estimate for αi and the

pooled second-step estimate for βK under rank-restriction rH0. In pvars, their orthogonal complements are
then calculated via the QR-decomposition as done in the MASS package (Venables and Ripley 2002).

8See Johansen (1996, Ch. 11.2), Lütkepohl (2005, Ch. 8.2), and Trenkler (2008, p. 24, Eq. 2.9).
9For example, Johansen (1996, Ch. 15) recommends T = 400. Breitung (2005, p. 171, App. B) employs

T = 500 and Örsal and Droge (2014) T = 1000 in order to simulate the respective moments of Zr⊥
.

10Larsson et al. (2001) provide moments of Zr⊥
only for Case 1 and Breitung (2005) for Case 2 to Case 4

in order to center and scale the LR-bar panel test statistic as in Eq. (28). In pvars, these moments are stored
in the list object coint_moments.
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simulation depends on (i) the number of stochastic trends r⊥ under H0, (ii) the deterministic
term, and (iii) the number of weakly exogenous variables in a conditional VECM. Hence, the
different test specifications imply a grid of simulation setups to run.

More flexibility towards adapting these specifications is offered by response surface approxi-
mation of the moments as employed by Doornik (1998). For each Case, he estimates response
surface coefficients11 of a polynomial regression model f(r⊥) which “predicts” the moments
of Zr⊥

for Johansen (1996). Trenkler (2008) derives response surface coefficients specifically
for the trend-adjusted tests of Eq. (10). TSL (2008) tabulate these coefficients for trend-
adjusted tests which accommodate structural trend breaks in the conintegration relationship.
Likewise, JMN (2000) consider structural breaks in the constant and in the linear trend of
the innovative model, which KN (2019) generalize for conditional VECM by Doornik (1998,
Ch. 9). Although both models, additive and innovative, can cope with several breaks in prin-
ciple, the regression models f

(
r⊥, τ

T

)
by JMN (2000), KN (2019), and TSL (2008) contain

polynomials of up to two break periods τ only. pvars resorts to the respective approximation
automatically in order to comply with the test specification selected by the user.

Identifying structure

Based on the given rank-restriction r and structural shocks ϵt = B−1ut, the VECM (2) can
be transformed according to the Granger representation theorem (GRT) into

yt = ΞB

t∑

j=1

ϵj +
∞∑

j=0

Ξ∗

jBϵt−j + ΞΦ
t∑

j=1

dj +
∞∑

j=0

Ξ∗

jΦdt−j + y∗

0 with

Ξ = β⊥


α′

⊥


IK −

p−1∑

j=1

Γj


 β⊥




−1

α′

⊥.

(21)

The initial vector y∗
0 and the deterministic terms are usually dropped in order to trace the

responses to an isolated structural impulse ϵ(k). The number of stochastic trends rk(Ξ) =
K − r = r⊥ follows from the K × r⊥ orthogonal complements α⊥ and β⊥ for the K × r
loadings α and cointegrating vectors βK . Their different specifications illustrate the role of
the components in (21) and their options for structural restrictions:

• If r⊥ = 0, the stochastic trends cancle out and the sole multiplier matrices Ξ∗
jB reflect

the IRF of the implied stable SVAR model. Hence, just-identification requires the
K(K − 1)/2 restrictions to be imposed on the instantaneous effects B exclusively. A
simple example is Sims (1980), who assumes recursive (short-run) causality such that
the structural effects on impact can be calculated by B̂ = chol

(
Σ̂u

)
.

• If r⊥ = K, VECM (2) loses its error correction term and is estimated as a first-

differenced VAR model by OLS (9). Since α⊥ = β⊥ = IK , matrix Ξ =
(
IK − ∑p−1

j=1 Γj

)−1
=

Γ(1)−1 is full-rank and K(K − 1)/2 long-run restrictions are sufficient for identifying
this SVAR of growth rates ∆yt. In this example, recursive long-run causality is imposed
on the structural long-run effects ΞB such that B̂ = Γ̃(1) chol

(
Σ̂∞

)
is calculated via

the long-run covariance Σ∞ := ΞBB′Ξ′ = Γ(1)−1ΣuΓ(1)′−1.

11In pvars, the response surface coefficients are stored in the list object coint_rscoef.
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• A cointegration rank r implies r⊥ permanent shocks at minimum and conversely r
transitory shocks at maximum. Identifications schemes in the tradition of King, Plosser,
Stock, and Watson (1991) assume that ΞB is rank-deficient due to r columns of 0K .
Each 0K suppresses the stochastic trends and thus defines a transitory shock in ϵt.
Other formulations of the rank-deficiency may lead to fewer transitory shocks.

ML-estimation.12 The impact matrix B can be estimated by ML via L (α, β, Γ, B) as an
extension of Eq. (5). Inserting the reduced-form estimates from Section 2.1.1 facilitates a
conditional ML-estimation of B as Step 4. with the concentrated likelihood function

ln Lc (B) = − KT

2
ln (2π) − T

2
ln (det(B))2 − 1

2
tr

[
B′−1

B−1Σ̃u

]
. (22)

This constrained maximization problem has no closed-form solution. Hence, Breitung, Brügge-
mann, and Lütkepohl (2004) maximize Lc (B) with respect to the free parameters subject to
the identifying restrictions numerically by the scoring algorithm of Amisano and Giannini
(1997). If the number of short- and long-run restrictions suffice just-identification only, the
equality Σ̃u = B̃B̃′ holds and the scoring algorithm serves as a non-linear equation solver.

2.2. Panel methods

Estimating cointegrated VAR models

In macroeconomic panels, the idiosyncrasies of countries can subvert the objective to increase
estimates’ precision with pooled data. Deterministic effects like intercepts are usually kept
individual-specific in panel data analysis, but even the assumption of homogeneous slope
coefficients can be too restrictive. Pesaran and Smith (1995) demonstrates how systematic
differences between individual dynamics lead to inconsistent estimates and consequently deny
poolability. As an economically plausible middle ground, Pesaran, Shin, and Smith (1999)
propose a selective pooling for single-equation models, where only the long-run relationship
is homogeneous across all individuals, while the short-run dynamics are considered as hetero-
geneous. The following panel estimators adopt this principle into a system of equations and
restrict the r cointegrating vectors βi = β ∀ i. Although the individual VECM (2) does not
require the basic normalization of the error correction term as single-equation models do, a
panel-wide normalization becomes necessary in order to extract the homogeneous β from the
individual coefficient matrices Πi = αiβ

′.

Two-step estimator.13 Breitung (2005) extends the individual two-step estimator by Ahn
and Reinsel (1990) to a panel estimator for β. Based on the panel-wide normalization Πi =
αi [Ir : B] = [αiIr : αiB] ∀ i, he transforms the concentrated Model (6) into

R0,i − αiIrR
(1)
1,i = αiBR

(2)
1,i + Ui with R1,i =

[
R

(1)
1,i

R
(2)
1,i

]
(23)

12See Vlaar (2004), who imposes linear short- and long-run restriction with restriction matrices for the cases
of just- and over-identification. Compare also to Hamilton (1994, Ch. 11, p. 331), Lütkepohl (2006, Ch. 3.2,
p. 84), and Kilian and Lütkepohl (2017, Ch. 11.2.2 and p. 315) as a full-information MLE.

13See also Lütkepohl (2005, Ch. 7.2.2) or Brüggemann and Lütkepohl (2005) about GLS estimation of the
individual cointegration parameters. In fact, Eq. (25) reduces to this GLS estimator if there is only N = 1
individual entity. Moreover, Lütkepohl (2005, Ch. 7.3.2) and Breitung (2005, p. 159) consider restricted β.
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partitioned into R
(1)
1,i as the r upper time series and R

(2)
1,i as the remaining r⊥ time series

and n1 restricted deterministic regressors. The left-multiplication α
(+)
i αi = Ir eliminates the

individual loadings αi in Eq. (23) such that Model (6) is further transformed into

α
(+)
i

(
R0,i − αiR

(1)
1,i

)
= BR

(2)
1,i + α

(+)
i Ui using α

(+)
i =

(
α′

iΣ
−1
u,iαi

)−1
α′

iΣ
−1
u,i . (24)

The pooled OLS estimator of the homogeneous B, i.e. the right r × (r⊥ + n1) block of the
normalized and transposed cointegrating matrix, yields the second step given by

B̂2S = R
(+)
0 R

(2)′

1

(
R

(2)
1 R

(2)′

1

)−1
(25)

with regressand R
(+)
0,i := α

(+)
i R0,i − R

(1)
1,i collected in R

(+)
0 :=

[
R

(+)
0,1 : · · · : R

(+)
0,N

]

and regressor R
(2)
1,i collected in R

(2)
1 :=

[
R

(2)
1,1 : · · · : R

(2)
1,N

]
.

For feasible estimation, inserting any
√

T -consistent estimates for αi and Σu,i leaves the
limiting distribution of the estimator (25) unaffected. This first step may be the individual
ML-estimation of each VECM, which concentrates out the short-run effects and unrestricted
deterministic terms ΓiZ2,i from the observed time series as well. Under rank-restriction r, the
second-step estimates B̂2S thereby T

√
N -consistently (Breitung 2005, p. 156, Th. 1). Overall,

this procedure thus follows the steps of the ML-estimation, but sets a pooled estimation on
top of the individual reduced-rank regressions (8). Like in third step of the individual ML-
estimation, the cointegrating matrix β̂′ =

[
Ir : B̂2S

]
can be reintroduced into the conditional

OLS (9) of the individual parameters, for which product moments are already available from
the first step. Thereof, the estimates for αi and Σu,i – now conditional on the pooled β̂ – can
be used in Eq. (25) again. Hlouskova and Wagner (2010, p. 195) expand this principle and
iterate conditional OLS and second-step estimation alternately until reaching convergence of
the estimates B̂2S .

Deterministic term. Since the first estimation step (6) removes the unrestricted regres-
sors d2,it from the error correction Model (2), the coefficients Φ2i are individual-specific by
construction. In consequence, the homogeneity restriction βK,i = βK in

Πi := [ΠK,i : Φ1,i] = αi
[
β′

K : β′

0i

]
= αi

[
Ir : B

(2) : B
(3)
i

]
(26)

implies one additional choice for specifying the innovative deterministic term in Table 2:14

The coefficients for D1,iM2i can be defined as having some homogeneous β0i = β0 ∀ i or
individual-specific effects β0i. For example, Case 2 with heterogeneous intercepts β0i and
pi = 1∀i, i.e. without the need to correct for lagged short-run effects by M2i, adds fixed-effects

to the auxiliary Model (24). The regressors of such individual-specific B
(3)
i are partialled

out from the pooled regression beforehand, while B
(2) is simply extended by the r × n1

homogeneous β′
0 and estimated by the pooled B̂2S of (25). Note however that Φ1i = αiβ

′
0

remains heterogeneous irrespective of the homogeneity restriction on β0.

14Groen and Kleibergen (2003, Ch. 4.1) give an overview on the different combinations that emerge from
this single additional option.
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Testing the cointegration rank

Like the individual tests in Section 2.1.2, the following panel tests evaluate the hypothetical
cointegration rank rH0 = 0, ..., K − 1 within a sequential testing procedure. Each of the N
individuals must have observations on the same K variables so that the hypothesis pair on
the heterogeneous ranks ri in the individual VAR processes yit can be stated as

H0 : r̄ = rH0 versus H1 : rk (Πi) > rH0 for some i

with r̄ = max{rk (Πi) | i = 1, .., N}.
(27)

While a statistical heterogeneity in ri lets the sequential procedure find the maximum rank
among the individual processes, the theoretical context might allow for the more restrictive
assumption of homogeneous cointegration ranks across all individuals i = 1, . . . , N . Accord-
ingly, the hypothesis pair (27) would adopt a common rank ri = r̄ = r. Carrion-i Silvestre
and Surdeanu (2011, p. 9) assume this “for the panel data based procedure to make sense”
and the homogeneous cointegrating vectors βK,i = βK in Breitung (2005) and Groen and
Kleibergen (2003) actually have the statistical implication of ri = r.

Pooled cointegrating vectors. The more restrictive assumption of homogeneous βK allows
for a pooled estimation to further increase the test power. Only in this case, the pooling and
the combination approach of the panel test differ. After estimating individual models with
pooled βK , Breitung (2005) combines the individual LM-test (17) results by their averaged
statistics (28). Originally, he does not make use of the gamma distribution to derive p-values
of the LM-tests. Since this option follows straightforwardly from the asymptotic equivalence
of LM- and LR-test, pvars implements their meta-analytical combination, too.15 Thereby,
both combination approaches are available to shrink the vectors of N test results into scalar
decisions. The following section refers to these combination approaches, which are congruent
with the pooling approaches of Table 1.

Combination approaches. Extending the combination idea from Im et al. (2003) to the
multivariate case of K variables, Larsson et al. (2001) use the cross-sectional average of indi-
vidual test statistics λ•

i , which are standardized by the first and second moment. Accordingly,
the so-called LR-bar test statistic ΥLR is calculated as

λ(rH0) =

∑N
i=1 λ•

i (rH0)

N
,

ΥLR =

√
N

(
λ(rH0) − E (Zr⊥

)
)

√
Var (Zr⊥

)

d−→ N (0, 1)

(28)

and follows asymptotically a standard normal distribution under H0 as T → ∞ and subse-
quently N → ∞. This holds also if T, N → ∞ simultaneously, but T has a faster limiting
rate such that

√
N/T → 0. The combination approach itself is well-established for all kinds

of panel tests. The key contribution by Larsson et al. (2001) is to prove that the moments of
the asymptotic distribution Zr⊥

exist.16 Likewise, Örsal and Droge (2014) present and utilize
a proof for the detrending panel SL-test with the deterministic type SL_trend. Additionally,

15Choi (2001, p. 268) shows for the univariate case of panel unit root tests that especially the inverse normal
test has a favorable power in comparison to the panel test of averaged statistics.

16See also the corrigendum by Örsal and Droge (2011).



Lennart Empting 15

pvars offers the specification SL_mean because the existence of the related moments follows
directly from the identity of Zr⊥

for SL_mean and Case 1 – see Eq. (19).

Following the meta-analytical combination of p-values, Choi (2001) uses different combination
methods on the individual p-values denoted by pi. The first combination test, which Fisher
(1932) originally proposed and Maddala and Wu (1999) embraced for tests in non-stationary
panels, is the inverse chi-square test. Its statistic is stated as

P = −2
N∑

i=1

ln (pi)
d−→ χ2(2N) (29)

under the asymptotics of Ti → ∞ while N being fixed. In the limit of N , the distribution of
P degenerates however. Hence for panels with many17 individuals, Choi (2001) standardizes
P by the moments of the χ2-distribution and proposes the modified statistic

Pm =

∑N
i=1 (ln (pi) + 1)√

N

=
P − 2N√

4N

d−→ N (0, 1),

(30)

when Ti → ∞ and then additionally N → ∞. Furthermore, assuming the same limiting data
dimensions, Choi (2001) uses the inverse normal test

Z =

∑N
i=1 Φ−1 (pi)√

N

d−→ N (0, 1) (31)

from Stoufer, Suchman, DeVinney, and Williams (1949) for non-stationary panel data analy-
sis. Here, Φ−1 (•) denotes the probit function, i.e. the inverse of the standard normal cumu-
lative distribution.

PANIC. The Panel Analysis of Non-stationarity in Idiosyncratic and Common components
by Bai and Ng (2004) accounts for cross-sectional dependency stemming from unobserved
common factors, which could be stationary, integrated, or both coexistent. Arsova and Örsal
(2017; 2018) employ PANIC on VAR systems so that their multivariate extension then allows
for tests on the coingration rank within the idiosyncratic VECM of the individuals. The
additive model is stated as

yit = Λ′

iF t + yid
it,

yid
it = µ0i + µ1it + ydt

it,

ydt
it = Ai1ydt

i,t−1 + . . . + Ai,pi
ydt

i,t−pi
+ udt

it

(1 − L)F t = C(L)uF
t .

(32)

The idea of PANIC is to perform separate analyses on the common factor F t and the idiosyn-
cratic component yid

it, both being part of the observable multivariate time series yit. Hence
firstly, factors f t and heterogeneous loadings Λi are estimated via PCA on the first-differenced
data matrix of dimension (T − 1) × (K · N). If unknown, the number of underlying factors

17Choi (2001, p. 268) states for panel unit root tests that, even with samples of N = 100, Pm does not follow
its asymptotic distribution closely. In contrast to the two Fisher tests, the test size of the inverse normal test
and of the averaged statistics is more robust to any choice of N .
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can be chosen according to information criteria by Bai and Ng (2002) or Onatski (2010) as
illustrated in Section 4.1. The factors F̂ t =

∑t
j=1 f̂ j with initial f̂1 = 0L are re-accumulated

into levels to estimate the idiosyncratic component ŷid
it = yit − Λ̂′

iF̂ t. While PCA generates
orthogonal factors f̂ t normalized to an identity covariance matrix, the re-accumulated fac-
tors F̂ t are usually oblique and described by a single VAR model. The VAR process of F t

can further contain common structural breaks from yit such that, for instance, Örsal (2017)
resorts to JMN (2000) for testing the cointegration rank of F̂ t.

Since F t is assumed to be the exclusive source of cross-sectional dependence, the idiosyn-
cratic VECM of yid

it are independent across individuals i and the basic methodology of first-
generation tests is valid again. Örsal and Arsova (2017) use the approach of meta-analytical
combination of the idiosyncratic p-values and Arsova and Örsal (2018) the averaged test
statistics. Accordingly, the nested hypotheses of Eq. (27) about rH0 refer to idiosyncratic
cointegration within yid

it and, for conclusions on conintegration within the observable yit, the
non-stationary properties of F t need to receive attention. Individual unit root and cointe-
gration tests can be applied to the common factors F t and their VAR process. If all series
in F t are stationary, panel test results on yid

it hold equally for yit. If F t contains stochastic
trends, those enter the the observable variables yit, too. In this case, they can confound the
interpretation, for example, if some of the heterogeneous loadings Λi are zero and thus do not
let stochastic trends in F t drive the variables yit equally.

For testing the cointegration rank in each idiosyncratic component, Arsova and Örsal (2017;
2018) consider two individual procedures: The Johansen test applied to yid

it directly and the
SL-test applied to ydt

it after the GLS-based trend adjustment. The SL-test based on the
defactored and detrended series ydt

it assesses only the null hypothesis of no cointegration. For
rH0 > 0 in the sequential test, the r⊥ = K − rH0 stochastic trends in the rank-restricted
VECM are calculated as β′

⊥iy
id
it. Arsova and Örsal (2017; 2018) then apply the SL-test to

the presumably r⊥ stochastic trends under the H0 of no cointegration in order to test the
equivalent H0 of rank rH0 in the idiosyncratic process of yid

it.

Defactoring adds a linear trend to the estimated series ŷid
it inevitably, which affects the dis-

tribution of Zr⊥
for both, SL- and Johansen test. For deriving individual p-values via the

gamma approximation as in Eq. (20) or for standardizing the LR-bar panel test statistic as in
Eq. (28), the panel tests rely on the moments of Zr⊥

which Arsova and Örsal (2018, Appendix,
Tab. A.1) have simulated and tabulated. The moments depend on r⊥ and the prescribed de-
terministic trend, but not on the common factors F t. Likewise, they can be calculated via
the response surface regression model by Trenkler (2008) using the coefficients for the case
of a deterministic trend.18 Note that Örsal and Arsova (2017) do not propose to combine
individual p-values from defactored Johansen tests originally. However, pvars implements this
in accordance with the convergence result of Zr⊥

implied by Arsova and Örsal (2018, p. 1041,
Th. 3.4).

Correlated probits. Cross-sectional dependence between the individual entities induces
correlation between the probits Φ−1 (pi) of the individual cointegration tests. In order to
correct for the this and robustify the inverse normal test of Eq. (31), Arsova and Örsal (2021)
combine individual p-values from the SL-procedure with Hartung’s (1999) modifications and

18For an illustration, compare the results of the R commands:
R> pvars:::coint_moments$SL_trend[12:1, ]

R> pvars:::aux_CointMoments(dim_K=12, rs_coef=pvars:::coint_rscoef[["SL_trend"]])
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with their own correlation-augmented inverse normal (CAIN) test. The panel test statistic
for the modified combination approach is given by

t(ρ̃) =

∑N
i=1 Φ−1 (pi)√

N + (N2 − N) · ρ̃•

probit

d−→ N (0, 1) with

ρ̃HA
probit = ρ̂∗

probit + κ ·
√

2

(N + 1)

(
1 − ρ̂∗

probit

)
or

ρ̃CAIN
probit = g (ρϵ, K, rH0) .

(33)

The correction factor ρ̃HA
probit by Hartung (1999) is based on his unbiased and consistent es-

timator ρ̂∗

probit = max{− 1
N−1 , 1 − s2

N−1

(
Φ−1 (pi)

)} of the probit correlation, where s2
N−1(·)

denotes the unbiased sample variance. For the scaling factor κ, he proposes κ1 = 0.2 and,
additionally, κ2 = 0.1 ·

(
1 + 1

N−1 − ρ̂∗

probit

)
“working mainly for smaller ρ̂∗

probit” (Hartung
1999, p. 853). He does not state any decision criterion to distinguish between the intervals of
smaller and larger values of ρ̂∗

probit however.

The correction factor ρ̃CAIN
probit by Arsova and Örsal (2021) is the empirical estimate of the

average correlation between the individual probits. For translating cross-sectional dependency
within the data panel into ρ̃CAIN

probit, the authors provide response surface regression coefficients
for the regression model g (ρϵ, K, rH0). Therein, the number of endogenous variables K and
the tested cointegration rank rH0 follow directly from the model resp. test specification. The
average absolute pairwise cross-sectional correlation ρϵ between the residuals is estimated for
rH0 = 0 only and then used for all rH0 of the sequential testing procedure up to rH0 = K −1.
The estimator for this mean sample correlation of the residuals within the same variable
k = 1, . . . , K and between the different individuals is

ρ̂ϵ =
2

K · N · (N − 1)

K∑

k=1

N∑

i=1

N∑

j=i+1

|ρ̂ki,kj |. (34)

Since Arsova and Örsal (2021) assume that the pairwise correlations between the residuals
of different variables converge to zero for N → ∞, the sample correlations ρ̂ki,k∗j , k ̸= k∗,
are omitted in Eq. (34). In doing so, the cross-sectional correlation between variables does
not reduce the average of the presumably stronger “within”-correlations, which mitigates the
hazard of underestimating ρϵ. Only if the empirical “between”-correlation surpasses “within”-
correlation, ρ̂ϵ could actually understate cross-sectional dependence.

If the individual, potentially heterogeneous break periods τ i and the number of breaks are
known, this third-generation panel test can also respect trend breaks in the cointegration
relationship. For this, the individual GLS-based trend-adjustment by Trenkler et al. (2008)
removes the deterministic component from the observed time series of Eq. (10) including up
to two trend breaks. Then, the standard LR-test procedure is applied under consideration of
the trend-break specific test distribution. The individual p-values are combined as described
in Eq. (33) in order to account for the cross-sectional dependence.

Identifying structure

In comparison to the individual time series analysis, the cross-section dimension of the panel
data enables additional ways to identify structural shocks ϵit = B

−1
i uit from the K reduced-

form errors uit of VAR (1). The identification across the individuals i = 1, . . . , N may start
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with normalizing uit to unit-variance by Bσi = diag (σu,1i, . . . , σu,Ki) such that the structural
decomposition concentrates on the residual correlation matrix

Ωu,i := B
−1
σi Σu,iB

−1
σi = BΩiQiQ

′

iB
′

Ωi

with BΩi := chol (Ωu,i) and QiQ
′

i = QiQ
−1
i = IK .

(35)

The usual Cholesky decomposition Bi (0) := chol (Σu,i) = Bσi · chol (Ωu,i) generates whitened
shocks ϵ0it = Bi (0)−1 uit, which already conform with the defining ϵ0it ∼ (0, IK) after
scaling

(
B

−1
σi

)
and de-correlating

(
B

−1
Ωi

)
the zero-mean vector uit. Further, matrix Qi is

orthogonal and can be a product of K(K − 1)/2 Givens rotation matrices, which map from
the tuple of rotation angles θi to the total set of candidate shocks ϵθit = Q (θi)

−1 ϵ0it and their
impact matrices Bi (θi) = Bi (0) Q (θi). As the identification procedures rely on estimated
ûit, the candidate samples A(i)

θ = {ϵ̂θit}T
t=1 of dimension K × T involve the usual issues of

individual SVAR with small or medium-sized time series. The panel methods presented in
the following offer the advantage of (i) increasing the power of dependence tests in ICA and
of (ii) accommodating structural information from cross-sectional dependence.

Figure 1: Panel SVAR identification by ICA in Herwartz and Wang (2024).

panel of
reduced-form VAR (1)

Independent Component Analysis
A1) ϵt ∼ S(0, IK),
A2) ϵ

(k)
t , k = 1, ..., K, are

mutually independent, and
A3) at most one marginal distribution

in S is Gaussian.

Decomposition
Cov[uit] = BiB

′
i =: Σu,i for structural shocks ϵit = B

−1
i uit

Ωu,i := B
−1
σi Σu,iB

−1
σi = BΩiB

′

Ωi

where for each cross-section i
Ωu,i is the correlation matrix of uit,
Bσi the diagonal matrix of residual standard deviations σu,ki,
BΩi a lower triangular matrix for baseline decomposition and
Q (θ) is a common rotation matrix with rotation angles θ.

Candidates of whitened shocks
ϵθit = Bi(θ)−1uit = Q (θ)−1

B
−1
Ωi B

−1
σi uit = Q (θ)′ ϵ0it

Identification of Bi unique up to column signs and ordering:
Find θ̂ for the structural impact matrix B̂i = Bi

(
θ̂

)
= B̂σiB̂ΩiQ

(
θ̂

)

by Hodges-Lehmann (1963) estimation

θ̂ = argmaxθ{p-value of independence test for A(N)
θ }

using optimization proecdures

with the independence diagnostics
• dependence coefficient (Bakirov, Rizzo, and Székely 2006),
• distance covariance (Székely et al. 2007; Matteson, Tsay 2017),
• Cramér-von-Mises distance (Genest et al. 2007; Herwartz 2018).

Residuals uit

Pooled samples A(N)
θ = {{ϵ̂θit}T

t=1}N
i=1 Assumptions

Common rotation. Herwartz and Wang (2024) propose and evaluate the pooled identifica-
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tion procedure stylized in Figure 1. An individual decomposition ϵθit = Q (θ)−1
B

−1
Ωi B

−1
σi uit

allows for a common rotation Q (θ) of the whitened shocks while accounting for hetero-
geneous variances and cross-variable correlations in uit. Among competing pooled samples

A(N)
θ = {{ϵ̂θit}T

t=1}N
i=1 of dimension K ×(T ·N), the ICA then determines the least dependent

shocks ϵ̂
θ̂it

with optimal θ̂, from which B̂i is recovered for each individual.

Common shocks. Calhoun et al. (2001) propose group ICA and apply this to panel data
originating from functional Magnetic Resonance Imaging (fMRI) of brains. In the same
empirical context, Risk, Matteson, Ruppert, Eloyan, and Caffo (2014) evaluate ICA algo-
rithms, which can be applied to the panel of reduced-form errors uit alike. Accordingly,
their model uit = Biϵt + eit consists of L common shocks ϵt and some idiosyncratic noise
eit (Risk et al. 2014, p. 227). In a two-step PCA, they firstly whiten each individual sample
[ûi1 : . . . : ûiT ]′ = UiDiV

′
i by compact singular value decomposition such that Ai :=

√
TU′

i has
an identity covariance matrix IK . They further factorize the T ×(K ·N) concatenated samples
[A′

1 : . . . : A′

N ] = UDV′ and utilize the first L columns of left singular-vectors to construct a

L × T baseline sample A(2S)
0

:=
√

TU′

1:L. The ICA, which becomes noise-free after this data
reduction, then determines the least dependent common shocks ϵ̂

θ̂t
. The multivariate least

squares regression of ûit on ϵ̂
θ̂t

recovers the K × L impact matrices B̂i, ∀i = 1 . . . , N .

ICA. If at most one of the shocks is Gaussian, the independent component analysis as estab-
lished by Comon (1994) can determine the rotation angles θ̂

•

and thereby identify the impact
matrix B̂•

i of the methods • ∈ {(i), (N), (2S)}. For this purpose, dependence measures D(·)
discriminate between the candidates of whitened shocks A•

θ = Q (θ)−1 A•
0

by dependencies be-
yond the second moment. In the spirit of Hodge-Lehmann estimation (1963), a minimization
procedure θ̂

•

= argminθ D (A•

θ) finds the rotation angels θ̂
•

of the least dependent shocks.

ICA can identify shocks and impact matrices up to to scaling, column signs, and ordering only.
For example in the case of K = 2, the relevant interval of a full rotation θ ∈ (0, 2π] reduces
to a quadrant, e.g. θ ∈ (0, π/2], since any exceeding rotation just permutes the ordering and
reverses signs. If θ ∈ (π/2, 2π], the results of D (A•

θ) including the minima would be identical
to those of the first quadrant. Against this ambiguity, a common practice for the unique
identification of Bi is to (1) choose the column ordering which maximizes the sum of the
absolute diagonal elements and (2) then switch signs of those columns whose main diagonal
element turns out to be negative. Under ϵit ∼ (0, IK), each shock is thereby attributed to
the variable on which it has the strongest effect on impact.

ICA-based identification procedures for the individual SVAR are already implemented in
svars. As we focus on their embedding into a panel framework, we just list them here briefly
and refer the reader to the accompanying vignette (Lange et al. 2021) for a comprehensive
overview and to the Monte Carlo study (Herwartz, Lange, and Maxand 2022) for a perfor-
mance assessment. The following dependence measures D (·) and optimization procedures
are adopted in pvars: The Cramér-von-Mises (cvm) distance by Genest et al. (2007) is used
in svars’ two-step optimization procedure with copula (Kojadinovic and Yan 2010) and has
been exemplarily applied for individual SVAR by Herwartz (2018). The distance covariance
(dCov) by Székely et al. (2007) is used in the gradient algorithm of steadyICA (Risk, James,
and Matteson 2015) and has been applied for SVAR by Matteson and Tsay (2017). The
dependence coefficient (dCoef) by Bakirov et al. (2006) is not used in svars and pvars.19

19Note that dCoef and dCov are implemented in energy by Rizzo and Szekely (2022).
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3. Implementation

For each field of VAR application and for the supporting tools, Table 3 displays pvars’ core
functions, the S3-class of their output object and their dependencies within and to other
packages. In particular, several classes and their corresponding methods are imported from
svars. In addition to the familiar methods such as print() and summary(), pvars offers
the method toLatex() for conveniently formatting pvars results into Latex objects, thus
minimizing the risk of reporting errors from tedious copy-pasting.

Table 3: Package design of pvars.
Function Class Branch Methods Description Literature

3.1 Testing the cointegration rank
pcoint.JO pcoint coint.JO print, Panel Johansen tests Larsson et al. (2001), Choi (2001)
pcoint.BR pcoint coint.JO summary, Panel test with pooled β Breitung (2005)
pcoint.SL pcoint coint.SL toLatex Panel SL-tests Örsal, Droge (2014)
pcoint.CAIN pcoint coint.SL Correlation augmented tests Arsova, Örsal (2021), Hartung (1999)

3.2 Estimating VAR models
pvarx.VAR pvarx VARa) irf, print, Mean-group estimation Rebucci (2010), Pesaran, Smith (1995)
pvarx.VEC pvarx VECM summary Pooled cointegrating vectors β Breitung (2005), Pesaran et al. (1999)

3.3 Identifying structure
pid.chol pid id.chola) irf, Recursive causality Sims (1980)
pid.grt pid id.grtc) print, Long- & short-run restrictions Breitung et al. (2004)
pid.iv pid id.iv summary, Proxy SVAR Empting et al. (2025)
pid.dc pid id.dca) toLatex ICA by distance covariance Calhoun et al. (2001) and
pid.cvm pid id.cvma) ICA by Cramér-von-Mises dist. Herwartz, Wang (2024)

3.4 Supporting tools
speci.factors speci — print Criteria for number of factors Bai, Ng (2002; 2004), Onatski (2010)
speci.VAR speci — print Criteria for lags p and periods τ Bai, Perron (1998; 2003), Yang (2002)
irf.pvarx svarirfb) irf.varx plot, print Mean-Group IRF [S3-METHOD] Sims (1980), Gambacorta et al. (2014)
PP.system svarirfb) — plot, print Persistence profiles Lee, Pesaran (1993) and
PP.variable svarirfb) — plot, print (Structural) persistence profiles Pesaran, Shin (1996)
sboot.mg sbootb) — print, summary, Mean-group inference Pesaran, Smith (1995)
sboot.pmb sbootb) sboot.mb plot, toLatex Panel-block bootstrap Empting et al. (2025)

a) Consider the R-packages vars and svars for these functions. Like id.dc, pvars’ pid.dc uses steadyICA by Risk et al. (2015).
b) This class and its methods are imported from the R-package svars by Lange et al. (2021).
c) Its scoring algorithm is part of the SVEC function from the R-package vars by Pfaff (2008b).

Figure 2 illustrates pvars’ modular implementation, which leads to the three layers of de-
pendency between the library of auxiliary functions, the functions for individual econometric
procedures, and their panel extensions. In this tree-like structure, the aux-functions are the
hidden “roots” and the individual functions are “leafy branches”. Some branches of the in-
dividual id.*() functions are a “graftage” from vars and svars. The individual coint.*()

functions are more flexible than existing implementations of cointegration rank tests and ex-
tend the set of available specification options. Finally attached to the branches, the “fruits”
of this package are the panel functions for each field of VAR application. These are printed
in bold to emphasize their novelty and pvars’ main contribution.

The idea of modular programming is to break monolithic and repetitive code down into
functional sub-entities, which achieves easier maintenance, better testability, and reusabil-
ity. Especially the multivariate panel procedures benefit from this kind of implementation
because their functions reduce to simple re-arrangements of auxiliary functions. These can
be repetitively applied over subsets of the K × T × N data array. Whenever sensible, the
R-functions are vectorized in order to enable more flexible input arguments and faster matrix
computation of the multivariate VAR models. In consequence, the in- and outputs are mainly
matrix objects, which thereby serve as an interface between the auxiliary modules.20 With

20Note that pvars does not export auxiliary functions to the global environment. If the user wishes to
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Figure 2: Modular implementation in three layers.
support varx pvarx

cointpcoint id pid

auxPanelauxVARXauxCoint auxID auxSupp

Library of aux-
iliary functions

Exported functions

automatic unit tests by testthat (Wickham 2011), pcoint.*() and subordinated modules are
checked against reproduced examples of the literature. Functions outside this hierarchy are
checked against consistency with the other vars packages, identities derived from econometric
theory, and simulation results from Empting et al. (2025).

Argument structure. In order to comply with the modular functions and their repetitive
call over data subsets, several conventions have been established for the input arguments of
the auxiliary, individual, and panel functions. The arguments whose names are marked with
the prefix L.* are an R-object of class list with N elements of repeated structure. Most
prominently, L.data is the panel data in list-format and, as a repetitive list, contains N
data.frames of dimension Ti × K. In these multivariate time series, the variables must have
an identical order k = 1, . . . , K for each individual i = 1, . . . , N . All successions are binding
for any other L.* object within the environment of a given function. Hence even in the global
environment, the user should stick to a universal succession for all L.* objects in order to
avoid confusion.

Further conventions for prefixes are n.* and dim_*, which denote integers and refer to a
quantity resp. the dimension of a matrix or array. Straightforwardly, dim_K, dim_T, and
dim_N signify the data dimensions K, T , and N for instance. Arguments with prefix t_*

define τ for the period-specific deterministic regressors. As a list, they collect optional
vectors of integers for trend breaks (named t_break), shift dummies (t_shift), and impulse
dummies (t_impulse) as well as a single integer n.season, which indicates the seasonal
frequency for the centered dummies. Each integer in those vectors specifies a period τ at
which a break, shift, or impulse occurs within the interval 1, . . . , T of the complete panel
data set (i.e. including the presamples). The following sections describe how the mandatory
and optional input arguments are employed in the pvars functions for cointegration tests
(Section 3.1), estimation (Section 3.2), and structural identification (Section 3.3).

3.1. Testing the cointegration rank

The panel cointegration tests are implemented in accordance with the three dimensions of
panel test construction as presented in Table 1. (i) Each pcoint.*() function always assesses
all hypotheses rH0 = 0, . . . , K − 1 and uses all combination approaches available for the
respective underlying individual procedure. (ii) The data generating process by contrast,
which covers also the panel test generation, must be defined via the arguments of pcoint.*().

construct own functions, she needs to call an auxiliary function pvars:::aux_*() via a triple colon.
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These arguments are kept consistent across the functions or refer to the underlying procedure.
(iii) The panel functions pcoint.*() usually loop over their internal function cointf() as
the underlying procedure. cointf() arranges the auxiliary functions in the same way as its
respective branch coint.*(), but has been modified for the panel test. Hence, if an individual
sample does not conform with the panel result, the user may consult the individual counterpart
coint.*() for a closer inspection of the peculiar individual entity. For this purpose, she can
also consider the persistence profiles PP.*(). Within the scope of PANIC, the test functions
coint.*() for the single VAR system can assess cointegration between the common factors
F t of Model (32), too.

The branch of Johansen. The individual Johansen procedure is available as the function

coint.JO(y, dim_p, x, dim_q, type, t_D1=NULL, t_D2=NULL)

By default, the R function performs both LR-test variants on the multivariate time series
y with lag order dim_p. For the trace test as in Eq. (15) and exclusively for the individual
maximum eigenvalue test with simple specifications, p-values are approximated by the gamma
distribution. Optionally, weakly exogenous variables x with lag order dim_q are incorporated.
The character argument type defines the conventional deterministic term according to the
labels for the innovative model in Table 2. Optional breaks of the deterministic term in the
periods t_D1 are treated in accordance with JMN (2000) or KN (2019). The panel-extensions
of the Johansen procedure are implemented by

pcoint.JO(L.data, lags, type, t_D1=NULL, t_D2=NULL, n.factors=FALSE)

pcoint.BR(L.data, lags, type, t_D1=NULL, t_D2=NULL, n.iterations=FALSE)

The input argument L.data requires a data panel in list-format as explained above for the
argument structure of pvars functions in general. lags defines the lag order pi of the individual
VAR models in levels and is either a vector of N integers or a single integer for a common
lag order p = pi. For assigning the heterogeneous lag orders to each individual, the integers
pi must have the same succession i = 1, . . . , N as L.data. The optional argument n.factors

can activate the PANIC-defactoring, where the common components with the chosen number
of factors F t are subtracted. Then, the idiosyncratic cointegration rank tests are fixed to
the distribution moments for SL_trend irrespective of the specification of type. Specifically
pcoint.BR() uses the LM-test from Eq. (17) instead, where n.iterations defines the number
of repetition in the two-step estimation of βK . Note that any deterministic term is equipped
with a heterogeneous effect β0i in order comply with the Brownian bridges in the individual
Zr⊥. The corresponding option idx_pool in pvarx.VEC() is thus disabled in pcoint.BR()

and just cancels out.

The branch of Saikkonen and Lütkepohl. The individual SL-procedure is available via

coint.SL(y, dim_p, type_SL, t_D=NULL)

The arguments therein are the same as in the individual Johansen procedure except for
type_SL, which requires a label for the additive model from Table 2. Optional breaks of
the deterministic trend in the periods t_D are treated in accordance with TSL (2008). The
panel-extensions of the SL procedure are implemented by

pcoint.SL(L.data, lags, type="SL_trend", t_D=NULL, n.factors=FALSE)

pcoint.CAIN(L.data, lags, type="SL_trend", t_D=NULL)
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Again, the specifications of the input arguments are identical to those of the Johansen pro-
cedure pcoint.JO except for the type of the additive model. The default is "SL_trend"

as Örsal and Droge (2014) propose for their panel SL-test, Arsova and Örsal (2021) for the
CAIN-test, and Örsal and Arsova (2017; 2018) enforce after the defactoring in PANIC.

3.2. Estimating VAR models

The position of the individual VAR Model (1) as the basic econometric unit of Section 2 is
reflected in the R-implementation by its class varx. Accordingly, (i) panel VAR estimates of
class pvarx contain a repeated list L.varx of individual VAR, (ii) SVAR estimates id inherit
from the parent class varx, and (iii) panel SVAR estimates pid define their L.varx as a list
of individual id objects. Hence, each individual VAR embedded in the panel estimates can
be separately inspected by the methods for varx objects.

In pvars, varx also serves as an intermediary class to ensure compatibility to the other pack-
ages of the vars-ecosystem. Either estimated via pvars’ VECM() or coerced from vars’ varest

and vec2var objects via as.varx(), the varx objects can then enter the same functions
since the class obeys a unifying construction plan for different VAR model types. If the user
wishes to employ pvars function to VAR objects of other classes, she may simply specify
accordant as.varx()-methods instead of altering the original pvars function. A list of class
varx contains the coefficient matrix $A for the full-system and level-representation VAR (1),
its residual covariance matrix $SIGMA, and a structural impact matrix $B. In reduced-form
VAR objects, the latter is just a placeholder $B = IK such that irf() generates forecast-error
impulse responses (Lütkepohl 2005, p. 52). In SVAR object of class id, $B is the result of
an identification procedure. If a cointegration rank-restriction or conditional estimation is
employed, the estimates and specifications of these VAR representations are stored in the
slots $VECM, $PARTIAL, and $MARGINAL and then transformed to the top-level $A.

Panel of VAR models. Extended from the branch of individual VAR resp. VECM, the
estimators for the VAR models of heterogeneous panels

pvarx.VAR(L.data, lags, type, t_D=NULL, D=NULL)

pvarx.VEC(L.data, lags, dim_r, type, t_D1=NULL, t_D2=NULL,

D1=NULL, D2=NULL, idx_pool=FALSE, n.iterations=FALSE)

use data panels in list-format L.data to estimate a list of individual VAR models $L.varx.
The specifications of the VAR processes are the lag orders lags, the type of the conven-
tional deterministic term, and optional deterministic regressors activated in the periods t_D

resp. t_D1 and t_D2. While these arguments of pvarx.VEC() comply with the labels in Ta-
ble 2 and with d1t and d2t in Model (2), pvarx.VAR() is in accord with vars’ well-known
VAR() function and accepts a "const", a linear "trend", "both", or "none" in dt of each
individual Model (1). Customized regressors can be included as a common single data matrix
or a list of individual data matrices (including the presample) via D in VAR models and via
restricted D1 and unrestricted D2 in VECM. Unlike t_D, t_D1, and t_D2, these arguments do
not add accompanying lagged regressors to d2t automatically.

In the next step, the individual coefficients are combined by cross-sectional averages. This
provides (i) Pesaran and Smith’s (1995) mean-group (MG) estimation as suggested by Canova
and Ciccarelli (2013) and assessed by Rebucci (2010) for VAR or (ii) Pesaran et al.’s (1999)
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pooled mean-group (PMG) estimation if Breitung’s (2005) two-step estimator has been se-
lected. The latter is activated if some variables idx_pool are restricted to have homogeneous
coefficients in the dim_r cointegrating vectors $beta. For this, the switching algorithm can
be used with further n.iterations. If all elements of idx_pool are in [0, . . . , r], the coef-
ficients up to the uniform upper block Ir are throughout heterogeneous and estimated with
the individual estimator by Ahn and Reinsel (1990). All resulting panel estimates such as $A

or $beta are stored in top-level slots of the pvarx objects.

3.3. Identifying structure

Equivalently to svars’ id.*() procedures for individual VAR objects, pvars’ pid.*() functions
are applied to pvarx objects containing the panel estimates of the reduced-form VAR. Ac-
cordingly, the arguments to control the underlying identification procedures are identical to
those of the svars package. Lange et al. (2021) describe the implementation and application
of the identification procedures in detail.

Imposed. Theoretical considerations like recursive causality may imply restrictions which
can be imposed uniformly on Bi of each individual VAR model. Some ensuing functions of
Section 3.4 accept a simple list of individual svars objects, too, which will produce identical
results under these restrictions. However, to enable the full functionality of the pvars package,
the following functions are added as panel equivalents into the pid.*() canon.

pid.chol(x, order_k=NULL)

pid.grt(x, LR=NULL, SR=NULL, start=NULL, max.iter=100, conv.crit=1e-07, maxls=1.0)

The function pid.chol() is the direct extension of svars’ id.chol(), where the optional
argument order_k allows for specifying alternative causal orderings in the Cholesky decom-
position. The panel function pid.grt() and its individual counterpart perform the ML
estimation (22) for SVECM under short and long-run restrictions on the K × K matrices SR

resp. LR. Using the scoring algorithm from vars’ SVEC(), they have identical arguments to
tune the optimization procedure as Pfaff (2008b, Sec. 3.2) describes in detail.21 If the input
object x contains pooled cointegrating coefficients βk = βki, those are used to calculate the
orthogonal complement β⊥ in the structural identification of Eq. (21).

Data-driven. Residual structure in uit such as non-Gaussianity allows data-driven identifica-
tion. For this purpose, pvars offers the panel applications of ICA. Via the argument combine,
the user can select a strictly individual identification of Bi as in svars (using "indiv"), a
common rotation of pooled shocks by Herwartz and Wang (2024) ("pool"), or n.factors

common shocks across the individuals by Calhoun et al. (2001) ("group").

pid.dc(x, combine, n.factors=NULL, n.iterations=100, PIT=FALSE)

pid.cvm(x, combine, n.factors=NULL, dd=NULL, itermax=500, steptol=100, iter2=75)

The panel identification functions pass the combined samples of whitened shocks to the ICA
procedures. Like id.dc() in svars, pid.dc() uses the gradient algorithm from steadyICA to

21This function integrates vars’ SVEC() into the pvars system on the panel level. SVEC() cannot be applied
to objects of class cajo-test, i.e. urca’s VECM object with restricted α or β, although these restrictions
contribute to the identification of structural shocks. As an individual counterpart, id.grt() is applied to varx

objects, allowing for complex deterministic terms, the MB bootstrap, and svarirf methods.
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minimize the distance covariance (dCov) with respect to the rotation angles θ. Their joint
option PIT activates probability integral transformation, which transforms the marginal den-
sities of the structural shocks before evaluating dCov. The maximum number of iterations is
n.iterations=100 by default. The panel function pid.cvm() uses the procedure from svars’
id.cvm() to minimize the CvM distance. For both CvM functions, copula’s (Kojadinovic and
Yan 2010) indepTestSim() simulates the distribution of test statistics under independence,
which is either provided via dd or called internally if dd=NULL. The external provision of dd

saves computation time if simulated once and then used for multiple calls of id.cvm() or
pid.cvm() on x with identical sample dimensions. The remaining arguments control the two-
step optimization procedure for θ̂. In a first step, the differential evolution algorithm from
DEoptim (Mullen, Ardia, Gil, Windover, and Cline 2011) determines preliminary angles θ∗

within itermax iterations under a tolerance of steptol. The second step further optimizes
the test statistic in iter2 iterations locally around θ∗.

All pid.*() functions extend their pvarx input to the class pid. Therein, the structural im-
pact matrices B̂i have been assigned to each SVAR object in $L.varx and their mean-group
estimates to the top-level slot $B next to $A. By default, the ICA-based panel functions order
the columns of all B̂i uniformly pursuant to the aforementioned convention of the SVAR lit-
erature. Consequently, the main diagonal of the mean-group $B holds the maximum absolute
estimates as positive coefficients b̂kk. Mean-group statistics of B̂i as presented in Bernoth and
Herwartz (2021) and Herwartz and Wang (2024) can be viewed via pid’s summary() method
and exported via toLatex().

3.4. Supporting tools

Dynamic analysis. In the vars-ecosystem, several tools of dynamic analysis are already
available such as impulse response functions (IRF), forecast error variance decomposition
(FEVD) and historical decomposition (HD). pvars extends this list by mean-group IRF (Gam-
bacorta et al. 2014, p. 627). Given a VAR object x of class pvarx or pid, the method

irf(x, n.ahead=20, normf=NULL, w=NULL)

calculates the cross-sectional average of individual responses for each period after the initial
impulse. The function optionally provided in normf normalizes the shock size of these im-
pulses. Vector w with names, N logical, or N numeric elements allows to select a subset of
the N individuals resp. to apply real-valued weights in the mean-group estimation.

Persistence profiles (PP) by Pesaran and Shin (1996) are particularly useful for panel coin-
tegration analysis. Given an individual VECM, they map the speed of convergence to the
long-run equilibrium after an impulse shock and thus allow to counter-check the individual
error correction behavior under a common cointegration rank or pooled cointegration matrix.
While a reversion to the r long-run equilibria is the defining property of cointegration, explo-
sive roots can emerge from ignored breaks in the deterministic term on the individual level
and contaminate the panel results. In pvars, the functions

PP.system(x, n.ahead=20)

PP.variable(x, n.ahead=20, shock=NULL)

calculate PP initiated by system-wide shocks resp. by variable-specific shocks based on the
Cholesky decomposition of Σ̂u,i. Structural shocks are derived from B̂i if x is a structural
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VECM object of class id instead of the reduced-form varx. The matrix shock controls via
its K rows which shocks are selected and combined. Both tools, PP.*() and irf(), return
svarirf objects, for which svars provides the plot method to visualize the responses over a
horizon of up to n.ahead time periods.

Bootstrapping. Bootstrap procedures are a standard tool for VAR modeling to reconstruct
the sampling distribution and perform inference. For estimating standard errors of point
estimates and confidence bands of structural impulse-responses, pvars provides recursive-
design bootstrap procedures. In particular, the following functions implement the moving-
block bootstrap for individual VAR models (Brüggemann, Jentsch, and Trenkler 2016) and
the panel-block bootstrap (Empting et al. 2025) respectively.

sboot.mb(x, b.length=1, n.ahead=20, n.boot=500, n.cores=1,

deltas=cumprod((100:0)/100), normf=NULL)

sboot.pmb(x, b.dim=c(1, 1), n.ahead=20, n.boot=500, n.cores=1,

deltas=cumprod((100:0)/100), normf=NULL, w=NULL)

Given an estimated (panel) SVAR object x of class id reps. pid, the bootstrap functions
iterate n.boot times re-estimating the VAR models, their structural matrices Bi, and impulse
responses over a horizon of up to n.ahead periods. The arguments from the SVAR object
itself (i.e. model specifications, estimation and identification methods, optional restrictions
on αiβ

′ like rank and weak exogeneity) are passed to and fixed over the bootstrap iterations.
In order to speed up their computation by parallel processing, more than one CPU core can
be assigned to the procedure via n.cores. The resulting svars object of class sboot allows
to plot IRF confidence bands via svars’ plot() method. Confidence intervals for parameters
A or B can be viewed via summary() and exported via toLatex().

If input x contains bias-correction terms PSI_bc resp. L.PSI_bc, both functions perform a
bias-corrected bootstrap. For example, objects from a first bootstrap contain such terms and
thus enable the bootstrap-after-bootstrap of individual (Kilian 1998) or panel VAR models
(Empting et al. 2025), where the weights deltas control a successive stationarity correction.
plot() then displays small-sample corrected IRF and their confidence bands.

The argument b.dim defines the dimensions
(
b(t), b(i)

)
of the panel blocks for temporal and

cross-sectional resampling. The default c(1, 1) specifies an iid. resampling in both dimen-
sions, c(1, FALSE) a temporal resampling, and c(FALSE, 1) a cross-sectional resampling.
Choosing integers b(t), b(i) > 1 assembles blocks of consecutive residuals to capture residual
structure like ARCH or cross-sectional correlation. Moreover, sboot.mb() complements svars’
mb.boot() (Lange et al. 2021, Sec. 3.6 and 4.2) and accepts individual SVAR objects identi-
fied by id.grt() (Breitung et al. 2004) or id.iv() (Jentsch and Lunsford 2022). Here, the
default b.length=1 implies the residual iid. bootstrap as implemented in vars’ irf(), while
a single integer b(t) > 1 defines the length of temporal blocks for a moving-block bootstrap.

4. Empirical illustrations

Several empirical illustrations accompany the package to demonstrate its application. In
the help() for functions, the examples provide chunks of R-code for directly copy-pasting
unit-tested reproductions. In this section, we focus on the workflow of pvars and therefore
guide the user to first organize the K × T × N data array, then perform a panel cointegration
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analysis, and finally export the results to Latex. Specifically, the reproduced example of
Örsal and Arsova (2017) in Section 4.1 illustrates how to perform the Panel Analysis of
Nonstationarity in Idiosyncratic and Common components (PANIC), and the reproduced
example of Arsova and Örsal (2021) in Section 4.2 how to specify deterministic terms. The
R-code for both illustrations is assembled in the file pvars_reproductions.R in pvars’ examples
folder. A comprehensive illustration can be found in Empting and Herwartz (2025), who go
through the pretests and VAR-applications 3.1 to 3.4 successively.

Data format. The exemplary data sets of the pvars package are panels in the popular long-
format, where all N multivariate time series have been transposed into T × K matrices and
stacked into an (N · T ) × (2 + K) data.frame object. The two additional columns id_i and
id_t contain factor elements, which serve as identifiers for individual i and time period t.
Accordingly, each observation yit is stored in a single row. The factor variables preserve the
predefined levels order 1, . . . , N within the complete long-format data panel or its subsets.22

In the following, we consider the data set MERM and firstly extract the names of the variables
k = 1, . . . , K and countries i = 1, . . . , N .

R> library("pvars")

R> data("MERM")

R> names_k = colnames(MERM)[-(1:2)]

R> names_i = levels(MERM$id_i)

R> head(MERM, n=3)

id_i id_t s m y p

1 Brazil 1995_Jan -0.1660546 -3.094546 0.07401953 0.3357538

2 Brazil 1995_Feb -0.1731636 -3.054644 0.07127137 0.3422039

3 Brazil 1995_Mar -0.1176580 -3.055017 0.06986985 0.3539417

Naturally, pvars’ modular implementation works well with panel data in list-format, where
each of the N listed elements is an individual matrix of T × K time series. This can be
constructed by either writing separate time series into the list object or transforming the
long-format23 data panel via sapply().

R> L.data = sapply(names_i, FUN=function(i)

+ ts(MERM[MERM$id_i==i, names_k], start=c(1995, 1), frequency=12),

+ simplify=FALSE)

Here, the individual matrices in L.data have been defined as time series objects ts with
frequency=12 for monthly observations starting in January 1995. Although the functions
in pvars do not require this, the ts-definition simplifies the workflow when using further
packages like ggplot (Wickham 2016). The panel functions yet resort to the names of the
listed time series as labels for individual results. sapply() assigns this definition directly, but
names() can enforce this subsequently, too, as an alternative transformation requires:

22Thereby, we also preempt the data management of R versions older than release 4.0.0, which would coerce
character vectors into factor columns automatically and sort their levels alphabetically. For instance,
this could lead to mismatches when switching between label standards as in the case of Switzerland with the
ISO-3166 abbreviation “CHE”.

23Wide-format panels may be transformed into long-format first. The function melt() of the reshape2

package (Wickham 2007) can perform this task. Consider his vignette for a more detailed explanation of these
two data formats and for an additional, third way to transform data into list-format.
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R> L.data = lapply(names_i, FUN=function(i) MERM[MERM$id_i==i, names_k])

R> names(L.data) = names_i

Either way, the data set is now readily prepared for the econometric analysis with pvars.

4.1. The monetary exchange rate model: Conduct a PANIC

Örsal and Arsova (2017) illustrate the PANIC analysis of the monetary exchange rate model
(MERM), according to which the nominal exchange rate sit between two countries forms
a long-run relationship with their relative level of money supply and their relative level of
output. As Dąbrowski, Papież, and Śmiech (2014) propose, Örsal and Arsova adopt the
log-linear model

sit = µ0i + µ1it + βi1 (mit − m∗

t ) + βi2 (yit − y∗

t ) + βi3

[(
pit − pT

it

)
−

(
p∗

t − pT ∗

t

)]
+ uit, (36)

where the variables for the USA as the preselected reference country are marked with an
asterisk. The natural logarithm of the dollar exchange rate for a country i is denoted by sit,
the logarithmized nominal money supply by mit, and the logarithmized industrial production
index by yit. Moreover, they have included the natural logarithm of consumer price index pit

and producer price index pT
it for country i and likewise for the USA.

Data. As head(MERM) has shown for the illustrative transformation of the data format, the
data set MERM contains K = 4 variables. These already summarize each log-ratio of Model (36)
and thus enter the additive Model (32) directly as the observed time series yit. The monthly
observations cover the period 1995/01 − 2007/12 (T = 156) for N = 19 countries and are
listed in L.data after transforming their data format. The names of L.data’s 19 elements
provide the labels for the “individuals” in Table 4.

Approximate factor model. The first step of PANIC is to estimate the approximate factor
model in Eq. (32), which splits yit into common and idiosyncratic components Λ′

iF t resp. yid
it.

The factor model considers the data panel just as a collection of time series without individual
structure. Both dimensions T ×NK of the data are assumed to be large and both components
of the model may involve mixes of I(0) and I(1) series. First-differencing these data panels
beforehand is a valid choice to estimate the factor model by PCA (Bai and Ng 2004) and to
determine its number of common factors F t by the eigenvalues.24 The information criteria
in [[1]] however ignore the individual structure of our panel and thus tend to pick up the
domestic dependencies between the K = 4 variables within countries. Since we are interested
in the factors describing cross-sectional dependence only, we prefer the specification procedure
by Onatski (2010). His edge distribution ED25 is more robust against domestic dependencies
because it looks for a characteristic kink in the ordered eigenvalues. ED also works with the
original L.data in levels irrespective of the components’ order of integration. In order to find
the optimal number of factors within the discrete interval {0, . . . , 20}, we enter the R function

R> speci.factors(L.data, k_max=20, n.iterations=4)

24See Corona, Poncela, and Ruiz (2017) for an overview and Monte Carlo results. An exception is the set
of IP C(k) criteria by Bai (2004), who seek to distinguish non-stationary factors from stationary idiosyncratic
series. Accordingly, speci.factors() suppresses their result if differenced=TRUE is selected.

25phtt by Bada and Liebl (2014) with OptDim(obj, criteria="ED") has been removed from CRAN.
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### Optimal number of common factors ###

[[1]]

PC IC IPC

p1 20 20 7

p2 20 20 7

p3 20 20 5

[[2]]

ER GR ED

1 2 8

A numerical result for ED indicates that the default of n.iterations=4 allows Onatski’s
(2010) edge distribution to converge. In case of an NA, the user needs to increase the number
of iterations, but small numbers are often sufficient.

The result of eight common factors can be visualized and checked in a scree plot. In accordance
with PANIC of the pcoint functions, we may consider the factor model estimated with the
first-differenced and standardized data now:

R> R.fac0 = speci.factors(L.data, k_max=20, n.iterations=4,

+ differenced=TRUE, centered=TRUE, scaled=TRUE, n.factors=8)

R> library("ggplot2")

R> pal = c("#999999", RColorBrewer::brewer.pal(n=8, name="Spectral"))

R> lvl = levels(R.fac0$eigenvals$scree)

R> ggplot(R.fac0$eigenvals[1:20, ]) +

+ geom_col(aes(x=n, y=share, fill=scree), color="black", width=0.75) +

+ scale_fill_manual(values=pal, breaks=lvl, guide="none") +

+ labs(x="Component number", y="Share on total variance", title=NULL) +

+ theme_bw()

Figure 3: Scree plot.
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In the resulting plot of Figure 3, the first eight eigenvalues for the relevant components are
colored.26 They still account for almost 50% of the total variation in the first-differenced and
centered K · N time series, but the PCA of the original data attributes over 98% to the first

26The vector graphics in this Latex document have been generated by the tikzDevice package (Sharpsteen
and Bracken 2020), which prints R plots as a TikZ environment into “.tex” files.
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principal component alone. It appears that this all-dominating component is a linear trend
in the time series, which is removed after first-differencing and centering. Now, the eighth
and ninth eigenvalue are inconsiderable, while the first two exhibit more pronounced kinks.
Indeed, the eigenvalue ratios ER and growth rates GR by Ahn and Horenstein (2013) as well
as ED by Onatski (2010) hint at one resp. two common factors.

R> R.fac0$selection[[2]]

ER GR ED

1 1 2

For the reproduction, we yet proceed with the decision by Örsal and Arsova (2017) and
adhere to the conservative choice of eight common factors in order to ensure cross-sectional
independence for the panel test.

Panel cointegration tests. The approximate factor model with n.factors=8 yields a non-
stationary,27 idiosyncratic remainder ŷid

it, to which Örsal and Arsova (2017) apply the panel
SL-tests. To reproduce their results, we specify pvars’ function pcoint.SL() as follows. Due
to the defactoring and in accordance with the econometric Model (36), the N = 19 individual
testing procedures therein must take care of deterministic trends. The lag order pi of each
idiosyncratic VAR model is chosen from the discrete interval {1, . . . , 4} by the minimized
Akaike information criterion. Here, we enter the results directly, but vars functions may
determine them from the data matrices in R.fac0$L.idio, too.

R> R.lags = c(2, 2, 2, 2, 1, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2)

R> R.pcsl = pcoint.SL(L.data, lags=R.lags, type="SL_trend", n.factors=8)

R> toLatex(R.pcsl)

The method toLatex() prints the pcoint results as a tabular for Latex, which has been
encapsulated in Latex’ float environment in order to create Table 4. The table reports the
individual and panel results for each hypothesis rH0 = 0, . . . , K − 1, which refer to Table 5
in Örsal and Arsova (2017, p. 68). All four combination approaches under the independence
assumption of the idiosyncratic VAR processes have been used. Comparing the p-values to a
significance level of α = 5%, all sequential panel test procedures reject the hypotheses up to
rH0 = 1 and thus confirm the presence of a single cointegration relation in yid

it.

Cointegration rank of the factors. Having determined the idiosyncratic cointegration
rank, the PANIC turns then to the cointegration within the eight common factors F t. The
$CSD-slot of the pcoint object contains the estimates for the cross-sectional dependence and
is identical for the PANIC analysis of any pcoint function. Therein, the eigenvalues of the
PCA are stored in the vector eigenvals and the cumulated common factors in the matrix
Ft of dimension dim_T × n.factors. These multivariate time series shall be plotted firstly
to get an overview as in Figur 4 of Örsal and Arsova (2017, p. 71). For this, we define the
factor matrix Ft as a ts object with the same specifications as the observed time series and

27Note that Bronder’s (2016) R-package PANICr for single-equation PANIC methods, i.e. unit root and
residual-based cointegration tests, has been removed from CRAN lately. The methods rely on the same
estimator for the common factors, that is a principal component analysis on the first-differenced variables,
where the deterministic component has been removed. Consequently, the auxiliary function aux_ComFact()

can also be used for constructing own functions for these single-equation methods.
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Table 4: Panel cointegration rank tests for MERM.
Individual statistics p-values

lags rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 3 rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 3

Brazil 2 41.606 13.963 8.660 3.618 0.115 0.832 0.473 0.256
Canada 2 43.889 19.816 6.253 0.413 0.070 0.406 0.747 0.940
Colombia 2 25.210 13.042 4.744 1.914 0.875 0.881 0.891 0.558
Czech Republic 2 29.238 17.663 7.712 0.583 0.689 0.568 0.580 0.901
Denmark 1 37.925 18.804 7.758 2.450 0.230 0.480 0.575 0.442
Hungary 2 32.372 16.940 8.401 0.863 0.510 0.624 0.502 0.829
India 2 24.846 14.801 6.280 1.889 0.887 0.780 0.744 0.564
Indonesia 4 26.911 12.640 4.211 1.687 0.806 0.899 0.928 0.612
Israel 2 36.282 21.678 6.217 0.561 0.301 0.285 0.751 0.906
Japan 3 28.154 15.395 6.966 1.975 0.746 0.739 0.667 0.544
Korea 2 57.469 13.816 7.835 2.817 0.002 0.840 0.566 0.374
Mexico 2 28.996 20.596 6.638 0.682 0.702 0.352 0.704 0.876
Norway 2 43.766 19.633 6.715 1.367 0.072 0.419 0.696 0.694
Poland 2 60.457 28.641 6.618 0.557 0.001 0.048 0.707 0.907
South Africa 2 21.298 10.053 6.868 4.730 0.968 0.976 0.678 0.147
Sweden 1 32.127 7.147 3.386 0.777 0.524 0.998 0.969 0.851
Switzerland 1 28.419 13.682 3.413 1.699 0.733 0.848 0.968 0.609
Turkey 2 48.692 27.137 14.041 0.325 0.021 0.075 0.094 0.958
United Kingdom 2 50.253 24.440 4.287 3.031 0.014 0.152 0.923 0.339
Panel statistics p-values

rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 3 rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 3

LRbar 2.305 -1.346 -2.635 -2.095 0.011 0.911 0.996 0.982
Choi P 70.515 29.377 17.050 20.338 0.001 0.841 0.999 0.992
Choi Pm 3.730 -0.989 -2.403 -2.026 0.000 0.839 0.992 0.979
Choi Z -1.914 1.528 2.639 2.124 0.028 0.937 0.996 0.983

use the related plotting method via autoplot(). The package ggfortify (Tang, Horikoshi,
and Wenxuan 2016) provides a comprehensive set of unified methods for ggplot2 graphics.

R> library("ggfortify")

R> Ft = ts(R.pcsl$CSD$Ft, start=c(1995, 1), frequency=12)

R> autoplot(Ft, facets=FALSE, size=1.5) + theme_bw() +

+ scale_color_brewer(palette="Spectral") +

+ labs(x=NULL, y=NULL, color="Factor", title=NULL)

Figure 4: Estimated common factors.

-30

-20

-10

0

10

20

30

1995 2000 2005

Factor
Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

Series 7

Series 8

Figure 4 depicts the autoplot() result for the common factors, which are ordered according
to their decreasing eigenvalue of the PCA. Using palette="Spectral" for factors’ color
assignment, the transition from “warm” to “cold” colors reflects decreasing power of the
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factors to explain the common variation within the observed time series. In comparison to
the figure from the original study, the factors F̂ t may have switched signs and be multiplied by
a scalar such that only their dynamics are informative. However, the PANIC analysis on both
components is invariant to this differing normalization of loadings and factors Λ̂′

iF̂ t: (1) The
idiosyncratic components are calculated via this complete term of common components, which
the normalization does not alter. (2) The common factors F̂ t exhibit the same strength of
cointegration, i.e. λ̂ of the reduced-rank regression (8), irrespective of any scaling weight
multiplied to a time series of F̂ t.

In order to determine the cointegration rank within F t, we employ the single VECM (2) with a
linear trend in the cointegration space. The proceeding is the same as any individual analysis
of the country-specific time series. The AIC, as provided by vars’ VARselect() or pvars’
speci.VAR(), hints at a lag order of pFt

= 2 for the VAR Model (1) without rank-restriction.
We perform both procedures, Johansen (1996) and SL (2000c), using an unrestricted intercept
and a linear trend restricted to the coingreation (Case 4, see Table 2) and the corresponding
intercept and linear trend in the additive Model (10) (SL_trend).

R> R.Ftsl = coint.SL(R.pcsl$CSD$Ft, dim_p=2, type_SL="SL_trend")

R> R.Ftjo = coint.JO(R.pcsl$CSD$Ft, dim_p=2, type="Case4")

R> toLatex(R.Ftsl, R.Ftjo, write_ME=TRUE,

+ add2header=c("\\textbf{SL:} Trace test",

+ "\\textbf{Johansen:} Trace test"))

Both results are jointly exported to Latex via the toLatex() method for coint objects. In
order to distinguish them in the joint table, the optional argument add2header labels the
procedure in the respective column. Depending on the input coint objects, the user could
indicate individual names or different specifications manually here as well. In contrast to
the panel test functions, the two functions of the coint branches conduct the maximum
eigenvalue LR-test additionally. The argument write_ME controls whether these results shall
enter the Latex table. This feature is particular useful for test procedures on more complex
data generation processes with trend breaks or weakly exogenous variables. In these cases,
the distribution moments of Zr⊥

and thus p-values would be available for the trace test only
such that the slot $pvals_ME of the coint object would report a vector of NAs. However,
since the empirical example implies standard specifications, the complete Table 5 has been
printed with write_ME=TRUE.

Table 5: Cointegration rank tests for the common factors.
SL: Trace test Max. eigenvalue test Johansen: Trace test Max. eigenvalue test

rH0 statistic p-value statistic p-value statistic p-value statistic p-value
0 202.448 0.000 63.178 0.001 251.612 0.000 74.245 0.000
1 116.540 0.080 40.822 0.124 177.367 0.000 57.414 0.006
2 85.131 0.125 38.750 0.043 119.952 0.034 38.361 0.206
3 47.891 0.622 20.551 0.637 81.591 0.147 30.719 0.297
4 27.169 0.794 14.439 0.716 50.873 0.379 19.469 0.699
5 14.737 0.784 10.300 0.642 31.404 0.427 14.536 0.684
6 3.719 0.955 3.465 0.894 16.868 0.433 9.713 0.656
7 1.406 0.684 1.406 0.684 7.155 0.338 7.155 0.339

The table shows results for the thereby four different tests on the cointegration rank within the
eight common factors. In accordance with Table 6 in Örsal and Arsova (2017, p. 68), the trace
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tests in the SL- and the Johansen procedure stop at an rH0 of one resp. three cointegration
relations and thus suggest at least five global stochastic trends driving the observable variables
yit in the PANIC Model (32). Correspondingly, the maximum eigenvalue test procedures
suggest ranks of one resp. two at a significance level of 5%. The range of five to seven global
stochastic trends are also in accord with the IPC(k) criteria.

4.2. The exchange rate pass-through: Specify the deterministic term

The empirical example from Arsova and Örsal (2016, Ch. 6) about the exchange rate pass-
through (ERPT) shows how to perform cointegration rank analysis under the consideration
of structural breaks in the cointegration relation. Their example itself is based on the data
set and theoretical model from Banerjee and Carrion-i-Silvestre (2015), who assess a single
long-run relationship between the logarithmized time series of import price mpit, exchange
rate erit, and foreign price fpt in the linear model

mpit = µi0 + µi1t + βi1 · erit + βi2 · fpt + uit. (37)

Data.28 The data set on the K = 3 variables yit consists of monthly observations over
the period 1995/01 − 2005/03 (T = 123) for N = 7 Euro-area countries and nine different
industries. However for the illustration, we reproduce the empirical analysis for the industry
“chemicals and related products” only and it is up to the user to try out cointegration tests
for the remaining industries. Their time series are also stored in pvars’ data set ERPT. In
order to subset and transform the long-format panel ERPT into the necessary list-format, we
follow the same steps as explained at the beginning of Section 4 and select the variables for
the chemical industry denoted by serial number 5. Only for an easier comparison with the
results from Arsova and Örsal (2016), the country names names_i are re-ordered according
to the original literature. This has no consequences on the implementation.

R> library("pvars")

R> data("ERPT")

R> names_k = c("lpm5", "lfp5", "llcusd")

R> names_i = levels(ERPT$id_i)[c(1,6,2,5,4,3,7)]

R> L.data = sapply(names_i, FUN=function(i)

+ ts(ERPT[ERPT$id_i==i, names_k], start=c(1995, 1), frequency=12),

+ simplify=FALSE)

Over the considered sample period, Arsova and Örsal (2016) suspect a level shift and trend
break in May 2002 motivated by the appreciation of the Euro against the US-Dollar. The
authors attribute this persistent change to effects from the outside of Model (37), namely (i)
the aftermath of the terrorist attacks on the World Trade Center on 11 September 2001, (ii)
hesitant investors on the US markets, (iii) the declining importance of US exports on the world
markets, and (iv) the fully established Euro after the national currencies had been withdrawn
from circulation in March 2002. Since the complete data set including the presample periods
comprises the time interval 1995/01−2007/12, the single break period τ of 2002/05 is counted
to be the 89th one within the interval 1, . . . , 123.

28The balanced panel ERPT as used by Arsova and Örsal (2016) contains less individuals than Banerjee and
Carrion-i-Silvestre (2015) actually provide. The countries Austria, Finland, and Portugal are omitted because
Eurostat as the primary data source has reported some missing values in these time series.
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Specify the deterministic term. In order to accommodate this structural break, the
CAIN-test considers individual TSL-procedures by Trenkler et al. (2008), which allows for
individual-specific deterministic components in the additive Model (10) given by

Mµidit = [µ0i : µ1i : δ0i : δ1i] dit = µ0i + µ1it + δ0idit + δ1bit. (38)

Besides the conventional constant 1 and linear trend t, the ni ×1 vectors dit stack the period-
specific shift dummies dit and trend breaks bit. These regressors are dit = bit = 0 firstly and
activated to be dit = 1 and bit = t − τi + 1 when t ≥ τi. The empirical example holds the
special characteristics that there is only a single break and it occurs at the very same period
τi = τ = 89 in each i. Therefore, the shift, which must accompany the single break, is the sole
dt = ∆bt and the deterministic regressors dt = (1, t, ∆bt, bt)

′ are in fact identical for each i.
This has no further consequences for the flexible CAIN-TSL test itself, but its implementation
pcoint.CAIN() then requires only the single value τ = 89 instead of a list of N specifications
for the argument t_D. Accordingly, the objects R.t_D and L.t_D lead to identical results. The
latter can serve as a basis for adding individual-specific regressors dit. In this example, the
explicit formulation for France is yet redundant as pvars adds any accompanying shift from
t_break automatically.

R> R.t_D = list(t_break=89)

R> L.t_D = sapply(names_i, function(i) list(t_break=89), simplify=FALSE)

R> L.t_D$France$t_shift = c(89)

For the feasible GLS-detrending,29 Table 2 shows how pvars constructs d1,it and d2,it in the

preceding reduced-rank regressions of ∆yit on z1,it =
(
y′

i,t−1, d′

1,it

)′

corrected for z2,it =
(
∆y′

i,t−1, . . . , ∆y′
i,t−pi+1, d′

2,it

)′

. The deterministic regressors d1,it =
(
t − 1, bt−1

)′ for the
cointegration relations consist of a linear trend and its break in τ = 89. In addition to the
unrestricted constant, pvars includes the shift ∆bt and lags of the impulse dummy dim

τ,t into

d2,it =
(
1, ∆bt , dim

τ,t, . . . , dim
τ,t−(pi−1)

)′

automatically. In converse notation, these lags can be

easily recognized as a solitary impulse dim
•,t = 1 in each period • ∈ {τ, . . . , τ + (pi − 1)}.

Panel cointegration tests. Arsova and Örsal (2021) determine the individual lag orders pi

with the modified AIC by Qu and Perron (2007) under the null hypothesis of no cointegration.
The feasible estimation of Mµi in Eq. (38) and the LR-test based on an individual VECM
with detrended time series then proceed as generally described in Section 2.1. Finally, the
panel statistics (33) by Hartung (1999) and Arsova and Örsal (2021) combine the individual
p-values under the three correction factors to account for cross-sectional dependence. We
conduct the complete CAIN test procedure with the pcoint command

R> R.lags = c(3, 3, 3, 4, 4, 3, 4) # by modified AIC

R> R.cain = pcoint.CAIN(L.data, lags=R.lags, t_D=R.t_D, type="SL_trend")

R> R.cain$CSD$rho_tilde

r_H0 = 0 r_H0 = 1 r_H0 = 2

Hartung_K1 0.8123894 0.3973220 0.5726069

Hartung_K2 0.7954536 0.3583592 0.5403518

CAIN 0.1252727 0.1310724 0.1448498

29See TSL (2008, p. 335) for more details and Arsova and Örsal (2021, Ch. 6) for another panel example.
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R> R.cain$CSD$rho_eps

[1] 0.6333148

In the S3-slot $CSD, the matrix rho_tilde contains the correction factors for each panel
test and hypothesis rH0 = 0, . . . , K − 1. Further, rho_eps stores the average absolute cross-
sectional correlation ρϵ calculated only for rH0 = 0. Its high value indicates strong cross-
sectional dependence for the empirical example. Arsova and Örsal (2016, p. 15) attribute this
to the common foreign price series fpt and similar exchange rate dynamics erit. After the
Euro exchange rate was fixed on 31 December 1998, the variable erit has been identical for
the considered European countries from January 1999 onward.

R> toLatex(R.cain)

Table 6: Panel cointegration rank tests for ERPT.
Individual statistics p-values

lags rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 0 rH0 = 1 rH0 = 2

France 3 35.006 13.709 3.812 0.024 0.248 0.425
Netherlands 3 32.854 11.754 5.514 0.044 0.402 0.220
Germany 3 36.446 20.365 2.438 0.015 0.029 0.666
Italy 4 39.369 18.309 1.245 0.006 0.060 0.888
Ireland 4 32.834 19.624 1.814 0.045 0.038 0.786
Greece 3 34.559 16.713 3.900 0.027 0.102 0.412
Spain 4 28.230 9.743 2.108 0.146 0.598 0.730
Panel statistics p-values

rH0 = 0 rH0 = 1 rH0 = 2 rH0 = 0 rH0 = 1 rH0 = 2

Hartung K1 -2.034 -1.477 0.335 0.021 0.070 0.631
Hartung K2 -2.052 -1.531 0.343 0.020 0.063 0.634
CAIN -3.725 -2.033 0.517 0.000 0.021 0.697

As in Section 4.1, the pcoint object is printed by toLatex() and encapsulated in Latex’
table environment. Table 6 displays the individual and panel results for each hypothesis
rH0 = 0, . . . , K − 1, which Arsova and Örsal (2016, p. 22) report in Table 7 and 8 for the
industry of “5: Chemicals and related products”, too. Comparing the p-values to a significance
level of α = 5%, the sequential testing procure of CAIN rejects the hypotheses up to rH0 = 2
and thus suggests the presence of overall two cointegration relations.

5. Summary

This article has presented a set of VAR methods for panel data (Section 2), described their
implementation in pvars (Section 3), and illustrated their application (Section 4). The R-
package comprises panel cointegration rank tests as well as estimators of VAR models for
heterogeneous panels and panel methods for structural identification of the reduced-form VAR
models. In this context, pvars addresses typical properties of financial and macroeconomic
panel data, in particular cross-sectional dependence and structural breaks in the deterministic
term. Finally, pvars supplements functions for model specification and dynamic analysis which
are not provided by other packages of the vars-ecosystem, namely various criteria for the
number of common factors, persistence profiles, mean-group IRF, and moving-block bootstrap
procedures for panel SVAR models.
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Future research may extend bootstrapped tests for the individual cointegration rank to panel
tests. Swensen (2006, 2009) and Cavaliere, Rahbek, and Taylor (2012, 2014) construct boot-
strapped tests for the individual Johansen procedure. Trenkler (2009) and Cavaliere, Taylor,
and Trenkler (2013) compare bootstrapped SL-procedures in view of deterministic compo-
nents. In particular, the bootstrap-after-bootstrap procedure by Cavaliere, Taylor, and Tren-
kler (2015) exhibits improved small-T sample performance and robustness against conditional
heteroskedasticity and serial correlation in comparison to the asymptotic test procedure.
An extension based on panel blocks could respect additional cross-sectional dependence and
would be easily accommodated into pvars. Yet, these forms of residual structure can often
be attributed to common or extraordinary shocks and thus treated by common factors or
deterministic dummies (Juselius 2007, Ch. 6.7). Their rigorous implementation throughout
the different VAR applications is readily available in pvars.
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