Package ‘link2GI’

October 30, 2023
Type Package

Title Linking Geographic Information Systems, Remote Sensing and Other
Command Line Tools

Version 0.5-3

Date 2023-10-30

Encoding UTF-8

Maintainer Chris Reudenbach <reudenbach@uni-marburg.de>

Description Functions to simplify the linking of open source GIS and remote sensing related com-
mand line interfaces.

URL https://github.com/r-spatial/1ink2GI/,
https://r-spatial.github.io/1ink2GI/

BugReports https://github.com/r-spatial/link2GI/issues/
License GPL (>= 3) | file LICENSE
Depends R (>=3.5.0)

Imports devtools, R.utils, roxygen2, sf (>= 0.9), stringr, terra,
methods, utils, xml2, xfun

SystemRequirements GNU make
RoxygenNote 7.2.3

Suggests knitr, rmarkdown, sp, rgrass, stars, curl, listviewer,
markdown

VignetteBuilder knitr
NeedsCompilation no

Author Chris Reudenbach [cre, aut],
Tim Appelhans [ctb]

Repository CRAN
Date/Publication 2023-10-30 20:50:09 UTC

https://github.com/r-spatial/link2GI/
https://r-spatial.github.io/link2GI/
https://github.com/r-spatial/link2GI/issues/

2 findGDAL

R topics documented:
findGDAL e e 2
findGRASS e 3
findOTB e 4
findSAGA e 5
gvec2st .. 5
INitProj e e e 7
HnkAIL . . oo 8
LnkGDAL e 9
LinkGRASS . . . e 10
LinkGRASST7 . . o e 13
HnkOTB e 16
HnkSAGA . . . o e e 18
paramGRASSw o 19
paramGRASSX L 20
parseOTBAlgorithms 21
parseOTBFunction e 22
runOTB L e 23
setenvGDAL 25
setenvGRASSW . . . L e 25
setenvOTB e 26
ST2gVeC . . oL 27

Index 29

findGDAL Search recursivly existing "GDAL binaries’ installation(s) at a given
drive/mountpoint
Description

Provides an list of valid ’GDAL’ installation(s) on your *Windows’ system. There is a major differ-
ence between osgeo4W and stand_alone installations. The functions trys to find all valid installa-

tions by analysing the calling batch scripts.

Usage
findGDAL (searchLocation = "default”, quiet = TRUE)

Arguments

searchLocation drive letter to be searched, for Windows systems default is C:, for Linux systems

default is /usr.

quiet boolean switch for supressing console messages default is TRUE

Value

A dataframe with the ’GDAL’ root folder(s), and command line executable(s)

findGRASS 3

Author(s)
Chris Reudenbach

Examples

run = FALSE

if (run) {

find recursively all existing 'GDAL' installations folders starting
at the default search location

findGDAL ()

3

findGRASS Return attributes of valid "GRASS GIS’ installation(s) on the system

Description

Provides a list of valid "GRASS GIS’ installation(s) on your system. There is a major difference
between osgeo4W and stand_alone installations. The functions tries to find all valid installations
by analysing the calling batch scripts.

Usage

findGRASS(searchLocation = "default”, ver_select = FALSE, quiet = TRUE)

Arguments

searchLocation location to be searched for the grass executable, i.e. one executable for each
GRASS installation on the system. For Windows systems it is mandatory to
include an uppercase Windows drive letter and a colon. Default For Windows
Systems is C:, for Linux systems default is /usr/bin.

ver_select boolean default is FALSE. If there is more than one ’SAGA GIS’ installation
and ver_select = TRUE the user can select interactively the preferred 'SAGA
GIS’ version

quiet boolean switch for supressing console messages default is TRUE

Value

A dataframe with the ’"GRASS GIS’ binary folder(s) (i.e. where the individual GRASS commands
are installed), version name(s) and installation type code(s)

Author(s)
Chris Reudenbach

4 findOTB

Examples

Not run:

find recursively all existing 'GRASS GIS' installation folders starting
at the default search location

findGRASS ()

End(Not run)

find0OTB Search recursivly existing 'Orfeo Toolbox’ installation(s) at a given
drive/mountpoint

Description

Provides an list of valid *OTB’ installation(s) on your *Windows’ system. There is a major differ-
ence between osgeo4W and stand_alone installations. The functions trys to find all valid installa-
tions by analysing the calling batch scripts.

Usage

findOTB(searchLocation = "default”, quiet = TRUE)

Arguments

searchLocation drive letter to be searched, for Windows systems default is C:, for Linux systems
default is /usr.

quiet boolean switch for supressing console messages default is TRUE

Value

A dataframe with the ’OTB’ root folder(s), and command line executable(s)

Author(s)
Chris Reudenbach

Examples

Not run:

find recursively all existing 'Orfeo Toolbox' installations folders starting
at the default search location

findOTB()

End(Not run)

findSAGA 5

findSAGA Search recursivly existing 'SAGA GIS’ installation(s) at a given
drive/mountpoint

Description

Provides an list of valid 'SAGA GIS’ installation(s) on your "Windows’ system. There is a major
difference between osgeo4W and stand_alone installations. The functions trys to find all valid
installations by analysing the calling batch scripts.

Usage

findSAGA(searchLocation = "default”, quiet = TRUE)

Arguments

searchLocation drive letter to be searched, for Windows systems default is C:, for Linux systems
default is /usr.

quiet boolean switch for supressing console messages default is TRUE

Value

A dataframe with the "'SAGA GIS’ root folder(s), version name(s) and installation type code(s)

Author(s)
Chris Reudenbach

Examples

Not run:

find recursively all existing 'SAGA GIS' installation folders starting
at the default search location

findSAGA()

End(Not run)

gvec2sf Converts from an existing ‘GRASS* environment an arbitrary vector
8
dataset into a sf object

Description

Converts from an existing ‘GRASS* environment an arbitrary vector dataset into a sf object

Usage

gvec2sf(x, obj_

Arguments

X
obj_name
gisdbase
location

gisdbase_exist

Note

gvec2sf

name, gisdbase, location, gisdbase_exist = TRUE)

sf object corresponding to the settings of the corresponding GRASS container
name of GRASS layer

GRASS gisDbase folder

GRASS location name containing obj_name)

logical switch if the GRASS gisdbase folder exist default is TRUE

have a look at the sf capabilities to read direct from sqlite

Author(s)

Chris Reudenbach

Examples

run = FALSE
if (run) {
example
require(sf)
require(sp)
require(link2GI)
data(meuse)

meuse_sf = st_as_sf(meuse,

Coords = C("X", uyu)’
crs = 28992,
agr = "constant")

write data to GRASS and create gisdbase
sf2gvec(x = meuse_sf,

obj_name
gisdbase
location

= "meuse_R-G",
= "~/temp3/",
= "project1"”)

read from existing GRASS
gvec2sf(x = meuse_sf,

obj_name
gisdbase
location

= "meuse_r_g",
= "~/temp3”,
= "project1"”)

initProj 7

initProj Defines and creates folders and variables

Description

Defines and creates (if necessary) all folders variables. Returns a list with the project folder pathes.
Optionally exports all pathes to a global sub environment.

Usage

initProj(
projRootDir = tempdir(),
GRASSlocation = "tmp/",
projFolders = c("data/", "result/", "run/", "log/"),
path_prefix = "",
global = FALSE

Arguments

projRootDir project github root directory (your github name)
GRASSlocation folder for GRASS data

projFolders list of subfolders in project

path_prefix character a prefix for the path variables names default is ""

global boolean esport path strings as global variables default is false
Examples

Not run:

1ink2GI::initProj(projRootDir = tempdir(),
projFolders = c("data/",
"data/levelo/",
"data/levell/",
"output/",
"run/",
"fun/"))

End(Not run)

8 linkAll
1inkAll convenient function to establish all link2GlI links
Description
brute force search, find and linkl of all 1link2GI link functions. This is helpfull if yor system is well
setup and the standard linkage procedure will provide the correct linkages.
Usage
1linkA1l(
links = NULL,
simple = TRUE,
linkItems = c("saga", "grass"”, "otb"”, "gdal"),
sagaArgs = "default”,
grassArgs = "default”,
otbArgs = "default”,
gdalArgs = "default”,
quiet = FALSE
)
Arguments
links character. links
simple logical. true make all
linkItems character. list of c("saga","grass","otb","gdal")
sagaArgs character. full string of sagaArgs
grassArgs character. grassArgs full string of grassArgs
otbArgs character. full string of otbArgs
gdalArgs character. full string of gdalArgs
quiet supress all messages default is FALSE
Note
You may also use the full list of arguments that is made available from the 1ink2GI package, but it
is strongly recommended in this case to use directly the single linkage functions from 1ink2GI.
Examples
Not run:
required packages
require(1ink2GI)

search, find and create the links to all supported GI software
gilinks<-1inkAl1()

linkGDAL 9

makes the GDAL linkage verbose
gilinks<-1inkAll(gdalArgs= "quiet = TRUE")

End(Not run)

1inkGDAL Locate and set up 'GDAL’ API bindings

Description

Locate and set up ’GDAL - Geospatial Data Abstraction Librar’ API bindings

Usage

1inkGDAL (
bin_GDAL = NULL,
searchLocation = NULL,
ver_select = FALSE,

quiet = TRUE,
returnPaths = TRUE
)
Arguments
bin_GDAL string contains path to where the gdal binaries are located

searchLocation string hard drive letter default is C:

ver_select boolean default is FALSE. If there is more than one ’GDAL’ installation and
ver_select = TRUE the user can select interactively the preferred *GDAL’
version

quiet boolean switch for supressing messages default is TRUE

returnPaths boolean if set to FALSE the pathes of the selected version are written to the

PATH variable only, otherwise all paths and versions of the installed GRASS
versions ae returned.

Details

It looks for the gdalinfo(.exe) file. If the file is found in a bin folder it is assumed to be a valid
’GDAL binary installation.

if called without any parameter 1inkGDAL () it performs a full search over the hardrive C:. If it finds
one or more "GDAL’ binaries it will take the first hit. You have to set ver_select = TRUE for an
interactive selection of the preferred version.

Value

add gdal pathes to the enviroment and creates global variables path_GDAL

https://gdal.org/

10 IinkGRASS

Note

You may also set the path manually. Using a’OSGeo4W64’ https://trac.osgeo.org/osgeodw/
installation it is typically C: /0SGeo4W64/bin/

Author(s)
Chris Reudenbach

Examples

Not run:

call if you do not have any idea if and where GDAL is installed
gdal<-1inkGDAL ()

if (gdal$exist) {

call it for a default 0SGeo4W installation of the GDAL
print(gdal)

3

End(Not run)

1inkGRASS Locate and set up 'GRASS’ API bindings

Description

Initializes the session environment and the system paths for an easy access to "GRASS GIS 7.x/8.x’.
The correct setup of the spatial and projection parameters is automatically performed by using ei-
ther an existing and valid raster, terra, sp or sf object, or manually by providing a list containing
the minimum parameters needed.

Usage

1inkGRASS(
x = NULL,
default_GRASS = NULL,
search_path = NULL,
ver_select = FALSE,
gisdbase_exist = FALSE,
gisdbase = NULL,
use_home = FALSE,
location = NULL,
spatial_params = NULL,
resolution = NULL,
quiet = TRUE,
returnPaths = TRUE

https://trac.osgeo.org/osgeo4w/
https://grass.osgeo.org/

linkGRASS 11

Arguments

X raster/terra or sf/sp object

default_GRASS default is NULL If is NULL an automatic search for all installed versions is per-
formed. If you provide a valid list the corresponding version is initialized. An
example for OSGeo4W64 is: c("C:/0SGeo4W64", "grass-7.0.5", "osgeodw")

search_path path or mounting point that will be searched

ver_select boolean if TRUE you may choose interactively the binary version (if found more
than one), by default FALSE

gisdbase_exist default is FALSE if set to TRUE the arguments gisdbase and location are ex-
pected to be an existing GRASS gisdbase

gisdbase default is NULL, invoke tempdir () to the '"GRASS’ database. Alternatively you
can provide a individual path.

use_home default is FALSE, set the GISRC path to tempdir(), if TRUE the HOME or USER-
PROFILE setting is used for writing the GISRC file

location default is NULL, invoke basename (tempfile()) for defining the '"GRASS’ lo-

cation. Alternatively you can provide a individual path.

spatial_params default is NULL. Instead of a spatial object you may provide the geometry as a
list. E.g. c(xmin,ymin,xmax,ymax,proj4_string)

resolution resolution in map units for the GRASS raster cells
quiet boolean switch for supressing console messages default is TRUE
returnPaths boolean if set to FALSE the pathes of the selected version are written to the

PATH variable only, otherwise all paths and versions of the installed GRASS
versions ae returned.

Details

The concept is straightforward but for an all days usage helpful. Either you need to provide a
raster or sp sf spatial object which has correct spatial and projection properties or you may link
directlxy to an existing ’GRASS’ gisdbase and mapset. If you choose an spatial object to initialize
a correct ’GRASS’ mapset it is used to create either a temporary or a permanent rgrass environment
including the correct "GRASS ’ structure.

The most time consuming part on *Windows’ Systems is the search process. This can easily take 10
or more minutes. To speed up this process you can also provide a correct parameter set. Best way
to do so is to call searchGRASSW or for "Linux’ searchGRASSX manually. and call 1inkGRASS with
the version arguments of your choice. linkGRASS initializes the usage of GRASS7.

Note

’GRASS GIS'’ is excellently supported by the rgrass wrapper package. Nevertheless ’GRASS GIS’
is well known for its high demands regarding the correct spatial and reference setup of work space
and environment requirements. This becomes even worse on *Windows’ platforms or if several
alternative ’GRASS GIS’ installations are available. If one knows what to do the rgrass package
setup function rgrass: : initGRASS works fine under Linux. This is also valid for well known con-
figurations under the *Windows’ operation system. Nevertheless on university labs or on company

https://CRAN.R-project.org/package=rgrass

12 IinkGRASS

computers with restricted privileges and/or using different releases like the ’OSGeo4 W’ distribution
and the ’"GRASS ’ stand-alone installation, or different software releases (e.g. "GRASS 7.0.5 and
GRASS 8.1.0), it becomes often cumbersome or even impossible to get the correct linkages.

The function 1inkGRASS tries to find all valid "GRASS GIS’ binaries by analyzing the startup script
files of "GRASS GIS’. After identifying the ’"GRASS GIS’ binaries all necessary system variables
and settings will be generated and passed to a temporary R enviroment.

If you have more than one valid installation and run 1inkGRASS () without arguments, you will be
ask to select one.

Author(s)
Chris Reudenbach

Examples

run = FALSE

if (run) {
library(1link2GI)
require(sf)

proj folders

projRootDir = tempdir()

paths = 1ink2GI::initProj(projRootDir = projRootDir,
projFolders = c("project1/"))

get data
nc = st_read(system.file("shape/nc.shp”, package="sf"))

Automatic search and find of GRASS binaries

using the nc sf data object for spatial referencing

This is the highly recommended linking procedure for on the fly jobs
NOTE: if more than one GRASS installation is found you have to choose.
grass = 1inkGRASS(nc,returnPaths = TRUE)

if (grass$exist){

CREATE and link to a permanent GRASS folder at "projRootDir"”, location named "projectl”
1inkGRASS(nc, gisdbase = projRootDir, location = "project1”)

ONLY LINK to a permanent GRASS folder at "projRootDir", location named "projectl”
1inkGRASS(gisdbase = projRootDir, location = "projectl”, gisdbase_exist = TRUE)

setting up GRASS manually with spatial parameters of the nc data
proj4_string = as.character(sp::CRS("+init=epsg:28992"))
1inkGRASS(spatial_params = c(178605,329714,181390,333611,proj4_string))

creating a GRASS gisdbase manually with spatial parameters of the nc data
additionally using a peramanent directory "projRootDir"” and the location "nc_spatial_params
proj4_string = as.character(sp::CRS("+init=epsg:4267"))
1inkGRASS(gisdbase = projRootDir,
location = "nc_spatial_params”,

n

https://trac.osgeo.org/osgeo4w/
https://grass.osgeo.org/download/windows/

linkGRASS7 13

spatial_params = c(-84.32385, 33.88199,-75.45698,36.58965,proj4_string))
3

Some more examples related to interactive selection or 0S specific settings

SELECT the GRASS installation and define the search location
1inkGRASS(nc, ver_select = TRUE, search_path = "~")

SELECT the GRASS installation
1inkGRASS(nc, ver_select = TRUE)

Typical osgedW installation (QGIS), using the meuse sp data object for spatial referencing
1inkGRASS(nc,c("C:/Program Files/QGIS 2.18","grass-7.2.1","osgeo4W"))

Typical osgeo4W installation (rootdir), using the meuse sp data object for spatial referencing
1inkGRASS(nc,c("C:/0SGeo4W64/" ,"grass-7.2.2","osgeod4W"))

}
1inkGRASS7 Deprecated only for backwards compatibility Locate and set up
"GRASS’ API bindings
Description

Initializes the session environment and the system paths for an easy access to ’"GRASS GIS 7.x/8.x’.
The correct setup of the spatial and projection parameters is automatically performed by using ei-
ther an existing and valid raster, terra, sp or sf object, or manually by providing a list containing
the minimum parameters needed.

Usage

1inkGRASS7(
x = NULL,
default_GRASS = NULL,
search_path = NULL,
ver_select = FALSE,
gisdbase_exist = FALSE,
gisdbase = NULL,
use_home = FALSE,
location = NULL,
spatial_params = NULL,
resolution = NULL,
quiet = TRUE,
returnPaths = TRUE

https://grass.osgeo.org/

14 linkGRASS7

Arguments

X raster/terra or sp/sf object

default_GRASS default is NULL If is NULL an automatic search for all installed versions is per-
formed. If you provide a valid list the corresponding version is initialized. An
example for OSGeo4W64 is: c("C:/0SGeo4W64", "grass-7.0.5", "osgeodw")

search_path path or mounting point that will be searched

ver_select boolean if TRUE you may choose interactively the binary version (if found more
than one), by default FALSE

gisdbase_exist default is FALSE if set to TRUE the arguments gisdbase and location are ex-
pected to be an existing GRASS gisdbase

gisdbase default is NULL, invoke tempdir () to the '"GRASS’ database. Alternativeley you
can provide a individual path.

use_home default is FALSE, set the GISRC path to tempdir(), if TRUE the HOME or USER-
PROFILE setting is used for writing the GISRC file

location default is NULL, invoke basename (tempfile()) for defining the 'GRASS’ lo-

cation. Alternativeley you can provide a individual path.

spatial_params default is NULL. Instead of a spatial object you may provide the geometry as a
list. E.g. c(xmin,ymin,xmax,ymax,proj4_string)

resolution resolution in map units for the GRASS raster cells
quiet boolean switch for supressing console messages default is TRUE
returnPaths boolean if set to FALSE the pathes of the selected version are written to the

PATH variable only, otherwise all paths and versions of the installed GRASS
versions ae returned.

Details

The concept is straightforward but for an all days usage helpful. Either you need to provide a
raster or sp sf spatial object which has correct spatial and projection properties or you may link
directlxy to an existing ’GRASS’ gisdbase and mapset. If you choose an spatial object to initialize
a correct ’GRASS’ mapset it is used to create either a temporary or a permanent rgrass environment
including the correct "GRASS ’ structure.

The most time consuming part on *Windows’ Systems is the search process. This can easily take 10
or more minutes. To speed up this process you can also provide a correct parameter set. Best way
to do so is to call searchGRASSW or for "Linux’ searchGRASSX manually. and call 1inkGRASS with
the version arguments of your choice. linkGRASS initializes the usage of GRASS.

Note

"GRASS GIS ’ is excellently supported by the rgrass wrapper package. Nevertheless *GRASS
GIS’ is well known for its high demands regarding the correct spatial and reference setup of
workspace and environment requirements. This becomes even worse on *Windows’ platforms or if
several alternative ’GRASS GIS’ installations are available. If one knows what to do the rgrass
package setup function rgrass: :initGRASS works fine under Linux. This is also valid for well
known configurations under the "Windows’ operation system. Nevertheless on university lab or on

https://CRAN.R-project.org/package=rgrass

linkGRASS7 15

company computers with restriced privileges and/or using different releases like the ’OSGeo4W’
distribution and the "GRASS ’ stand-alone installation, or different software releases (e.g. ’"GRASS
7.0.5 and GRASS 8.1.0), it becomes often cumbersome or even impossible to get the correct link-
ages.

The function 1inkGRASS tries to find all valid "GRASS GIS’ binaries by analyzing the startup script
files of "GRASS GIS’. After identifying the "GRASS GIS’ binaries all necessary system variables
and settings will be generated and passed to a temporary R enviroment.

If you have more than one valid installation and run 1inkGRASS() without arguments, you will be
ask to select one.

Author(s)
Chris Reudenbach

Examples

Not run:
library(1ink2GI)
require(sf)

proj folders

projRootDir = tempdir()

paths = 1ink2GI::initProj(projRootDir = projRootDir,
projFolders = c("project1/"))

get data
nc = st_read(system.file("shape/nc.shp”, package="sf"))

Automatic search and find of GRASS binaries

using the nc sf data object for spatial referencing

This is the highly recommended linking procedure for on the fly jobs
NOTE: if more than one GRASS installation is found you have to choose.
grass = 1inkGRASS(nc,returnPaths = TRUE)

if (grass$exist){

CREATE and link to a permanent GRASS folder at "projRootDir"”, location named "projectl”
1inkGRASS(nc, gisdbase = projRootDir, location = "project1”)

ONLY LINK to a permanent GRASS folder at "projRootDir", location named "projectl”
1inkGRASS(gisdbase = projRootDir, location = "projectl”, gisdbase_exist = TRUE)

setting up GRASS manually with spatial parameters of the nc data
proj4_string = as.character(sp::CRS("+init=epsg:28992"))
1inkGRASS(spatial_params = c(178605,329714,181390,333611,proj4_string))

creating a GRASS gisdbase manually with spatial parameters of the nc data
additionally using a peramanent directory "projRootDir” and the location "nc_spatial_params "
proj4_string = as.character(sp::CRS("+init=epsg:4267"))
1inkGRASS(gisdbase = projRootDir,
location = "nc_spatial_params”,

https://trac.osgeo.org/osgeo4w/
https://grass.osgeo.org/download/windows/

16 linkOTB

spatial_params = c(-84.32385, 33.88199,-75.45698,36.58965,proj4_string))
3

Some more examples related to interactive selection or 0S specific settings

SELECT the GRASS installation and define the search location
1inkGRASS(nc, ver_select = TRUE, search_path = "~")

SELECT the GRASS installation
1inkGRASS(nc, ver_select = TRUE)

Typical osgedW installation (QGIS), using the meuse sp data object for spatial referencing
1inkGRASS(nc,c("C:/Program Files/QGIS 2.18","grass-7.2.1","osgeo4W"))

Typical osgeo4W installation (rootdir), using the meuse sp data object for spatial referencing
1inkGRASS(nc,c("C:/0SGeo4W64/" ,"grass-7.2.2","osgeod4W"))

End(Not run)

1ink0TB Locate and set up ’Orfeo ToolBox’ API bindings

Description

Locate and set up ’Orfeo ToolBox” API bindings

Usage

1inkOTB(
bin_OTB = NULL,
root_OTB = NULL,
type_OTB = NULL,
searchLocation = NULL,
ver_select = FALSE,

quiet = TRUE,
returnPaths = TRUE
)
Arguments
bin_0TB string contains path to where the otb binaries are located
root_OTB string provides the root folder of the bin_0TB
type_OTB string

searchLocation string hard drive letter (Windows) or mounting point (Linux) default for Win-
dows is C:, default for Linux is ~

https://www.orfeo-toolbox.org/

linkOTB 17

ver_select boolean default is FALSE. If there is more than one ’OTB’ installation and
ver_select = TRUE the user can select interactively the preferred ’OTB’ ver-
sion In opposite if FALSE the newest version is automatically choosen.

quiet boolean switch for supressing messages default is TRUE

returnPaths boolean if set to FALSE the pathes of the selected version are written to the
PATH variable only, otherwise all paths and versions of the installed GRASS
versions ae returned.

Details

It looks for the otb_cli.bat file. If the file is found in a bin folder it is assumed to be a valid
’OTB’ binary installation.

if called without any parameter 1inkOTB() it performs a full search over the hardrive C:. If it finds
one or more "OTB’ binaries it will take the first hit. You have to set ver_select = TRUE for an
interactive selection of the preferred version.

Value

add otb pathes to the enviroment and creates global variables path_OTB

Note

You may also set the path manually. Using a’OSGeo4W64’ https://trac.osgeo.org/osgeo4w/
installation it is typically C: /0SGeo4W64/bin/

Author(s)

Chris Reudenbach

Examples

Not run:

call if you do not have any idea if and where OTB is installed
otb<-1inkOTB()

if (otb$exist) {

call it for a default 0SGeo4W installation of the OTB
print(otb)

3

End(Not run)

https://trac.osgeo.org/osgeo4w/

18 linkSAGA

1inkSAGA Identifies SAGA GIS Installations and returns linking Informations

Description

Finds the existing SAGA GIS installation(s), generates and sets the necessary path and system
variables for a seamless use of the command line calls of the 'SAGA GIS’ CLI API, setup valid
system variables for calling a default rsaga.env and by this makes available the RSAGA wrapper
functions.

All existing installation(s) means that it looks for the saga_cmd or saga_cmd.exe executables. If
the file is found it is assumed to be a valid *'SAGA GIS’ installation. If it is called without any
argument the most recent (i.e. highest) SAGA GIS version will be linked.

Usage

1inkSAGA(
default_SAGA = NULL,
searchLocation = "default”,
ver_select = FALSE,
quiet = TRUE,
returnPaths = TRUE

Arguments

default_SAGA string contains path to RSAGA binaries

searchLocation drive letter to be searched, for Windows systems default is C:, for Linux systems
default is /usr.

ver_select boolean default is FALSE. If there is more than one 'SAGA GIS’ installation
and ver_select = TRUE the user can select interactively the preferred 'SAGA
GIS’ version

quiet boolean switch for supressing console messages default is TRUE

returnPaths boolean if set to FALSE the pathes of the selected version are written to the
PATH variable only, otherwise all paths and versions of the installed SAGA
versions ae returned.# @details If called without any parameter 1inkSAGA() it
performs a full search over C:. If it finds one or more *SAGA GIS’ binaries
it will take the first hit. You have to set ver_select = TRUE for an interactive
selection of the preferred version. Additionally the selected SAGA pathes are
added to the environment and the global variables sagaPath, sagaModPath and
sagaCmd will be created.

Value

A list containing the selected RSAGA path variables $sagaPath,$sagaModPath,$sagaCmd and po-
tentially other installations $installed

https://saga-gis.sourceforge.io/

paramGRASSw 19

Note

The excellent ’'SAGA GIS’ wrapper RSAGA package was updated several times however it covers
currently (Dec 2019) only *SAGA GIS’ versions from 2.3.1 - 6.3.0 The fast evolution of "SAGA
GIS’ makes it highly impracticable to keep the wrapper adaptions in line (currently 7.5). RSAGA will
meet all linking needs perfectly if you use "'SAGA GIS’ versions from 2.0.4 - 7.5.0.

However you must call rsaga.env using the rsaga.env(modules = saga$sagaModPath) assum-
ing that saga contains the returnPaths of 1inkSAGA In addition most recently the very promising
Rsagacmd wrapper package is providing a new list oriented wrapping tool.

Examples

Not run:

call if you do not have any idea if and where SAGA GIS is installed

it will return a list with the selected and available SAGA installations

it prepares the system for running the selected SAGA version via RSAGA or CLI
1inkSAGA()

overriding the default environment of rsaga.env call

saga<-1inkSAGA()

if (saga$exist) {

require (RSAGA)

RSAGA: :rsaga.env(path = saga$installed$binDir[1],modules = saga$installed$moduleDir[1])
}

End(Not run)

paramGRASSw Usually for internally usage get 'GRASS GIS’ and rgrass parameters
on "Windows’ OS

Description

Initialize the enviroment variables on a *"Windows’ OS for using *GRASS GIS’ via rgrass

Usage
paramGRASSw (
set_default_GRASS = NULL,
DL = "C:",
ver_select = FALSE,
quiet = TRUE

https://CRAN.R-project.org/package=RSAGA
https://github.com/stevenpawley/Rsagacmd

20 paramGRASSx

Arguments

set_default_GRASS
default = NULL forces a full search for "GRASS GIS’ binaries. You may alter-
natively provide a vector containing pathes and keywords. c("C:/OSGeo4W64","grass-
7.0.5","osgeo4w") is valid for a typical osgeo4w installation.

DL character search location default = C:

ver_select boolean default is FALSE. If there is more than one *'SAGA GIS’ installation
and ver_select = TRUE the user can select interactively the preferred ’'SAGA
GIS’ version

quiet boolean switch for supressing console messages default is TRUE

Details

The concept is very straightforward but for an all days usage pretty helpful. You need to provide a
terra or a sf object. The derived properties are used to initialize a temporary but static rgrass en-
vironment. During the rsession you will have full access to GRASS7 both via the wrapper package
as well as the command line. paramGRASSw initializes the usage of GRASS7.

Examples

run = FALSE

if (run) {

automatic retrieval of valid 'GRASS GIS' environment settings
if more than one is found the user has to choose.
paramGRASSw()

typical 0SGeo4W64 installation
paramGRASSw(c("C:/0SGeo4W64","grass-7.0.5","osgeodW"))

3
paramGRASSx Usually for internally usage, get ’'GRASS GIS’ and rgrass parameters
on 'Linux’ OS
Description

Initialize and set up rgrass for ’Linux’

Usage

paramGRASSx (
set_default_GRASS = NULL,
MP = "/usr/bin",
ver_select = FALSE,
quiet = TRUE

https://CRAN.R-project.org/package=rgrass

parseOTBAIgorithms 21

Arguments

set_defaul t_GRASS
default = NULL will force a search for ’"GRASS GIS’ You may provide a valid
combination as c("/ust/lib/grass74","7.4.1","grass74")

MP mount point to be searched. default is "/usr/bin"

ver_select if TRUE you must interactivley selcect between alternative installations

quiet boolean switch for supressing console messages default is TRUE
Details

During the rsession you will have full access to GRASS7 GIS via the rgrass wrappe. Additionally
you may use also use the API calls of GRASS7 via the command line.

Examples

run = FALSE

if (run) {

automatic retrieval of the GRASS7 enviroment settings
paramGRASSx ()

typical stand_alone installation
paramGRASSx("/usr/bin/grass72")

typical user defined installation (compiled sources)
paramGRASSx("/usr/local/bin/grass72")
3

parse0TBAlgorithms Get OTB modules

Description

retrieve the OTB module folder content and parses the module names

Usage

parseOTBAlgorithms(gili = NULL)

Arguments

gili optional list of avalailable ‘OTB* binaries if not provided ‘linkOTB()* is called

22 parseOTBFunction

Examples

Not run:

link to the OTB binaries
otblink<-1ink2GI: :1inkOTB()
if (otblink$exist) {

parse all modules
modulelList<-parseOTBAlgorithms(gili = otblink)

print the list
print(modulelList)

3

End(Not run)

parseOTBFunction Get OTB function argument list

Description

retrieve the choosen function and returns a full argument list with the default settings

Usage

parseOTBFunction(algo = NULL, gili = NULL)

Arguments
algo either the number or the plain name of the ‘OTB* algorithm that is wanted. Note
the correct (of current/choosen version) information is probided by ‘parseOT-
BAlgorithms()*
gili optional list of avalailable ‘OTB® binaries if not provided ‘linkOTB()* is called
Examples
Not run:

otblink<-1ink2GI: :1inkQTB()
if (otblink$exist) {

parse all modules
algos<-parseOTBAlgorithms(gili = otblink)

take edge detection
cmdList<-parseOTBFunction(algo = algos[27],gili = otblink)
print the current command

runOTB 23

print(cmdList)
3

End(Not run)
#H#+H#H#

run0TB Execute the OTB command list via system call

Description

Wrapper function which paste the OTB command list into a system call compatible string and
execute this command.

Usage
runOTB(
otbCmdList = NULL,
gili = NULL,

retRaster = TRUE,
retCommand = FALSE,

quiet = TRUE
)
Arguments
otbCmdList the OTB algorithm parameter list
gili optional list providing the linkage to OTB as done by ‘linkOTB()‘. If not pro-
vided the ‘runOTB‘ function try to link automatically.
retRaster boolean if TRUE a raster stack is returned default is FALSE
retCommand boolean if TRUE only the OTB API command is returned default is FALSE
quiet boolean if TRUE suppressing messages default is TRUE
Details

Please NOTE: You must check the help to identify the correct input file argument codewort
($input_in or $input_il).

Examples

Not run:
require(link2GI)
require(terra)
require(listviewer)

link to OTB
otblink<-1ink2GI: :1ink0TB()

24

runOTB

if (otblink$exist) {
projRootDir<-tempdir()
fn <- system.file("ex/elev.tif", package = "terra")

for an image output example we use the Statistic Extraction,
algoKeyword<- "LocalStatisticExtraction”

extract the command list for the choosen algorithm
cmd<-parseOTBFunction(algo = algoKeyword, gili = otblink)

Please NOTE:
You must check the help to identify the correct argument codewort ($input_in or $input_il)
listviewer:: jsonedit(cmd$help)

define the mandatory arguments all other will be default
cmd$input_in <- fn

cmd$out <- file.path(tempdir(),"test_otb_stat.tif")
cmd$radius <- 7

run algorithm
retStack<-runOTB(cmd,gili = otblink)

plot image
terra::plot(retStack)

for a data output example we use the
algoKeyword<- "ComputelImagesStatistics”

extract the command list for the chosen algorithm
cmd<-parseQTBFunction(algo = algoKeyword, gili = otblink)

get help using the convenient listviewer
listviewer: : jsonedit(cmd$help)

define the mandatory arguments all other will be default
cmd$input_il <- file.path(tempdir(),"test.tif")

cmd$ram <- 4096

cmd$out.xml <- file.path(tempdir(),"test_otb_stat.xml")
cmd$progress <- 1

run algorithm
ret <- runOTB(cmd,gili = otblink, quiet = F)

as vector
print(ret)

as xml
XML: : xmlParse(cmd$out)

setenvGDAL 25

End(Not run)

setenvGDAL Usually for internally usage, initializes and set up access to the
"GDAL’ command line interface

Description

Initializes and set up access to the ’GDAL’ command line interface

Usage

setenvGDAL (bin_GDAL = NULL)

Arguments

bin_GDAL string contains the path to the ’"GDAL’ binaries

Value

Adds *GDAL’ pathes to the enviroment and creates the variable global string variable gdalCmd, that
contains the path to the ’"GDAL’ binaries.

Examples

run = FALSE
if (run) {
example for the most common default 0SGeo4W64 installation of GDAL
setenvGDAL (bin_GDAL = "C:/0SGeo4W64/bin/",
root_GDAL = "C:/0SGeo4W64")

3
setenvGRASSw Usually for internally usage, create valid '"GRASS GIS 7.xx’ rsession
environment settings according to the selected GRASS GIS 7.x and
Windows Version
Description

Initializes and set up access to "GRASS GIS 7.xx’ via the rgrass wrapper or command line pack-
ages. Set and returns all necessary environment variables and additionally returns the GISBASE
directory as string.

setenvOTB

26
Usage
setenvGRASSw(
root_GRASS = NULL,
grass_version = NULL,
installation_type = NULL,
jpgmem = 1e+06,
quiet = TRUE
)
Arguments
root_GRASS grass root directory i.e. "C:\OSGEO4~1",
grass_version grass version name i.e. "grass-7.0.5"
installation_type
two options "osgeod4w" as installed by the ’OSGeo4 W’ -installer and "NSIS" that
is typical for a stand_alone installtion of "GRASS GIS’.
jpgmem jpeg2000 memory allocation size. Default is 1000000
quiet boolean switch for supressing console messages default is TRUE
Author(s)
Chris Reudenbach
Examples
Not run:
set choosen'GRASS GIS' installation folders
setenvGRASSw(root_GRASS = "C:\\PROGRA~1\\QGIS2~1.18",
grass_version = "grass-7.2.1",
installation_type = "osgeo4W")
End(Not run)
setenvOTB Usually for internally usage, initializes and set up access to the 'OTB’
command line interface
Description
Initializes and set up access to the ’OTB’ command line interface
Usage

setenvOTB(bin_OTB = NULL, root_OTB = NULL)

sf2gvec 27

Arguments

bin_OTB string contains the path to the ’OTB’ binaries

root_OTB string contains the full string to the root folder containing the ’OTB’ installation’
Value

Adds *OTB’ pathes to the enviroment and creates the variable global string variable otbCmd, that
contains the path to the ’OTB’ binaries.

Examples

Not run:
example for the most common default 0SGeo4W64 installation of OTB
setenvOTB(bin_0OTB = "C:\\0SGeo4W64\\bin\\",

root_OTB = "C:\\0SGeo4W64")

End(Not run)

sf2gvec Write sf object directly to ‘GRASS ‘ vector utilising an existing or cre-
ating a new GRASS environment

Description
Write sf object directly to ‘GRASS* vector utilising an existing or creating a new GRASS environ-
ment

Usage

sf2gvec(x, epsg, obj_name, gisdbase, location, gisdbase_exist = FALSE)

Arguments
X sf object corresponding to the settings of the corresponding GRASS container
epsg numeric epsg code
obj_name name of GRASS layer
gisdbase GRASS gisDbase folder
location GRASS location name containing obj_name)

gisdbase_exist logical switch if the GRASS gisdbase folder exist default is TRUE

Note

have a look at the sf capabilities to write direct to sqlite

Author(s)
Chris Reudenbach

28 sf2gvec

Examples

run = FALSE

if (run) {

example

require(sf)

require(sp)

require(1ink2GI)

data(meuse)

meuse_sf = st_as_sf(meuse,
coords = c("x", "y"),
crs = 28992,
agr = "constant")

write data to GRASS and create gisdbase
sf2gvec(x = meuse_sf,

obj_name = "meuse_R-G",
gisdbase = "~/temp3/",
location = "projectl1”)

read from existing GRASS
gvec2sf(x = meuse_sf,

obj_name = "meuse_r_g",
gisdbase = "~/temp3”,
location = "project1”)

Index

findGDAL, 2
findGRASS, 3
findOTB, 4

findSAGA, 5

gvec2sf, 5
initProj, 7

linkAll, 8
1inkGDAL, 9
1inkGRASS, 10
1inkGRASS7, 13
1inkOTB, 16
1inkSAGA, 18

paramGRASSw, 19
paramGRASSx, 20
parse0TBAlgorithms, 21
parseOTBFunction, 22

runOTB, 23

setenvGDAL, 25
setenvGRASSw, 25
setenvOTB, 26
sf, 6

sf2gvec, 27

29

	findGDAL
	findGRASS
	findOTB
	findSAGA
	gvec2sf
	initProj
	linkAll
	linkGDAL
	linkGRASS
	linkGRASS7
	linkOTB
	linkSAGA
	paramGRASSw
	paramGRASSx
	parseOTBAlgorithms
	parseOTBFunction
	runOTB
	setenvGDAL
	setenvGRASSw
	setenvOTB
	sf2gvec
	Index

