Package ‘gseries’

June 18, 2025
Title Improve the Coherence of Your Time Series Data
Version 3.0.2

Description 'R’ version of 'G-Series', Statistics Canada's generalized system devoted
to the benchmarking and reconciliation of time series data. The methods
used in 'G-Series' essentially come from Dagum, E. B., and P. Cholette
(2006) <doi:10.1007/0-387-35439-5>.

License GPL (>=3)

URL https://StatCan.github.io/gensol-gseries/en/,

https://StatCan.github.io/gensol-gseries/fr/

BugReports https://github.com/StatCan/gensol-gseries/issues/
Depends R (>=4.0)

Imports ggplot2, ggtext, graphics, grDevices, gridExtra, lifecycle,
osqp, rlang (>= 1.1.0), stats, utils, xmpdf

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

LazyData true

NeedsCompilation no

Author Michel Ferland [aut, cre],
Statistics Canada [cph, fnd]

Maintainer Michel Ferland <michel.ferland@statcan.gc.ca>
Repository CRAN
Date/Publication 2025-06-18 08:10:07 UTC

https://doi.org/10.1007/0-387-35439-5
https://StatCan.github.io/gensol-gseries/en/
https://StatCan.github.io/gensol-gseries/fr/
https://github.com/StatCan/gensol-gseries/issues/

2 benchmarking

Contents
benchmarking e 2
bench_graphs e e 14
build_balancing problem L 19
build_raking_problem 26
gs.build_proc_grps oL 29
gs.glnv_MP . . . L 33
OSQP_SEeLtNES_SEQUENCE . . . « . . v v v v e e e e e e e e e e e 34
plot_benchAdj. 36
plot_graphTable e 39
rkMeta_to_bISpecs e e e 43
stack bmkDF 46
stack_tsDF e 48
stock_benchmarking 51
time_values_Conv e e e 63
tsbalancing L 65
tSDF _to_tS e 84
tsraking e 85
tsraking_driver 93
ts_to_bmkDF e e 101
ts_to_tsDF 104
unstack_tSDFo 106

Index 108

benchmarking Restore temporal constraints
Description

Replication of the G-Series 2.0 SAS® BENCHMARKING procedure (PROC BENCHMARKING).
See the G-Series 2.0 documentation for details (Statistics Canada 2016).

This function ensures coherence between time series data of the same target variable measured at
different frequencies (e.g., sub-annually and annually). Benchmarking consists of imposing the
level of the benchmark series (e.g., annual data) while minimizing the revisions of the observed
movement in the indicator series (e.g., sub-annual data) as much as possible. The function also
allows nonbinding benchmarking where the benchmark series can also be revised.

The function may also be used for benchmarking-related topics such as temporal distribution (the
reciprocal action of benchmarking: disaggregation of the benchmark series into more frequent ob-
servations), calendarization (a special case of temporal distribution) and linking (the connection of
different time series segments into a single consistent time series).

Several series can be benchmarked in a single function call.

benchmarking 3

Usage

benchmarking(
series_df,
benchmarks_df,
rho,
lambda,
biasOption,
bias = NA,
tolV = 0.001,
tolP NA,
warnNegResult = TRUE,
tolN = -0.001,
var = "value”,
with = NULL,
by = NULL,
verbose = FALSE,

New in G-Series 3.0
constant = 0,
neglnput_option = 0,
allCols = FALSE,
quiet = FALSE

Arguments

series_df (mandatory)
Data frame (object of class "data.frame") that contains the indicator time series
data to be benchmarked. In addition to the series data variable(s), specified with
argument var, the data frame must also contain two numeric variables, year and
period, identifying the periods of the indicator time series.

benchmarks_df (mandatory)
Data frame (object of class "data.frame") that contains the benchmarks. In ad-
dition to the benchmarks data variable(s), specified with argument with, the
data frame must also contain four numeric variables, startYear, startPeriod,
endYear and endPeriod, identifying the indicator time series periods covered
by each benchmark.

rho (mandatory)
Real number in the [0, 1] interval that specifies the value of the autoregressive
parameter p. See section Details for more information on the effect of parameter
p-

lambda (mandatory)
Real number, with suggested values in the [—3, 3] interval, that specifies the
value of the adjustment model parameter A. Typical values are lambda = 0.0
for an additive model and 1ambda = 1.0 for a proportional model.

biasOption (mandatory)
Specification of the bias estimation option:

bias

tolV, tolP

warnNegResult

tolN

var

benchmarking

* 1: Do not estimate the bias. The bias used to correct the indicator series
will be the value specified with argument bias.

 2: Estimate the bias, display the result, but do not use it. The bias used to
correct the indicator series will be the value specified with argument bias.

» 3: Estimate the bias, display the result and use the estimated bias to cor-
rect the indicator series. Any value specified with argument bias will be
ignored.

Argument biasOption isignored when rho = 1.0. See section Details for more
information on the bias.

(optional)

Real number, or NA, specifying the value of the user-defined bias to be used for
the correction of the indicator series prior to benchmarking. The bias is added to
the indicator series with an additive model (argument 1ambda = @.9) while it is
multiplied otherwise (argument lambda !=0.0). No bias correction is applied
when bias = NA, which is equivalent to specifying bias = 0.0 when lambda =
0.0 and bias = 1.0 otherwise. Argument bias is ignored when biasOption =
3 or rho =1.0. See section Details for more information on the bias.

Default value is bias = NA (no user-defined bias).

(optional)

Nonnegative real number, or NA, specifying the tolerance, in absolute value or
percentage, to be used for the validation of the output binding benchmarks (al-
terability coefficient of 0.0). This validation compares the input binding bench-
mark values with the equivalent values calculated from the benchmarked series
(output) data. Arguments tolV and tolP cannot be both specified (one must be
specified while the other must be NA).

Example: to set a tolerance of 10 units, specify tolV = 10, tolP = NA; to set
a tolerance of 1%, specify tolV = NA, tolP = 0.01.

Default values are tolV =0.001 and tolP = NA.

(optional)

Logical argument specifying whether a warning message is generated when a
negative value created by the function in the benchmarked (output) series is
smaller than the threshold specified by argument tolN.

Default value is warnNegResult = TRUE.

(optional)

Negative real number specifying the threshold for the identification of negative
values. A value is considered negative when it is smaller than this threshold.
Default value is tolN = -0.001.

(optional)

String vector (minimum length of 1) specifying the variable name(s) in the indi-
cator series data frame (argument series_df) containing the values and (option-
ally) the user-defined alterability coefficients of the series to be benchmarked.
These variables must be numeric.

The syntax is var = c("seriesl </ alt_ser1>", "series2 </ alt_ser2>",
...). Default alterability coefficients of 1.0 are used when a user-defined al-
terability coefficients variable is not specified alongside an indicator series vari-
able. See section Details for more information on alterability coefficients.

benchmarking 5

Example: var = "value / alter” would benchmark indicator series data frame
variable value with the alterability coefficients contained in variable alter
while var = c("value / alter”, "value2") would additionally benchmark vari-
able value2 with default alterability coefficients of 1.0.

Default value is var = "value” (benchmark variable value using default alter-
ability coefficients of 1.0).
with (optional)

String vector (same length as argument var), or NULL, specifying the variable
name(s) in the benchmarks data frame (argument benchmarks_df) containing
the values and (optionally) the user-defined alterability coefficients of the bench-
marks. These variables must be numeric. Specifying with = NULL results in us-
ing benchmark variable(s) with the same names(s) as those specified with argu-
ment var without user-defined benchmark alterability coefficients (i.e., default
alterability coefficients of 0.0 corresponding to binding benchmarks).

The syntax iswith = NULL orwith = c("bmk1 </ alt_bmk1>", "bmk2 </ alt_bmk2>",
...). Default alterability coefficients of 0.0 (binding benchmarks) are used

when a user-defined alterability coefficients variable is not specified alongside

a benchmark variable. See section Details for more information on alterability
coefficients.

Example: with = "val_bmk" would use benchmarks data frame variable val_bmk
with default benchmark alterability coefficients of 0.0 to benchmark the indica-
tor series while with =c("val_bmk", "val_bmk2 / alt_bmk2") would addi-
tionally benchmark a second indicator series using benchmark variable val_bmk2
with the benchmark alterability coefficients contained in variable alt_bmk2.

Default value is with = NULL (same benchmark variable(s) as argument var
using default benchmark alterability coefficients of 0.0).

by (optional)

String vector (minimum length of 1), or NULL, specifying the variable name(s) in
the input data frames (arguments series_df and benchmarks_df) to be used to
form groups (for BY-group processing) and allow the benchmarking of multiple
series in a single function call. BY-group variables can be numeric or character
(factors or not), must be present in both input data frames and will appear in
all three output data frames (see section Value). BY-group processing is not
implemented when by = NULL. See "Benchmarking Multiple Series" in section
Details for more information.

Default value is by = NULL (no BY-group processing).

verbose (optional)

Logical argument specifying whether information on intermediate steps with ex-
ecution time (real time, not CPU time) should be displayed. Note that specifying
argument quiet = TRUE would nullify argument verbose.

Default value is verbose = FALSE.

constant (optional)
Real number that specifies a value to be temporarily added to both the indica-
tor series and the benchmarks before solving proportional benchmarking prob-
lems (lambda !=@.0). The temporary constant is removed from the final output

6 benchmarking

benchmarked series. E.g., specifying a (small) constant would allow propor-
tional benchmarking with rho = 1 (e.g., proportional Denton benchmarking) on
indicator series that include values of 0. Otherwise, proportional benchmarking
with values of 0 in the indicator series is only possible when rho < 1. Speci-
fying a constant with additive benchmarking (1ambda = @.0) has no impact on
the resulting benchmarked data. The data variables in the graphTable output
data frame include the constant, corresponding to the benchmarking problem
that was actually solved.

Default value is constant = @ (no temporary additive constant).
negInput_option

(optional)

Handling of negative values in the input data for proportional benchmarking

(lambda !'=0.0):

* 0: Do not allow negative values with proportional benchmarking. An er-
ror message is displayed in the presence of negative values in the input
indicator series or benchmarks and missing (NA) values are returned for the
benchmarked series. This corresponds to the G-Series 2.0 behaviour.

* 1. Allow negative values with proportional benchmarking but display a
warning message.

* 2: Allow negative values with proportional benchmarking without display-
ing any message.

Default value is negInput_option = @ (do not allow negative values with pro-
portional benchmarking).

allCols (optional)
Logical argument specifying whether all variables in the indicator series data
frame (argument series_df), other than year and period, determine the set of
series to benchmark. Values specified with arguments var and with are ignored
when allCols = TRUE, which automatically implies default alterability coeffi-
cients, and variables with the same names as the indicator series must exist in
the benchmarks data frame (argument benchmarks_df).

Default value is al1Cols = FALSE.

quiet (optional)
Logical argument specifying whether or not to display only essential informa-
tion such as warning messages, error messages and variable (series) or BY-group
information when multiple series are benchmarked in a single call to the func-
tion. We advise against wrapping your benchmarking() call with suppressMessages()
to further suppress the display of variable (series) or BY-group information when
processing multiple series as this would make troubleshooting difficult in case
of issues with individual series. Note that specifying quiet = TRUE would also
nullify argument verbose.

Default value is quiet = FALSE.

Details

When p < 1, this function returns the generalized least squared solution of a special case of the gen-
eral regression-based benchmarking model proposed by Dagum and Cholette (2006). The model,

benchmarking 7

in matrix form, is:

where

* q is the vector of length M of the benchmarks.

est =147 +b ifA= O is the vector of length 7" of the bias corrected indicator series
s-b otherwise

values, with s denoting the initial (input) indicator series.

* b is the bias, which is specified with argument bias when argument bias_option != 3 or,

. ul(a—Js) ey
when bias_option = 3, is estimated as b = 11¥T%1T © ,wherelx = (1,...,1)7T
1]\/1;/1T 7= otherwise

is a vector of 1 of length X.

» Jisthe M x T matrix of temporal aggregation constraints with elements
.| 1 if benchmark m covers period ¢
Jmt =10 otherwise :

* 0 is the vector of the final (benchmarked) series values.

* e ~ (0,V,) is the vector of the measurement errors of st with covariance matrix V., = CQ.C.

. A . o . .
o (' =diag (. /Ct]sT‘) where c,; is the vector of the alterability coefficients of s', assuming
00 = 1.
* Q. isaT x T matrix with elements w,, , = pli~7! representing the autocorrelation of an
AR(1) process, again assuming 00 = 1.

* ¢ ~ (0,V.) is the vector of the measurement errors of the benchmarks a with covariance
matrix V. = diag (c,a) where ¢, is the vector of the alterability coefficients of the benchmarks
a.

The generalized least squared solution is:
=5+ V.JT (JVIJT+ V)" (a— Jsh)
where AT designates the Moore-Penrose inverse of matrix A.
When p = 1, the function returns the solution of the (modified) Denton method:
O=s+W(a—Js)
where

* W is the upper-right corner matrix from the following matrix product

D*ATADY JT Y[DFATADY 0] [Ir W
J 0 J Iv |~ 0 W

D = diag (|s|’\), assuming 0° = 1. Note that D corresponds to C' with ¢,;; = 1.0 and
without bias correction (arguments bias_option =1 and bias = NA).
-1 ifi=j
* AisaT — 1 x T matrix with elements §; ; = 1 ifj=i+1 .
0 otherwise

benchmarking

e W, isa M x M matrix associated with the Lagrange multipliers of the corresponding mini-
mization problem, expressed as:

L. (St - 9t) (St—l - 9t—1)
mml;mze Z

t>2 |5t |s¢—1]

subjectto a = J0

See Quenneville et al. (2006) and Dagum and Cholette (2006) for details.

Autoregressive Parameter p and bias:

Parameter p (argument rho) is associated to the change between the (input) indicator and the (out-
put) benchmarked series for two consecutive periods and is often called the movement preserva-
tion parameter. The larger the value of p, the more the indicator series period to period movements
are preserved in the benchmarked series. With p = 0, period to period movement preservation is
not enforced and the resulting benchmarking adjustments are not smooth, as in the case of pro-
rating (p = 0 and A = 0.5) where the adjustments take the shape of a step function. At the other
end of the spectrum is p = 1, referred to as Denton benchmarking, where period to period move-
ment preservation is maximized, which results in the smoothest possible set of benchmarking
adjustments available with the function.

The bias represents the expected discrepancies between the benchmarks and the indicator series.
It can be used to pre-adjust the indicator series in order to reduce, on average, the discrepancies
between the two sources of data. Bias correction, which is specified with arguments biasOption
and bias, can be particularly useful for periods not covered by benchmarks when p < 1. In this
context, parameter p dictates the speed at which the projected benchmarking adjustments con-
verge to the bias (or converge to no adjustment without bias correction) for periods not covered
by a benchmark. The smaller the value of p, the faster the convergence to the bias, with immediate
convergence when p = 0 and no convergence at all (the adjustment of the last period covered by a
benchmark is repeated) when p = 1 (Denton benchmarking). Arguments biasOption and bias
are actually ignored when p = 1 since correcting for the bias has no impact on Denton bench-
marking solutions. The suggested value for p is 0.9 for monthly indicators and 0.9 = 0.729
for quarterly indicators, representing a reasonable compromise between maximizing movement
preservation and reducing revisions as new benchmarks become available in the future (bench-
marking timeliness issue). In practice, note that Denton benchmarking could be approximated
with the regression-based model by using a p value that is smaller than, but very close to, 1.0
(e.g., p = 0.999). See Dagum and Cholette (2006) for a complete discussion on this topic.

Alterability Coefficients:

Alterability coefficients c,+ and ¢, conceptually represent the measurement errors associated with
the (bias corrected) indicator time series values s and benchmarks a respectively. They are
nonnegative real numbers which, in practice, specify the extent to which an initial value can be
modified in relation to other values. Alterability coefficients of 0.0 define fixed (binding) values
while alterability coefficients greater than 0.0 define free (nonbinding) values. Increasing the
alterability coefficient of an intial value results in more changes for that value in the benchmarking
solution and, conversely, less changes when decreasing the alterability coefficient. The default
alterability coefficients are 0.0 for the benchmarks (binding benchmarks) and 1.0 for the indicator
series values (nonbinding indicator series). Important notes:

e With a value of p = 1 (argument rho = 1, associated to Denton Benchmarking), only the
default alterability coefficients (0.0 for a benchmark and 1.0 for a an indicator series value)

benchmarking 9

are valid. The specification of user-defined alterability coefficients variables is therefore not
allowed. If such variables are specified (see arguments var and with), the function ignores
them and displays a warning message in the console.

* Alterability coefficients c,+ come into play after the indicator series has been corrected for
the bias, when applicable (c,: is associated to sf, not s). This means that specifying an
alterability coefficient of 0.0 for a given indicator series value will not result in an unchanged
value after benchmarking with bias correction (see arguments biasOption and bias).

Nonbinding benchmarks, when applicable, can be recovered (calculated) from the benchmarked
series (see output data frame series in section Value). The output benchmarks data frame al-
ways contains the original benchmarks provided in the input benchmarks data frame (argument
benchmarks_df).

Benchmarking Multiple Series:

Multiple series can be benchmarked in a single benchmarking() call, by specifying allCols =
TRUE, by (manually) specifying multiple variables with argument var (and argument with) or with
BY-group processing (argument by !=NULL). An important distinction is that all indicator series
specified with allCols = TRUE or with argument var (and benchmarks with argument with) are
expected to be of the same length, i.e., same set of periods and same set (number) of benchmarks.
Benchmarking series of different lengths (different sets of periods) or with different sets (number)
of benchmarks must be done with BY-group processing on stacked indicator series and bench-
marks input data frames (see utility functions stack_tsDF () and stack_bmkDF()). Arguments
by and var can be combined in order to implement BY-group processing for multiple series as
illustrated by Example 2 in the Examples section. While multiple variables with argument var
(or allCols = TRUE) without BY-group processing (argument by = NULL) is slightly more efficient
(faster), a BY-group approach with a single series variable is usually recommended as it is more
general (works in all contexts). The latter is illustrated by Example 3 in the Examples section.
The BY variables specified with argument by appear in all three output data frames.

Arguments constant and negInput_option:

These arguments extend the usage of proportional benchmarking to a larger set of problems. Their
default values correspond to the G-Series 2.0 behaviour (SAS® PROC BENCHMARKING) for
which equivalent options are not defined. Although proportional benchmarking may not necessar-
ily be the most appropriate approach (additive benchmarking may be more appropriate) when the
values of the indicator series approach O (unstable period-to-period ratios) or "cross the O line"
and can therefore go from positive to negative and vice versa (confusing, difficult to interpret
period-to-period ratios), these cases are not invalid mathematically speaking (i.e., the associated
proportional benchmarking problem can be solved). It is strongly recommended, however, to
carefully analyze and validate the resulting benchmarked data in these situations and make sure
they correspond to reasonable, interpretable solutions.

Treatment of Missing (NA) Values:

* If a missing value appears in one of the variables of the benchmarks input data frame (other
than the BY variables), the observations with the missing values are dropped, a warning
message is displayed and the function executes.

* If a missing value appears in the year and/or period variables of the indicator series input
data frame and BY variables are specified, the corresponding BY-group is skipped, a warning
message is displayed and the function moves on to the next BY-group. If no BY variables are
specified, a warning message is displayed and no processing is done.

10 benchmarking

« If a missing value appears in one of the indicator series variables in the indicator series input
data frame and BY variables are specified, the corresponding BY-group is skipped, a warning
message is displayed and the function moves on to the next BY-group. If no BY variables are
specified, the affected indicator series is not processed, a warning message is displayed and
the function moves on to the next indicator series (when applicable).

Value

The function returns is a list of three data frames:

* series: data frame containing the benchmarked data (primary function output). BY variables
specified with argument by would be included in the data frame but not alterability coefficient
variables specified with argument var.

* benchmarks: copy of the input benchmarks data frame (excluding invalid benchmarks when
applicable). BY variables specified with argument by would be included in the data frame but
not alterability coefficient variables specified with argument with.

* graphTable: data frame containing supplementary data useful for producing analytical tables
and graphs (see function plot_graphTable()). It contains the following variables in addition
to the BY variables specified with argument by:

— varSeries: Name of the indicator series variable

— varBenchmarks: Name of the benchmark variable

— altSeries: Name of the user-defined indicator series alterability coefficients variable
— altSeriesValue: Indicator series alterability coefficients

— altbenchmarks: Name of the user-defined benchmark alterability coefficients variable
— altBenchmarksValue: Benchmark alterability coefficients

— t: Indicator series period identifier (1 to T")

— m: Benchmark coverage periods identifier (1 to M)

— year: Data point calendar year

— period: Data point period (cycle) value (1 to periodicity)

— constant: Temporary additive constant (argument constant)

— rho: Autoregressive parameter p (argument rho)

— lambda: Adjustment model parameter A (argument lambda)

— bias: Bias adjustment (default, user-defined or estimated bias according to arguments
biasOption and bias)

— periodicity: The maximum number of periods in a year (e.g. 4 for a quarterly indicator
series)

— date: Character string combining the values of variables year and period

— subAnnual: Indicator series values

— benchmarked: Benchmarked series values

— avgBenchmark: Benchmark values divided by the number of coverage periods

— avgSubAnnual: Indicator series values (variable subAnnual) averaged over the bench-
mark coverage period

— subAnnualCorrected: Bias corrected indicator series values

— benchmarkedSubAnnualRatio: Difference (A = 0) or ratio (A # 0) of the values of
variables benchmarked and subAnnual

benchmarking 11

— avgBenchmarkSubAnnualRatio: Difference (A = 0) or ratio (A # 0) of the values of
variables avgBenchmark and avgSubAnnual

— growthRateSubAnnual: Period to period difference (A = 0) or relative difference (A #
0) of the indicator series values (variable subAnnual)

— growthRateBenchmarked: Period to period difference (A = 0) or relative difference
(A # 0) of the benchmarked series values (variable benchmarked)

Notes:
* The output benchmarks data frame always contains the original benchmarks provided in the

input benchmarks data frame. Modified nonbinding benchmarks, when applicable, can be
recovered (calculated) from the output series data frame.

The function returns a NULL object if an error occurs before data processing could start. Oth-
erwise, if execution gets far enough so that data processing could start, then an incomplete
object would be returned in case of errors (e.g., output series data frame with NA values for
the benchmarked data).

The function returns "data.frame" objects that can be explicitly coerced to other types of ob-
jects with the appropriate as*() function (e.g., tibble::as_tibble() would coerce any of
them to a tibble).

References

Dagum, E. B. and P. Cholette (2006). Benchmarking, Temporal Distribution and Reconciliation
Methods of Time Series. Springer-Verlag, New York, Lecture Notes in Statistics, Vol. 186

Fortier, S. and B. Quenneville (2007). "Theory and Application of Benchmarking in Business Sur-
veys". Proceedings of the Third International Conference on Establishment Surveys (ICES-
III). Montréal, June 2007.

Latendresse, E., M. Djona and S. Fortier (2007). "Benchmarking Sub-Annual Series to Annual
Totals — From Concepts to SAS® Procedure and Enterprise Guide® Custom Task". Proceedings
of the SAS® Global Forum 2007 Conference. Cary, NC: SAS Institute Inc.

Quenneville, B., S. Fortier, Z.-G. Chen and E. Latendresse (2006). "Recent Developments in Bench-
marking to Annual Totals in X-12-ARIMA and at Statistics Canada". Proceedings of the Euro-
stat Conference on Seasonality, Seasonal Adjustment and Their Implications for Short-Term
Analysis and Forecasting. Luxembourg, May 2006.

Quenneville, B., P. Cholette, S. Fortier and J. Bérubé (2010). "Benchmarking Sub-Annual Indicator
Series to Annual Control Totals (Forillon v1.04.001)". Internal document. Statistics Canada,
Ottawa, Canada.

Quenneville, B. and S. Fortier (2012). "Restoring Accounting Constraints in Time Series — Meth-
ods and Software for a Statistical Agency". Economic Time Series: Modeling and Seasonality.
Chapman & Hall, New York.

Statistics Canada (2012). Theory and Application of Benchmarking (Course code 0436). Statis-
tics Canada, Ottawa, Canada.

Statistics Canada (2016). "The BENCHMARKING Procedure". G-Series 2.0 User Guide. Statis-
tics Canada, Ottawa, Canada.

12 benchmarking

See Also

stock_benchmarking() plot_graphTable() bench_graphs plot_benchAdj() gs.gInv_MP() aliases

Examples

Set the working directory (for the PDF files)
iniwd <- getwd()
setwd(tempdir())

WA
Example 1: Simple case with a single quarterly series to benchmark to annual values

Quarterly indicator series

my_series] <- ts_to_tsDF(ts(c(1.9, 2.4, 3.1, 2.2, 2.0, 2.6, 3.4, 2.4, 2.3),
start = c(2015, 1),
frequency = 4))

my_series]

Annual benchmarks for quarterly data
my_benchmarks1 <- ts_to_bmkDF(ts(c(10.3, 10.2),
start = 2015,
frequency = 1),
ind_frequency = 4)
my_benchmarks1

Benchmarking using. ..

- recommended “rho” value for quarterly series (“rho = 0.7297)
- proportional model ("lambda = 17)
- bias-corrected indicator series with the estimated bias (“biasOption = 37)

out_benchl <- benchmarking(my_seriesT,
my_benchmarks1,
rho = 0.729,
lambda = 9,
biasOption = 3)

Generate the benchmarking graphs
plot_graphTable(out_bench1$graphTable, "Ex1_graphs.pdf")

W HHHEH
Example 2: Two quarterly series to benchmark to annual values,
with BY-groups and user-defined alterability coefficients

Sales data (same sales for groups A and B; only alter coefs for van sales differ)
gtr_sales <- ts(matrix(c(# Car sales
1851, 2436, 3115, 2205, 1987, 2635, 3435, 2361, 2183, 2822,
3664, 2550, 2342, 3001, 3779, 2538, 2363, 3090, 3807, 2631,
2601, 3063, 3961, 2774, 2476, 3083, 3864, 2773, 2489, 3082,
Van sales
1900, 2200, 3000, 2000, 1900, 2500, 3800, 2500, 2100, 3100,
3650, 2950, 3300, 4000, 3290, 2600, 2010, 3600, 3500, 2100,

benchmarking

2050, 3500, 4290, 2800, 2770, 3080, 3100, 2800, 3100, 2860),
ncol = 2),
start = c(2011, 1),
frequency = 4,
names = c("car_sales”, "van_sales"))

ann_sales <- ts(matrix(c(# Car sales
10324, 10200, 10582, 11097, 11582, 11092,
Van sales
12000, 10400, 11550, 11400, 14500, 16000),

ncol = 2),
start = 2011,
frequency = 1,
names = c("car_sales”, "van_sales"))

Quarterly indicator series (with default alter coefs for now)
my_series2 <- rbind(cbind(data.frame(group = rep("A"”, nrow(qtr_sales)),
alt_van = rep(1, nrow(qtr_sales))),
ts_to_tsDF(qtr_sales)),
cbind(data.frame(group = rep("B", nrow(qgtr_sales)),
alt_van = rep(1, nrow(qtr_sales))),
ts_to_tsDF(qtr_sales)))

Set binding van sales (alter coef = @) for 2012 Q1 and Q2 in group A (rows 5 and 6)
my_series2$alt_van[c(5,6)] <- @

head(my_series2, n = 10)

tail(my_series2)

Annual benchmarks for quarterly data (without alter coefs)
my_benchmarks2 <- rbind(cbind(data.frame(group = rep("A”, nrow(ann_sales))),
ts_to_bmkDF (ann_sales, ind_frequency = 4)),
cbind(data.frame(group = rep("B"”, nrow(ann_sales))),
ts_to_bmkDF (ann_sales, ind_frequency = 4)))
my_benchmarks?2

Benchmarking using. ..

- recommended “rho” value for quarterly series (“rho = 0.7297)

- proportional model ("lambda = 17)

- without bias correction (“biasOption = 1° and “bias™ not specified)
- “quiet = TRUE® to avoid generating the function header

out_bench2 <- benchmarking(my_series2,
my_benchmarks2,

rho = 0.729,

lambda = 1,

biasOption = 1,

var = c("car_sales”, "van_sales / alt_van"),
with = c("car_sales”, "van_sales"),

by = "group”,

quiet = TRUE)

Generate the benchmarking graphs
plot_graphTable(out_bench2$graphTable, "Ex2_graphs.pdf")

13

14 bench_graphs

Check the value of van sales for 2012 Q1 and Q2 in group A (fixed values)
all.equal(my_series2$van_sales[c(5,6)], out_bench2$series$van_sales[c(5,6)]1)

WA
Example 3: same as example 2, but benchmarking all 4 series as BY-groups
(4 BY-groups of 1 series instead of 2 BY-groups of 2 series)

gtr_sales2 <- ts.union(A = qtr_sales, B = qtr_sales)
my_series3 <- stack_tsDF(ts_to_tsDF(qtr_sales2))
my_series3$alter <- 1
my_series3$alter[my_series3$series == "A.van_sales”
& my_series3$year == 2012 & my_series3$period <= 2] <- 0@
head(my_series3)
tail(my_series3)

ann_sales2 <- ts.union(A = ann_sales, B = ann_sales)

my_benchmarks3 <- stack_bmkDF (ts_to_bmkDF (ann_sales2, ind_frequency = 4))
head(my_benchmarks3)

tail (my_benchmarks3)

out_bench3 <- benchmarking(my_series3,
my_benchmarks3,

rho = 0.729,

lambda = 1,

biasOption = 1,

var = "value / alter”,
with = "value”,

by = "series”,

quiet = TRUE)

Generate the benchmarking graphs
plot_graphTable(out_bench3$graphTable, "Ex3_graphs.pdf")

Convert data frame ~out_bench3$series™ to a "mts"” object
gtr_sales2_bmked <- tsDF_to_ts(unstack_tsDF (out_bench3$series), frequency = 4)

Print the first 10 observations
ts(gtr_sales2_bmked[1:10,], start = start(qtr_sales2), deltat = deltat(qtr_sales2))

Check the value of van sales for 2012 Q1 and Q2 in group A (fixed values)
all.equal(window(qtr_sales2[, "A.van_sales"], start = c(2012, 1), end = c(2012, 2)),
window(qtr_sales2_bmked[, "A.van_sales"], start = c(2012, 1), end = c(2012, 2)))

Reset the working directory to its initial location
setwd(iniwd)

bench_graphs Generate a benchmarking graphic

bench_graphs 15

Description

Functions used internally by plot_graphTable() to generate the benchmarking graphics in a PDF
file:

* ori_plot(): Original Scale Plot (plot_graphTable() argument ori_plot_flag = TRUE)

e adj_plot(): Adjustment Scale Plot (plot_graphTable() argument adj_plot_flag = TRUE)
* GR_plot(): Growth Rates Plot (plot_graphTable() argument GR_plot_flag = TRUE)

* GR_table(): Growth Rates Table (plot_graphTable() argument GR_table_flag = TRUE)

When these functions are called directly, the graphTable data frame should only contain a single
series and the graphic is generated in the current (active) graphics device.

Usage

ori_plot(
graphTable,
title_str = "Original Scale”,
subtitle_str = NULL,
mth_gap = NULL,
points_set = NULL,
pt_sz = 2,
display_ggplot = TRUE,
.setup = TRUE
)

adj_plot(
graphTable,
title_str = "Adjustment Scale”,
subtitle_str = NULL,
mth_gap = NULL,
full_set = NULL,
pt_sz = 2,
display_ggplot = TRUE,
.setup = TRUE
)

GR_plot(
graphTable,
title_str = "Growth Rates”,
subtitle_str = NULL,
factor = NULL,
type_chars = NULL,
periodicity = NULL,
display_ggplot = TRUE,
.setup = TRUE

)

GR_table(

16 bench_graphs

graphTable,
title_str = "Growth Rates Table”,
subtitle_str = NULL,
factor = NULL,
type_chars = NULL,
display_ggplot = TRUE,
.setup = TRUE
)

Arguments

graphTable (mandatory)
Data frame (object of class "data.frame") corresponding to the benchmarking
function outputgraphTable data frame.

title_str, subtitle_str
(optional)
Graphic title and subtitle strings (character constants). subtitle_str is auto-
matically built from the graphTable data frame contents when NULL and con-
tains the graphTable data frame name on the 2nd line and the benchmarking
parameters on the 3rd line. Specifying empty strings (""”) would remove the
titles. Simple Markdown and HTML syntax is allowed (e.g., for bold, italic or
colored fonts) through package ggtext (see help(package = "ggtext")).
Default values are subtitle_str = NULL and a function specific string for title_str
(see Usage).

mth_gap (optional)
Number of months between consecutive periods (e.g. 1 for monthly data, 3 for
quarterly data, etc.). Based on the graphTable data frame contents when NULL
(calculated as 12 / graphTable$periodicity[1]).
Default value is mth_gap = NULL.

points_set, full_set
(optional)
Character vector of the elements (variables of the graphTable data frame) to
include in the plot. Automatically built when NULL. See plot_graphTable()
for the (default) list of variables used for each type of graphic.
Default values are points_set = NULL and full_set = NULL.

pt_sz (optional)
Size of the data points shape (symbol) for ggplot2.
Default value is pt_sz = 2.

display_ggplot (optional)
Logical arguments indicating whether or not the ggplot object(s) should be dis-
played in the current (active) graphics device.
Default value is display_ggplot = TRUE.

.setup (optional)
Logical argument indicating whether the setup steps must be executed or not.

Must be TRUE when the function is called directly (i.e., outside of the plot_graphTable()
context).

bench_graphs 17

Default value is . setup = TRUE.

factor, type_chars
(optional)
Growth rates factor (1 or 100) and value label suffix ("" or "(%)") according
to the adjustment model parameter A\. Based on the graphTable data frame
contents when NULL (based on graphTable$lambdal[1]).
Default values are factor = NULL and type_chars = NULL.

periodicity (optional)
Number of periods in a year. Based on the graphTable data frame contents
when NULL (defined as graphTable$periodicity[1]).
Default value is periodicity = NULL.

Details

See plot_graphTable() for a detailed description of the four benchmarking graphics associated
to these individual functions. These graphics are optimized for the US Letter paper size format
in landscape view, i.e., 11in wide (27.9cm, 1056px with 96 DPI) and 8.5in tall (21.6cm, 816px
with 96 DPI). Keep this in mind when viewing or saving graphics generated by calls to these indi-
vidual functions (i.e., outside of the plot_graphTable() context). Also note that GR_plot() and
GR_table() will often generate more than one graphic (more than one page), unless the number of
periods included in the input graphTable data frame is reduced (e.g., subsetting the data frame by
ranges of calendar years).

Value

In addition to displaying the corresponding graphic(s) in the current (active) graphics device (except
when display_ggplot = FALSE), each function also invisibly returns a list containing the generated
ggplot object(s). Notes:

e ori_plot() and adj_plot() generate a single ggplot object (single graphic) while GR_plot ()
and GR_table() will often generate several ggplot objects (several graphics).

 The returned ggplot object(s) can be displayed manually with print(), in which case the fol-
lowing ggplot2 theme updates (used internally when display_ggplot = TRUE) are suggested:

ggplot2: : theme_update(
plot.title = ggtext::element_markdown(hjust = 0.5),
plot.subtitle = ggtext::element_markdown(hjust = 0.5),
legend.position = "bottom"”,
plot.margin = ggplot2::margin(t=1.5, r=1.5, b=1.5,1=1.5, unit = "cm"))

See Also

plot_graphTable() plot_benchAdj() benchmarking() stock_benchmarking()

Examples

Deactivate the graphics device creation for the pkgdown website HTML reference page
(irrelevant in that context)
new_grDev <- !(identical(Sys.getenv("IN_PKGDOWN"), "true"))

18

bench_graphs

Initial quarterly time series (indicator series to be benchmarked)
qtr_ts <- ts(c(1.9, 2.4, 3.1, 2.2, 2.0, 2.6, 3.4, 2.4, 2.3),
start = c(2015, 1), frequency = 4)

Annual time series (benchmarks)
ann_ts <- ts(c(10.3, 10.2), start = 2015, frequency = 1)

Proportional benchmarking

out_bench <- benchmarking(ts_to_tsDF(qtr_ts),
ts_to_bmkDF (ann_ts, ind_frequency = 4),
rho = 0.729, lambda = 1, biasOption = 3,
quiet = TRUE)

Open a new graphics device that is 11in wide and 8.5in tall
(US Letter paper size format in landscape view)
if (new_grDev) {
dev.new(width = 11, height = 8.5, unit = "in", noRStudioGD = TRUE)
3

Generate the benchmarking graphics
ori_plot(out_bench$graphTable)
adj_plot(out_bench$graphTable)
GR_plot(out_bench$graphTable)
GR_table(out_bench$graphTable)

Simulate multiple series benchmarking (3 series)

gtr_mts <- ts.union(ser1 = qtr_ts, ser2 = qtr_ts x 100, ser3 = qtr_ts * 10)
ann_mts <- ts.union(ser1 = ann_ts, ser2 = ann_ts * 100, ser3 = ann_ts * 10)

Using argument ~allCols = TRUE® (identify series with column “varSeries™)
out_bench2 <- benchmarking(ts_to_tsDF(qtr_mts),
ts_to_bmkDF (ann_mts, ind_frequency = 4),
rho = 0.729, lambda = 1, biasOption = 3
allCols = TRUE,
quiet = TRUE)

Original and adjustment scale plots for the 2nd series (ser2)

ser2_res <- out_bench2$graphTable[out_bench2$graphTable$varSeries == "ser2",]
ori_plot(ser2_res)

adj_plot(ser2_res)

Using argument “by = "series”~ (identify series with column “series™)
out_bench3 <- benchmarking(stack_tsDF(ts_to_tsDF(qtr_mts)),
stack_bmkDF (ts_to_bmkDF (ann_mts, ind_frequency = 4)),
rho = 0.729, lambda = 1, biasOption = 3,
by = "series”,
quiet = TRUE)

build_balancing problem 19

Growth rates plot for the 3rd series (ser3)
ser3_res <- out_bench3$graphTable[out_bench3$graphTable$series == "ser3"”,]
GR_plot(ser3_res)

Close the graphics device
if (new_grDev) {

dev.off()
3

build_balancing_problem
Build the elements of balancing problems.

Description

This function is used internally by tsbalancing() to build the elements of the balancing prob-
lems. It can also be useful to derive the indirect series associated to equality balancing constraints
manually (outside of the tsbalancing() context).

Usage

build_balancing_problem(
in_ts,
problem_specs_df,
in_ts_name = deparsel(substitute(in_ts)),
ts_freq = stats::frequency(in_ts),
periods = gs.time2str(in_ts),
n_per = nrow(as.matrix(in_ts)),
specs_df_name = deparsel(substitute(problem_specs_df)),
temporal_grp_periodicity = 1,
alter_pos =1,
alter_neg =
alter_mix =1,
lower_bound = -Inf,
upper_bound = Inf,
validation_only = FALSE

’

N = —

Arguments

in_ts (mandatory)
Time series (object of class "ts" or "mts") that contains the time series data to be
reconciled. They are the balancing problems’ input data (initial solutions).
problem_specs_df
(mandatory)
Balancing problem specifications data frame (object of class "data.frame"). Us-
ing a sparse format inspired from the SAS/OR® LP procedure’s sparse data

20

build_balancing_problem

input format (SAS Institute 2015), it contains only the relevant information
such as the nonzero coefficients of the balancing constraints as well as the non-
default alterability coefficients and lower/upper bounds (i.e., values that would
take precedence over those defined with arguments alter_pos, alter_neg,
alter_mix, alter_temporal, lower_bound and upper_bound).

The information is provided using four mandatory variables (type, col, row
and coef) and one optional variable (timeVal). An observation (a row) in the
problem specs data frame either defines a label for one of the seven types of the
balancing problem elements with columns type and row (see Label definition
records below) or specifies coefficients (numerical values) for those balancing
problem elements with variables col, row, coef and timeVal (see Information
specification records below).
 Label definition records (type is not missing (is not NA))

— type (chr): reserved keyword identifying the type of problem element
being defined:

EQ: equality (=) balancing constraint
* LE: lower or equal (<) balancing constraint
* GE: greater or equal (>) balancing constraint
% lowerBd: period value lower bound
upperBd: period value upper bound
% alter: period values alterability coefficient
* alterTmp: temporal total alterability coefficient
— row (chr): label to be associated to the problem element (type keyword)

— all other variables are irrelevant and should contain missing data (NA
values)

* Information specification records (type is missing (is NA))

— type (chr): not applicable (NA)

— col (chr): series name or reserved word _rhs_ to specify a balancing
constraint right-hand side (RHS) value.

— row (chr): problem element label.

— coef (num): problem element value:
balancing constraint series coefficient or RHS value
series period value lower or upper bound
* series period value or temporal total alterability coefficient

— timeVal (num): optional time value to restrict the application of series
bounds or alterability coefficients to a specific time period (or temporal
group). It corresponds to the time value, as returned by stats: : time(),
of a given input time series (argument in_ts) period (observation) and
is conceptually equivalent to year + (period — 1)/ frequency.

nn

Note that empty strings ("" or '') for character variables are interpreted as
missing (NA) by the function. Variable row identifies the elements of the bal-
ancing problem and is the key variable that makes the link between both types
of records. The same label (row) cannot be associated with more than one type

build_balancing_problem 21

of problem element (type) and multiple labels (row) cannot be defined for the
same given type of problem element (type), except for balancing constraints
(values "EQ", "LE" and "GE" of column type). User-friendly features of the
problem specs data frame include:

* The order of the observations (rows) is not important.

* Character values (variables type, row and col) are not case sensitive (e.g.,
strings "Constraint 1" and "CONSTRAINT 1" for row would be considered
as the same problem element label), except when col is used to specify a
series name (a column of the input time series object) where case sensitiv-
ity is enforced.

* The variable names of the problem specs data frame are also not case sen-
sitive (e.g., type, Type or TYPE are all valid) and time_val is an accepted
variable name (instead of timeVal).

Finally, the following table lists valid aliases for the type keywords (type of
problem element):

Keyword Aliases

EQ ==, =
LE <=, <
GE >= >
lowerBd lowerBound, lowerBnd, + same terms with °’_’, °. or ’ ’ between words
upperBd upperBound, upperBnd, + same terms with ’_’, ’.” or ’ ’ between words
alterTmp alterTemporal, alterTemp, + same terms with’_’, ’. or ’ ’ between words
Reviewing the Examples should help conceptualize the balancing problem spec-
ifications data frame.
in_ts_name (optional)
String containing the value of argument in_ts.
Default value is in_ts_name = deparsel(substitute(in_ts)).
ts_freq (optional)
Frequency of the time series object (argument in_ts).
Default value is ts_freq = stats: :frequency(in_ts).
periods (optional)
Character vector describing the time series object (argument in_ts) periods.
Default value is periods = gs.time2str(in_ts).
n_per (optional)

Number of periods of the time series object (argument in_ts).

Default value is n_per = nrow(as.matrix(in_ts)).
specs_df_name (optional)

String containing the value of argument problem_specs_df.

Default value is specs_df_name = deparsel (substitute(problem_specs_df)).
temporal_grp_periodicity

(optional)

build_balancing_problem

Positive integer defining the number of periods in temporal groups for which the

totals should be preserved. E.g., specify temporal_grp_periodicity = 3 with
amonthly time series for quarterly total preservation and temporal_grp_periodicity
=12 (or temporal_grp_periodicity = frequency(in_ts)) for annual total
preservation. Specifying temporal_grp_periodicity = 1 (default) corresponds

to period-by-period processing without temporal total preservation.

Default value is temporal_grp_periodicity =1 (period-by-period process-

ing without temporal total preservation).

alter_pos (optional)
Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with positive coefficients in all balancing con-
straints in which they are involved (e.g., component series in aggregation table
raking problems). Alterability coefficients provided in the problem specification
data frame (argument problem_specs_df) override this value.

Default value is alter_pos = 1.0 (nonbinding values).

alter_neg (optional)
Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with negative coefficients in all balancing con-
straints in which they are involved (e.g., marginal totals in aggregation table
raking problems). Alterability coefficients provided in the problem specifica-
tion data frame (argument problem_specs_df) override this value.

Default value is alter_neg = 1.0 (nonbinding values).

alter_mix (optional)
Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with a mix of positive and negative coefficients
in the balancing constraints in which they are involved. Alterability coefficients
provided in the problem specification data frame (argument problem_specs_df)
override this value.

Default value is alter_mix = 1.0 (nonbinding values).

lower_bound (optional)
Real number specifying the default lower bound for the time series values.
Lower bounds provided in the problem specification data frame (argument problem
_specs_df) override this value.

Default value is lower_bound = -Inf (unbounded).

upper_bound (optional)
Real number specifying the default upper bound for the time series values. Up-
per bounds provided in the problem specification data frame (argument problem
_specs_df) override this value.
Default value is upper_bound = Inf (unbounded).

validation_only
(optional)
Logical argument specifying whether the function should only perform input
data validation or not. When validation_only = TRUE, the specified balancing
constraints and period value (lower and upper) bounds constraints are validated
against the input time series data, allowing for discrepancies up to the value

build_balancing_problem 23

specified with argument validation_tol. Otherwise, when validation_only
= FALSE (default), the input data are first reconciled and the resulting (output)
data are then validated.

Default value is validation_only = FALSE.

Details

See tsbalancing() for a detailed description of time series balancing problems.

Any missing (NA) value found in the input time series object (argument in_ts) would be replaced
with 0 in values_ts and trigger a warning message.

The returned elements of the balancing problems do not include the implicit temporal totals (i.e.,
elements A2, op2 and b2 only contain the balancing constraints).

Multi-period balancing problem elements A2, op2 and b2 (when temporal_grp_periodicity >
1) are constructed column by column (in "column-major order"), corresponding to the default be-
haviour of R for converting objects of class "matrix" into vectors. I.e., the balancing constraints
conceptually correspond to:

* AT %*% values_ts[t, 1 op1 b1 for problems involving a single period (t)

o A2 %*% as.vector(values_ts[t1:t2, 1) op2 b2 for problems involving temporal_grp_periodicity
periods (t1:t2).

Notes:

* Argument alter_temporal has not been applied yet at this point and altertmp$coefs_ts
only contains the coefficients specified in the problem specs data frame (argument problem_specs_df).
Le., altertmp$coefs_ts contains missing (NA) values except for the temporal total alterabil-
ity coefficients included in (specified with) problem_specs_df. This is done in order to sim-
plify the identification of the first non missing (non NA) temporal total alterability coefficient
of each complete temporal group (to occur later, when applicable, inside tsbalancing()).

* Argument validation is not performed here; it is (bluntly) assumed that the function is called
by tsbalancing() where a thorough validation of the arguments is done.

Value

A list with the elements of the balancing problems (excluding the temporal totals info):
* labels_df: cleaned-up version of the label definition records from problem_specs_df (type
is not missing (is not NA)); extra columns:

— type.lc: tolower(type)
— row.lc: tolower(row)
— con.flag: type.lc %in% c("eq"”, "le", "ge")
» coefs_df : cleaned-up version of the information specification records from problem_specs_df
(type is missing (is NA); extra columns:
— row.lc: tolower(row)

— con.flag: labels_df$con.flag allocated through row.1lc

* values_ts: reduced version of in_ts with only the relevant series (see vector ser_names)

24 build_balancing_problem

* 1b : lower bound info (type.lc = "lowerbd") for the relevant series; list object with the
following elements:
— coefs_ts : lower bound values for series and period
— nondated_coef's : vector of nondated lower bounds from problem_specs_df (timeVal
is NA)
— nondated_id_vec: vector of ser_names id’s associated to vector nondated_coefs
— dated_id_vec: vector of ser_names id’s associated to dated lower bounds from problem_specs_df
(timeVal is not NA)
* ub : 1b equivalent for upper bounds (type.lc = "upperbd")
* alter : 1b equivalent for period value alterability coefficients (type.lc = "alter")
e altertmp : 1b equivalent for temporal total alterability coefficients (type.lc = "altertmp")

* ser_names: vector of the relevant series names (set of series involved in the balancing con-
straints)

* pos_ser : vector of series names that have only positive nonzero coefficients across all bal-
ancing constraints

* neg_ser : vector of series names that have only negative nonzero coefficients across all bal-
ancing constraints

* mix_ser : vector of series names that have both positive and negative nonzero coefficients
across all balancing constraints

* Al,op1,b1: balancing constraint elements for problems involving a single period (e.g., each
period of an incomplete temporal group)

* A2,0p2,b2: balancing constraint elements for problems involving temporal_grp_periodicity
periods (e.g., the set of periods of a complete temporal group)

See Also

tsbalancing() build_raking_problem()

Examples

B s s S S R
Indirect series derivation framework with ~tsbalancing()~ metadata
R e B 2 e R I 2 g i i il iy e i

Is is assumed (agreed) that...

a) All balancing constraints are equality constraints (type = EQ7).
b) All constraints have only one nonbinding (free) series: the series to be derived
(i.e., all series have an alter. coef of @ except the series to be derived).
c) Each constraint derives a different (new) series.
d) Constraints are the same for all periods (i.e., no "dated” alter. coefs
specified with column ~timeVal®).
B s S S R

T E N

Derive the 5 marginal totals of a 2 x 3 two-dimensional data cube using ~tsbalancing()"
metadata (data cube aggregation constraints respect the above assumptions).

build_balancing_problem 25

Build the balancing problem specs through the (simpler) raking metadata.
my_specs <- rkMeta_to_blSpecs(
data.frame(series = c("A1", "A2", "A3",
"B1", "B2", "B3"),
totall = c(rep("totA”, 3),
rep("totB”, 3)),

total2 = rep(c(”"tot1”, "tot2", "tot3"), 2)),
alterSeries = @, # binding (fixed) component series
alterTotall = 1, # nonbinding (free) marginal totals (to be derived)
alterTotal2 = 1) # nonbinding (free) marginal totals (to be derived)
my_specs

6 periods (quarters) of data with marginal totals set to zero (@): they MUST exist
in the input data AND contain valid (non missing) data.
my_ts <- ts(data.frame(A1 = c(12, 10, 12, 9, 15, 7),

B1 = c(20, 21, 15, 17, 19, 18),

A2 = c(14, 9, 8, 9, 11, 10),

B2 = c(20, 29, 20, 24, 21, 17),

A3 = c(13, 15, 17, 14, 16, 12),

B3 = c(24, 20, 30, 23, 21, 19),

tot1 = rep(@, 6),

tot2 = rep(Q, 6),
tot3 = rep(@, 6),
totA = rep(@, 6),

totB = rep(@, 6)),
start = 2019, frequency = 4)

Get the balancing problem elements.

n_per <- nrow(my_ts)

p <- build_balancing_problem(my_ts, my_specs,
temporal_grp_periodicity = n_per)

“A2°, “op2” and “b2° define 30 constraints (5 marginal totals X 6 periods)

involving a total of 66 time series data points (11 series X 6 periods) of which
36 belong to the 6 component series and 30 belong to the 5 marginal totals.
dim(p$A2)

Get the names of the marginal totals (series with a nonzero alter. coef), in the order
in which the corresponding constraints appear in the specs (constraints specification

order).

tmp <- p$coefs_df$col[p$coefs_df$con.flag]

tot_names <- tmp[tmp %in% p$ser_names[p$alter$nondated_id_vec[p$alter$nondated_coefs !=0]1]1]

Define logical flags identifying the marginal total columns:

- “tot_col_logil™: for single-period elements (of length 11 = number of series)
- “tot_col_logi2™: for multi-period elements (of length 66 = number of data points),
in "column-major order” (the “A2™ matrix element construction order)

tot_col_logil <- p$ser_names %in% tot_names
tot_col_logi2 <- rep(tot_col_logil, each = n_per)

Order of the marginal totals to be derived based on

26

oo,

the input data columns ("mts” object “my_ts~)

p$ser_names[tot_col_logil]

... the constraints specification (data frame “my_specs™)
tot_names
Calculate the 5 marginal totals for all 6 periods

build_raking_problem

Note: the following calculation allows for general linear equality constraints, i.e.,
a) nonzero right-hand side (RHS) constraint values (*b2°) and
b) nonzero constraint coefs other than 1 for the component series and -1 for

#
#
#

the derived series.

my_ts[, tot_names] <- {

3

(
Constraints RHS.
p$b2 -

Sums of the components ("weighted” by the constraint coefficients).

p$A2[, !tot_col_logi2, drop = FALSE] %*% as.vector(p$values_ts[,

)/

Itot_col_logill)

Derived series constraint coefficients: “t()" allows for a "row-major order” search

in matrix

A2 (i.e., according to the constraints specification order).

“tot_names” were identical (same totals order); however, the following search
in "row-major order” will always work (and is necessary in the current case).

(p$A2[, tot_col_logi2])[t(p$A2[, tot_col_logi2]) != @]

my_ts

#
#
Note: ~diag(p$A2[, tot_col_logi2])" would work if “p$ser_names[tot_col_logil]" and
#
#
t

build_raking_problem Build the elements of raking problems.

Description

This function is used internally by tsraking() to build the elements of the raking problem. It can
also be useful to derive the cross-sectional (marginal) totals of the raking problem manually (outside
of the tsraking() context).

Usage

build_raking_problem(

data_df,
metadata_df,
data_df_name = deparsel(substitute(data_df)),
metadata_df_name = deparsel(substitute(metadata_df)),
alterability_df = NULL,

alterSeries = 1,

alterTotall
alterTotal2

0,
0

build_raking_problem

Arguments

data_df

metadata_df

data_df_name

27

(mandatory)

Data frame (object of class "data.frame") that contains the time series data to be
reconciled. It must minimally contain variables corresponding to the component
series and cross-sectional control totals specified in the metadata data frame
(argument metadata_df). If more than one observation (period) is provided,
the sum of the provided component series values will also be preserved as part
of implicit temporal constraints.

(mandatory)

Data frame (object of class "data.frame") that describes the cross-sectional ag-
gregation constraints (additivity rules) for the raking problem. Two character
variables must be included in the metadata data frame: series and totall.
Two variables are optional: total2 (character) and alterAnnual (numeric).
The values of variable series represent the variable names of the component
series in the input time series data frame (argument data_df). Similarly, the val-
ues of variables totall and total2 represent the variable names of the 1st and
2nd dimension cross-sectional control totals in the input time series data frame.
Variable alterAnnual contains the alterability coefficient for the temporal con-
straint associated to each component series. When specified, the latter will over-
ride the default alterability coefficient specified with argument alterAnnual.

(optional)
String containing the value of argument data_df.
Default value is data_df_name = deparsel(substitute(data_df)).

metadata_df_name

alterability_df

alterSeries

(optional)
String containing the value of argument metadata_df.
Default value is metadata_df_name = deparsel (substitute(metadata_df)).

(optional)

Data frame (object of class "data.frame"), or NULL, that contains the alterabil-
ity coefficients variables. They must correspond to a component series or a
cross-sectional control total, that is, a variable with the same name must exist
in the input time series data frame (argument data_df). The values of these
alterability coefficients will override the default alterability coefficients speci-
fied with arguments alterSeries, alterTotall and alterTotal2. When the
input time series data frame contains several observations and the alterability
coefficients data frame contains only one, the alterability coefficients are used
(repeated) for all observations of the input time series data frame. Alternatively,
the alterability coefficients data frame may contain as many observations as the
input time series data frame.

Default value is alterability_df = NULL (default alterability coefficients).
(optional)

Nonnegative real number specifying the default alterability coefficient for the
component series values. It will apply to component series for which alterability
coefficients have not already been specified in the alterability coefficients data
frame (argument alterability_df).

28

alterTotal1

alterTotal2

Details

build_raking_problem

Default value is alterSeries = 1.0 (nonbinding component series values).

(optional)

Nonnegative real number specifying the default alterability coefficient for the 1st
dimension cross-sectional control totals. It will apply to cross-sectional control
totals for which alterability coefficients have not already been specified in the
alterability coefficients data frame (argument alterability_df).

Default value is alterTotall = 0.0 (binding 1st dimension cross-sectional
control totals)

(optional)

Nonnegative real number specifying the default alterability coefficient for the
2nd dimension cross-sectional control totals. It will apply to cross-sectional
control totals for which alterability coefficients have not already been specified
in the alterability coefficients data frame (argument alterability_df).

Default value is alterTotal2 = 9.0 (binding 2nd dimension cross-sectional
control totals).

See tsraking() for a detailed description of time series raking problems.

The returned raking problem elements do not include the implicit component series temporal totals
when applicable (i.e., elements g and G only contain the cross-sectional totals info).

When the input data contains multiple periods (temporal total preservation scenario), raking prob-
lem elements x, c_x, g, c_g and G are constructed column by column (in "column-major order"),
corresponding to the default behaviour of R for converting objects of class "matrix" into vectors.

Note: argument validation is not performed here; it is (bluntly) assumed that the function is called
by tsraking() where a thorough validation of the arguments is done.

Value

A list with the elements of the raking problem (excluding the implicit temporal totals):

* x : vector of component series initial values

* c_x : vector of component series alterability coefficients

* comp_cols: vector of component series (column) names

e g : vector of cross-sectional total initial values

* c_g: vector of cross-sectional total alterability coefficients

e tot_cols : vector of cross-sectional total (column) names

* G: cross-sectional total aggregation matrix (g = G %*% X)

See Also

tsraking() build_balancing_problem()

gs.build_proc_grps

Examples

29

Derive the 5 marginal totals of a 2 x 3 two-dimensional data cube using ~tsraking()"

metadata.

my_metadata <- data.frame(series = c("A1", "A2", "A3",
"B1", "B2", "B3"),

totall = c(rep("totA”, 3),
rep("totB”, 3)),

total2
my_metadata

rep(c("tot1”, "tot2"”, "tot3"), 2))

6 periods of data with marginal totals set to “NA™ (they MUST exist in the input data

but can be “NA™).
my_data <- data.frame(A1 = c(12, 10,

B1 = c(20, 21,
A2 = c(14, 9,
B2 = c(20, 29,
A3 = c(13, 15,
B3 = c(24, 20,

tot1 = rep(NA,
tot2 = rep(NA,
tot3 = rep(NA,
totA = rep(NA,
totB = rep(NA,

Get the raking problem elements.

12,
15,

8,
20,
17,
30,
6),
6),
6),
6),
6))

15, 7),
19, 18),
11, 190),
21, 17),
16, 12),
21, 19),

p <- build_raking_problem(my_data, my_metadata)

str(p)

Calculate the 5 marginal totals for all 6 periods.

my_datalp$tot_cols] <- p$G %*% p$x
my_data

gs.build_proc_grps Build reconciliation processing groups

Description

This function builds the processing groups data frame for reconciliation problems. It is used inter-
nally by tsraking_driver() and tsbalancing().

Usage

gs.build_proc_grps(
ts_yr_vec,
ts_per_vec,
n_per,
ts_freq,
temporal_grp_periodicity,

30 gs.build_proc_grps
temporal_grp_start
)
Arguments
ts_yr_vec (mandatory)
Vector of the time series year (time unit) values (see gs. time2year()).
ts_per_vec (mandatory)
Vector of the time series period (cycle) values (see gs.time2per()).
n_per (mandatory)
Time series length (number of periods).
ts_freq (mandatory)

Time series frequency (see stats: : frequency()).
temporal_grp_periodicity

(mandatory)

Number of periods in temporal groups.
temporal_grp_start

(mandatory)

First period of temporal groups.

Value

A data frame with the following variables (columns):

* grp : integer vector identifying the processing group (1:<number-of-groups>).
* beg_per : integer vector identifying the first period of the processing group.
* end_per : integer vector identifying the last period of the processing group.

» complete_grp: logical vector indicating if the processing group corresponds to a complete
temporal group.

Processing groups

The set of periods of a given reconciliation (raking or balancing) problem is called a processing
group and either corresponds to:

* asingle period with period-by-period processing or, when preserving temporal totals, for the
individual periods of an incomplete temporal group (e.g., an incomplete year)

* or the set of periods of a complete temporal group (e.g., a complete year) when preserving
temporal totals.

The total number of processing groups (total number of reconciliation problems) depends on the
set of periods in the input time series object (argument in_ts) and on the value of arguments
temporal_grp_periodicity and temporal_grp_start.

Common scenarios include temporal_grp_periodicity =1 (default) for period-by period pro-
cessing without temporal total preservation and temporal_grp_periodicity = frequency(in_ts)
for the preservation of annual totals (calendar years by default). Argument temporal_grp_start

gs.build_proc_grps 31

allows the specification of other types of (non-calendar) years. E.g., fiscal years starting on April
correspond to temporal_grp_start =4 with monthly data and temporal_grp_start =2 with
quarterly data. Preserving quarterly totals with monthly data would correspond to temporal_grp
_periodicity = 3.

By default, temporal groups covering more than a year (i.e., corresponding to temporal_grp
_periodicity > frequency(in_ts) start on a year that is a multiple of ceiling(temporal_grp
_periodicity / frequency(in_ts)). E.g., biennial groups corresponding to temporal_grp_per
iodicity = 2 * frequency(in_ts) start on an even year by default. This behaviour can be changed
with argument temporal_grp_start. E.g., the preservation of biennial totals starting on an odd
year instead of an even year (default) corresponds to temporal_grp_start = frequency(in_ts)
+ 1 (along with temporal_grp_periodicity =2 * frequency(in_ts)).

See the gs.build_proc_grps() Examples for common processing group scenarios.

See Also

tsraking_driver() tsbalancing() time_values_conv

Examples

fizizisizisisd
Preliminary setup

Dummy monthly and quarterly time series (2.5 years long)
mth_ts <- ts(rep(NA, 30), start = c(2019, 1), frequency = 12)
mth_ts

gtr_ts <- ts(rep(NA, 10), start = c(2019, 1), frequency = 4)
qtr_ts

Summarized time series info

ts_info <- function(ts, sep = "-") {
list(y = gs.time2year(ts), # years
p = gs.time2per(ts), # periods
n = length(ts), # length
f = frequency(ts), # frequency
1 = gs.time2str(ts, sep)) # labels

3
mth_info <- ts_info(mth_ts)
gtr_info <- ts_info(qtr_ts, sep = "q")

Function to add a description label for the processing group
add_desc <- function(grp_df, lab_vec, word) {
grp_df$description <- ifelse(grp_df$complete_grp,

pasted("--- ", grp_df$end_per - grp_df$beg_per + 1, " ", word, "s: ",
lab_vec[grp_df$beg_per], " to ",
lab_vec[grp_df$end_per], " --- "),
pasted("--- 1 ", word, ": ", lab_vec[grp_df$beg_per], " --=-"))

grp_df

32

gs.build_proc_grps

fizizisizizizd
Common processing group scenarios for monthly data

©0- Month-by-month processing (every single month is a processing group)

mth_grps@ <- gs.build_proc_grps(mth_infoy, mth_infop, mth_infon, mth_infof,
temporal_grp_periodicity = 1,
temporal_grp_start = 1)

tmp <- add_desc(mth_grps@, mth_info$l, "month")

head(tmp)

tail(tmp)

Temporal groups corresponding to ...

1- calendar years

mth_grps1 <- gs.build_proc_grps(mth_infoy, mth_infop, mth_infon, mth_infof,
temporal_grp_periodicity = 12,
temporal_grp_start = 1)

add_desc(mth_grps1, mth_info$l, "month")

2- fiscal years starting on April

mth_grps2 <- gs.build_proc_grps(mth_infoy, mth_infop, mth_infon, mth_infof,
temporal_grp_periodicity = 12,
temporal_grp_start = 4)

add_desc(mth_grps2, mth_info$l, "month")

3- regular quarters (starting on Jan, Apr, Jul and Oct)

mth_grps3 <- gs.build_proc_grps(mth_infoy, mth_infop, mth_infon, mth_infof,
temporal_grp_periodicity = 3,
temporal_grp_start = 1)

add_desc(mth_grps3, mth_info$l, "month")

4- quarters shifted by one month (starting on Feb, May, Aug and Nov)

mth_grps4 <- gs.build_proc_grps(mth_infoy, mth_infop, mth_infon, mth_infof,
temporal_grp_periodicity = 3,
temporal_grp_start = 2)

add_desc(mth_grps4, mth_info$l, "month")

HHHHHHH
Common processing group scenarios for quarterly data

0- Quarter-by-quarter processing (every single quarter is a processing group)

gtr_grps@ <- gs.build_proc_grps(qtr_infoy, qtr_infop, qtr_info$n, qgtr_info$f,
temporal_grp_periodicity = 1,
temporal_grp_start = 1)

add_desc(qtr_grps@, gtr_info$l, "quarter")

gs.glnv_MP 33

Temporal groups corresponding to ...

1- calendar years

gtr_grps1 <- gs.build_proc_grps(qtr_infoy, qtr_infop, qtr_infon, qtr_infof,
temporal_grp_periodicity = 4,
temporal_grp_start = 1)

add_desc(qtr_grps1, gtr_info$l, "quarter")

2- fiscal years starting on April (2nd quarter)

gtr_grps2 <- gs.build_proc_grps(qtr_infoy, qtr_infop, qtr_infon, qtr_infof,
temporal_grp_periodicity = 4,
temporal_grp_start = 2)

add_desc(qtr_grps2, qtr_info$l, "quarter")

gs.glnv_MP Moore-Penrose inverse

Description

This function calculates the Moore-Penrose (pseudo) inverse of a square or rectangular matrix using
Singular Value Decomposition (SVD). It is used internally by tsraking() and benchmarking().

Usage

gs.gInv_MP(X, tol = NA)

Arguments
X (mandatory)
Matrix to invert.
tol (optional)
Real number that specifies the tolerance for identifying zero singular values.
When tol = NA (default), the tolerance is calculated as the product of the size
(dimension) of the matrix, the norm of the matrix (largest singular value) and
the machine epsilon (.Machine$double.eps).
Default value is tol = NA.
Details

The default tolerance (argument tol = NA) is coherent with the tolerance used by the MATLAB and
GNU Octave software in their general inverse functions. In our testing, this default tolerance also
produced solutions (results) comparable to G-Series 2.0 in SAS®.

Value

The Moore-Penrose (pseudo) inverse of matrix X.

34 0sqp_settings_sequence

See Also

tsraking() benchmarking()

Examples

Invertible matrix
X1 <- matrix(c(3, 2, 8,
6, 3, 2,
5, 2, 4), nrow = 3, byrow = TRUE)
Y1 <- gs.gInv_MP(X1)
all.equal(Y1, solve(X1))
X1 %*% Y1

Rectangular matrix
X2 <- X1[-1, 1]
try(solve(X2))
X2 %*% gs.gInv_MP(X2)

Non-invertible square matrix
X3 <- matrix(c(3, 0, 0,
0, 0, 0,
0, 0, 4), nrow = 3, byrow = TRUE)
try(solve(X3))
X3 %*% gs.gInv_MP(X3)

osqgp_settings_sequence
OSQP settings sequence data frame

Description

Data frame containing a sequence of OSQP settings for tsbalancing() specified with argument
osqgp_settings_df. The package includes two predefined OSQP settings sequence data frames:

» default_osqp_sequence: fast and effective (default osqp_settings_df argument value);

* alternate_osgp_sequence: geared towards precision at the expense of execution time.
See vignette("osgp-settings-sequence-dataframe”) for the actual contents of these data
frames.
Usage

Default sequence:
tsbalancing(..., osgp_settings_df = default_osqp_sequence)

Alternative (slower) sequence:
tsbalancing(..., osgp_settings_df = alternate_osqp_sequence)

osqp_settings_sequence 35

Custom-made sequence (use with caution!):
tsbalancing(..., osgp_settings_df = <my-osgp-sequence-dataframe>)

Single solving attempt with the default OSQP settings (not recommended!):
tsbalancing(..., osgp_settings_df = NULL)

Format
A data frame with at least one row and at least one column, the most common columns being:

max_iter Maximum number of iterations (integer)

sigma Alternating direction method of multipliers (ADMM) sigma step (double)
eps_abs Absolute tolerance (double)

eps_rel Relative tolerance (double)

eps_prim_inf Primal infeasibility tolerance (double)

eps_dual_inf Dual infeasibility tolerance (double)

polish Perform solution polishing (logical)

scaling Number of scaling iterations (integer)

prior_scaling Scale problem data prior to solving with OSQP (logical)
require_polished Require a polished solution to stop the sequence (logical)

[any-other-OSQP-setting | Value of the corresponding OSQP setting

Details

With the exception of prior_scaling and require_polished, all columns of the data frame
must correspond to a OSQP setting. Default OSQP values are used for any setting not speci-
fied in this data frame. Visit https://osqp.org/docs/interfaces/solver_settings.html for
all available OSQP settings. Note that the OSQP verbose setting is actually controlled through
tsbalancing() arguments quiet and display_level (i.e., column verbose in a OSQP settings
sequence data frame would be ignored).

Each row of a OSQP settings sequence data frame represents one attempt at solving a balancing
problem with the corresponding OSQP settings. The solving sequence stops as soon as a valid solu-
tion is obtained (a solution for which all constraint discrepancies are smaller or equal to the tolerance
specified with tsbalancing() argument validation_tol) unless column require_polished =
TRUE, in which case a polished solution from OSQP (status_polish = 1) would also be required
to stop the sequence. Constraint discrepancies correspond to max(0,! — Az, Ax — u) with con-
straints defined as [< Az < u. In the event where a satisfactory solution cannot be obtained after
having gone through the entire sequence, tsbalancing() returns the solution that generated the
smallest total constraint discrepancies among valid solutions, if any, or among all solutions, other-
wise. Note that running the entire solving sequence can be enforced by specifying tsbalancing()
argument full_sequence = TRUE. Rows with column prior_scaling = TRUE have the problem
data scaled prior to solving with OSQP, using the average of the free (nonbinding) problem values
as the scaling factor.

In addition to specifying a custom-made OSQP settings sequence data frame with argument osqp_settings_df,
one can also specify osqp_settings_df = NULL which would result in a single solving attempt with
default OSQP values for all settings along with prior_scaling = FALSE and require_polished

https://osqp.org/docs/interfaces/solver_settings.html

36 plot_benchAdj

= FALSE. Note that it is recommended, however, to first try data frames default_osqp_sequence
and alternate_osqgp_sequence, along with full_sequence = TRUE if necessary, before consider-
ing other alternatives.

Vignette OSQP Settings Sequence Data Frame (vignette ("osqp-settings-sequence-dataframe"))

contains additional information.

plot_benchAdj Plot benchmarking adjustments

Description

Plot benchmarking adjustments for a single series in the current (active) graphics device. Up to
three types of adjustments can be overlayed in the same plot:

* Adjustments generated by function benchmarking()
* Adjustments generated by function stock_benchmarking()

* Cubic spline associated to adjustments generated by function stock_benchmarking()

These plots can be useful to assess the quality of the benchmarking results and compare the adjust-
ments generated by both benchmarking functions (benchmarking() and stock_benchmarking())
for stock series.

Usage

plot_benchAdj(
PB_graphTable = NULL,
SB_graphTable = NULL,
SB_splineKnots = NULL,
legendPos = "bottomright”

Arguments

PB_graphTable (optional)

Data frame (object of class "data.frame") corresponding to the benchmarking ()
(PB for "Proc Benchmarking" approach) function output graphTable data frame.
Specify NULL not to include the benchmarking() adjustments in the plot.

Default value is PB_graphTable = NULL.
SB_graphTable (optional)

Data frame (object of class "data.frame") corresponding to the stock_benchmarking()

(SB) function output graphTable data frame. Specify NULL not to include the
stock_benchmarking() adjustments in the plot.

Default value is SB_graphTable = NULL.

plot_benchAdj 37

SB_splineKnots (optional)
Data frame (object of class "data.frame") corresponding to the stock_benchmarking()
(SB) function output splineKnots data frame. Specify NULL not to include the
stock_benchmarking() cubic spline in the plot.

Default value is SB_splineKnots = NULL.

legendPos (optional)

String (keyword) specifying the location of the legend in the plot. See the de-
scription of argument x in the documentation of graphics: :legend() for the
list of valid keywords. Specify NULL not to include a legend in the plot.

Default value is 1egendPos = "bottomright”.

Details

graphTable data frame (arguments PB_graphTable and SB_graphTable) variables used in the
plot:

* t for the x-axis values ()
* benchmarkedSubAnnualRatio for the Stock Bench. (SB) and Proc Bench. (PB) lines
* bias for the Bias line (when p < 1)

splineKnots data frame (argument SB_splineKnots) variables used in the plot:

« x for the x-axis values ()
* y for the Cubic spline line and the Extra knot and Original knot points
* extraKnot for the type of knot (Extra knot vs. Original knot)

See section Value of benchmarking() and stock_benchmarking() for more details on these data
frames.

Value

This function returns nothing (invisible (NULL)).

See Also
plot_graphTable() bench_graphs benchmarking() stock_benchmarking()

Examples

fizizisizizicd
Preliminary setup

Quarterly stocks (same annual pattern repeated for 7 years)
gtr_ts <- ts(rep(c(85, 95, 125, 95), 7), start = c(2013, 1), frequency = 4)

End-of-year stocks
ann_ts <- ts(c(135, 125, 155, 145, 165), start = 2013, frequency = 1)

Proportional benchmarking
... with “benchmarking()~ ("Proc Benchmarking"” approach)

plot_benchAdj

out_PB <- benchmarking(
ts_to_tsDF(qgtr_ts),
ts_to_bmkDF (ann_ts, discrete_flag = TRUE, alignment = "e"”, ind_frequency = 4),
rho = 0.729, lambda = 1, biasOption = 3,
quiet = TRUE)
... with “stock_benchmarking()"
out_SB <- stock_benchmarking(
ts_to_tsDF(gtr_ts),
ts_to_bmkDF (ann_ts, discrete_flag = TRUE, alignment = "e"”, ind_frequency = 4),
rho = 0.729, lambda = 1, biasOption = 3,
quiet = TRUE)

fizizizizizicd
Plot the benchmarking adjustments

“benchmarking()~ adjustments (Tout_PB~), without a legend
plot_benchAdj(PB_graphTable = out_PB$graphTable,
legendPos = NULL)

Add the ~stock_benchmarking()™ (Tout_SB™) adjustments, with a legend this time
plot_benchAdj(PB_graphTable = out_PB$graphTable,
SB_graphTable = out_SB$graphTable)

Add the ~stock_benchmarking()~ cubic spline actually used to generate the adjustments
(incl. the extra knots at both ends), with the legend located in the top-left corner
plot_benchAdj(PB_graphTable = out_PB$graphTable,

SB_graphTable = out_SB$graphTable,

SB_splineKnots = out_SB$splineKnots,

legendPos = "topleft”)

HHHHHHHH
Simulate multiple series benchmarking (3 stock series)

gtr_mts <- ts.union(ser1 = qtr_ts, ser2 = qtr_ts x 100, ser3 = qtr_ts * 10)
ann_mts <- ts.union(ser1 = ann_ts, ser2 = ann_ts *x 100, ser3 = ann_ts * 10)

Using argument ~allCols = TRUE™ (identify stocks with column “varSeries™)
out_SB2 <- stock_benchmarking(
ts_to_tsDF(gtr_mts),
ts_to_bmkDF (ann_mts, discrete_flag = TRUE, alignment = "e", ind_frequency = 4),
rho = ©.729, lambda = 1, biasOption = 3,
allCols = TRUE,
quiet = TRUE)

Adjustments for 2nd stock (ser2)
plot_benchAdj(
SB_graphTable = out_SB2$graphTable[out_SB2$graphTable$varSeries == "ser2", 1)

Using argument “by = "series”” (identify stocks with column “series™)
out_SB3 <- stock_benchmarking(
stack_tsDF (ts_to_tsDF(qtr_mts)),

plot_graphTable 39

stack_bmkDF (ts_to_bmkDF (
ann_mts, discrete_flag = TRUE, alignment = "e", ind_frequency = 4)),
rho = 0.729, lambda = 1, biasOption = 3,
by = "series”,
quiet = TRUE)

Cubic spline for 3nd stock (ser3)
plot_benchAdj(

SB_splineKnots = out_SB3$splineKnots[out_SB3$splineKnots$series == "ser3”, 1)
plot_graphTable Generate benchmarking graphics in a PDF file
Description

Create a PDF file (US Letter paper size format in landscape view) containing benchmarking graph-
ics for the set of series contained in the specified benchmarking function (benchmarking() or
stock_benchmarking()) output graphTable data frame. Four types of benchmarking graphics
can be generated for each series:

* Original Scale Plot (argument ori_plot_f1lag) - overlay graph of:

— Indicator series

Average indicator series

Bias corrected indicator series (when p < 1)
Benchmarked series

Average benchmark
* Adjustment Scale Plot (argument adj_plot_flag) - overlay graph of:

— Benchmarking adjustments
— Average benchmarking adjustments
— Bias line (when p < 1)
* Growth Rates Plot (argument GR_plot_f1lag) - bar chart of the indicator and benchmarked
series growth rates.

* Growth Rates Table (argument GR_table_flag) - table of the indicator and benchmarked
series growth rates.

These graphics can be useful to assess the quality of the benchmarking results. Any of the four
types of benchmarking graphics can be enabled or disabled with the corresponding flag. The first
three types of graphics (the plots) are generated by default while the fourth (growth rates table) is
not.

Usage

plot_graphTable(
graphTable,
pdf_file,
ori_plot_flag = TRUE,

40 plot_graphTable

adj_plot_flag = TRUE,
GR_plot_flag = TRUE,
GR_table_flag = FALSE,
add_bookmarks = TRUE

)
Arguments
graphTable (mandatory)
Data frame (object of class "data.frame") corresponding to the benchmarking
function outputgraphTable data frame.
pdf_file (mandatory)

Name (and path) of the PDF file that will contain the benchmarking graphics.
The name should include the ".pdf" file extension. The PDF file is created in the
R session working directory (as returned by getwd()) if a path is not specified.
Specifying NULL would cancel the creation of a PDF file.

ori_plot_flag, adj_plot_flag, GR_plot_flag, GR_table_flag
(optional)
Logical arguments indicating whether or not the corresponding type of bench-
marking graphic should be generated. All three plots are generated by default
but not the growth rates tables.
Default values are ori_plot_flag = TRUE, adj_plot_flag = TRUE, GR_plot_flag
= TRUE and GR_table_flag = FALSE.

add_bookmarks Logical argument indicating whether or not bookmarks should be added to the
PDF file. See Bookmarks in section Details for more information.

Default value is add_bookmarks = TRUE.

Details

List of the graphTable data frame variables corresponding to each element of the four types of
benchmarking graphics:

* Original Scale Plot (argument ori_plot_flag)

— subAnnual for the Indicator Series line

avgSubAnnual for the Avg. Indicator Series segments

subAnnualCorrected for the Bias Corr. Indicator Series line (when p < 1)
benchmarked for the Benchmarked Series line

avgBenchmark for the Average Benchmark segments

* Adjustment Scale Plot (argument adj_plot_flag)

— benchmarkedSubAnnualRatio for the BI Ratios (Benchmarked Series / Indicator Series)
line **)
— avgBenchmarkSubAnnualRatio for the Average BI Ratios segments (*)
— bias for the Bias line (when p < 1)
* Growth Rates Plot (argument GR_plot_flag)

— growthRateSubAnnual for the Growth R. in Indicator Series bars (*)

plot_graphTable 41

- growthRateBenchmarked for the Growth R. in Benchmarked Series bars (*)
* Growth Rates Table (argument GR_table_flag)
— year for the Year column
— period for the Period column
subAnnual for the Indicator Series column
benchmarked for the Benchmarked Series column
— growthRateSubAnnual for the Growth Rate in Indicator Series column (*)
— growthRateBenchmarked for the Growth Rate in Benchmarked Series column *)

() BI ratios and growth rates actually correspond to differences when A = 0 (additive benchmark-
ing).

The function uses the extra columns of the graphTable data frame (columns not listed in the Value
section of benchmarking() and stock_benchmarking()), if any, to build BY-groups. See section
Benchmarking Multiple Series of benchmarking() for more details.

Performance:

The two types of growth rates graphics, i.e., the bar chart (GR_plot_f1lag) and table (GR_table_f1lag),
often requires the generation of several pages in the PDF file, especially for long monthly series

with several years of data. This creation of extra pages slows down the execution of plot_graphTable().
This is why only the bar chart is generated by default (GR_plot_flag = TRUE and GR_table_flag

= FALSE). Deactivating both types of growth rates graphics (GR_plot_flag = FALSE and GR_table_flag
= FALSE) or reducing the size of the input graphTable data frame for very long series (e.g., keep-

ing only recent years) could therefore improve execution time. Also note that the impact of bench-
marking on the growth rates can be deduced from the adjustment scale plot (adj_plot_flag) by
examining the extent of vertical movement (downward or upward) of the benchmarking adjust-
ments between adjacent periods: the greater the vertical movement, the greater the impact on
corresponding growth rate. Execution time of plot_graphTable () could therefore be reduced, if
needed, by only generating the first two types of graphics while focusing on the adjustment scale

plot to assess period-to-period movement preservation, i.e., the impact of benchmarking on the
initial growth rates.

ggplot2 themes:

The plots are generated with the ggplot2 package which comes with a convenient set of complete
themes for the general look and feel of the plots (with theme_grey() as the default theme). Use
function theme_set () to change the theme applied to the plots generated by plot_graphTable()
(see the Examples).

Bookmarks:

Bookmarks are added to the PDF file with xmpdf': : set_bookmarks () when argument add_bookmarks
= TRUE (default), which requires a command-line tool such as Ghostscript or PDFtk. See section
Installation in vignette ("xmpdf"”, package = "xmpdf") for details.

Important: bookmarks will be successfully added to the PDF file if and only if xmpdf : : supports
_set_bookmarks() returns TRUE and the execution of xmpdf: : set_bookmarks() is successful.
If Ghostscript is installed on your machine but xmpdf': : supports_set_bookmarks() still returns
FALSE, try specifying the path of the Ghostscript executable in environment variable R_GSCMD
(e.g.,Sys.setenv(R_GSCMD = "C:/Program Files/.../bin/gswin64c.exe") on Windows). On
the other hand, if xmpdf: : supports_set_bookmarks()} returns TRUE but you are experiencing
(irresolvable) issues with xmpdf: : set_bookmarks() (e.g., error related to the Ghostscript exe-
cutable), bookmarks creation can be disabled by specifying add_bookmarks = FALSE.

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://www.ghostscript.com/
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

42 plot_graphTable

Value

In addition to creating a PDF file containing the benchmarking graphics (except when pdf_file =
NULL), this function also invisibly returns a list with the following elements:

* graphTable: Character string (character vector of length one) that contains the complete
name and path of the PDF file if it was successfully created and invisible(NA_character_)
otherwise or if pdf_file = NULL was specified.

» graph_list: List of the generated benchmarking graphics (one per series) with the following
elements:

— name: Character string describing the series (matches the bookmark name in the PDF
file).

— page: Integer representing the sequence number of the first graphic for the series in the
entire sequence of graphics for all series (matches the page number in the PDF file).

— ggplot_list: List of ggplot objects (one per graphic or page in the PDF file) corre-
sponding to the generated benchmarking graphics for the series. See section Value in
bench_graphs for details.

Note that the returned ggplot objects can be displayed manually with print(), in which case some
updates to the ggplot2 theme defaults are recommended in order to produce graphics with a similar
look and feel as those generated in the PDF file (see section Value in bench_graphs for details). Also
keep in mind that these graphics are optimized for the US Letter paper size format in landscape view
(as displayed in the PDF file), i.e., 11in wide (27.9cm, 1056px with 96 DPI) and 8.5in tall (21.6cm,
816px with 96 DPI).

See Also

bench_graphs plot_benchAdj() benchmarking() stock_benchmarking()

Examples

Set the working directory (for the PDF files)
iniwd <- getwd()
setwd(tempdir())

Quarterly car and van sales (indicator series)
gtr_ind <- ts_to_tsDF(
ts(matrix(c(# Car sales
1851, 2436, 3115, 2205, 1987, 2635, 3435, 2361, 2183, 2822,
3664, 2550, 2342, 3001, 3779, 2538, 2363, 3090, 3807, 2631,
2601, 3063, 3961, 2774, 2476, 3083, 3864, 2773, 2489, 3082,
Van sales
1900, 2200, 3000, 2000, 1900, 2500, 3800, 2500, 2100, 3100,
3650, 2950, 3300, 4000, 3290, 2600, 2010, 3600, 3500, 2100,
2050, 3500, 4290, 2800, 2770, 3080, 3100, 2800, 3100, 2860),
ncol = 2),
start = c(2011, 1),
frequency = 4,
names = c("car_sales"”, "van_sales")))

Annual car and van sales (benchmarks)

rkMeta_to_blSpecs 43

ann_bmk <- ts_to_bmkDF (
ts(matrix(c(# Car sales
10324, 10200, 10582, 11097, 11582, 11092,
Van sales
12000, 10400, 11550, 11400, 14500, 16000),

ncol = 2),
start = 2011,
frequency = 1,
names = c("car_sales”, "van_sales")),

ind_frequency = 4)

Proportional benchmarking without bias correction

out_bench <- benchmarking(gtr_ind, ann_bmk,
rho = 0.729, lambda = 1, biasOption = 1,
allCols = TRUE,
quiet = TRUE)

Default set of graphics (the first 3 types of plots)
plot_graphTable(out_bench$graphTable, "bench_graphs.pdf")

Temporarily use ggplot2 ~theme_bw()~ for the plots
library(ggplot2)

ini_theme <- theme_get()

theme_set (theme_bw())

plot_graphTable(out_bench$graphTable, "bench_graphs_bw.pdf")
theme_set(ini_theme)

Generate all 4 types of graphics (including the growth rates table)
plot_graphTable(out_bench$graphTable, "bench_graphs_with_GRTable.pdf”,
GR_table_flag = TRUE)

Reduce execution time by disabling both types of growth rates graphics
plot_graphTable(out_bench$graphTable, "bench_graphs_no_GR.pdf",
GR_plot_flag = FALSE)

Reset the working directory to its initial location
setwd(iniwd)

rkMeta_to_blSpecs Convert reconciliation metadata

Description

Convert a tsraking() metadata data frame to a tsbalancing() problem specs data frame.

Usage

rkMeta_to_blSpecs(

44

metadata_df,

rkMeta_to_blSpecs

alterability_df = NULL,

alterSeries
alterTotal1
alterTotal2

alterability_df_only = FALSE

Arguments

metadata_df

alterability_df

alterSeries

alterTotall

(mandatory)

Data frame (object of class "data.frame") that describes the cross-sectional ag-
gregation constraints (additivity rules) for the raking problem. Two character
variables must be included in the metadata data frame: series and totall.
Two variables are optional: total2 (character) and alterAnnual (numeric).
The values of variable series represent the variable names of the component
series in the input time series data frame (argument data_df). Similarly, the val-
ues of variables totall and total2 represent the variable names of the 1st and
2nd dimension cross-sectional control totals in the input time series data frame.
Variable alterAnnual contains the alterability coefficient for the temporal con-
straint associated to each component series. When specified, the latter will over-
ride the default alterability coefficient specified with argument alterAnnual.

(optional)

Data frame (object of class "data.frame"), or NULL, that contains the alterabil-
ity coefficients variables. They must correspond to a component series or a
cross-sectional control total, that is, a variable with the same name must exist
in the input time series data frame (argument data_df). The values of these
alterability coefficients will override the default alterability coefficients speci-
fied with arguments alterSeries, alterTotall and alterTotal2. When the
input time series data frame contains several observations and the alterability
coefficients data frame contains only one, the alterability coefficients are used
(repeated) for all observations of the input time series data frame. Alternatively,
the alterability coefficients data frame may contain as many observations as the
input time series data frame.

Default value is alterability_df = NULL (default alterability coefficients).
(optional)

Nonnegative real number specifying the default alterability coefficient for the
component series values. It will apply to component series for which alterability
coefficients have not already been specified in the alterability coefficients data
frame (argument alterability_df).

Default value is alterSeries = 1.0 (nonbinding component series values).
(optional)

Nonnegative real number specifying the default alterability coefficient for the 1st
dimension cross-sectional control totals. It will apply to cross-sectional control

totals for which alterability coefficients have not already been specified in the
alterability coefficients data frame (argument alterability_df).

rkMeta_to_blSpecs

alterTotal2

45

Default value is alterTotall =0.0@ (binding 1st dimension cross-sectional
control totals)

(optional)

Nonnegative real number specifying the default alterability coefficient for the
2nd dimension cross-sectional control totals. It will apply to cross-sectional
control totals for which alterability coefficients have not already been specified
in the alterability coefficients data frame (argument alterability_df).
Default value is alterTotal2 = 9.0 (binding 2nd dimension cross-sectional
control totals).

alterability_df_only

Details

(optional)

Logical argument specifying whether or not only the set of alterability ceof-
ficients found in the alterability file (argument alterability_df) should be
included in the returned tsbalancing() problem specs data frame. When
alterability_df_only = FALSE (the default), the alterability coefficients spec-
ified with arguments alterSeries, alterTotall and alterTotal2 are com-
bined with those found in alterability_df (the latter coefficients overwriting
the former) and the returned data frame therefore contains alterability coeffi-
cients for all component and cross-sectional control total series. This argu-
ment does not affect the set of temporal total alterability coefficients (associ-
ated to tsraking() argument alterAnnual) that are included in the returned
tsbalancing() problem specs data frame. The latter always strictly contains
those specified in metadata_df with a non-missing (non-NA) value for column
alterAnnual.

Default value is alterability_df_only = FALSE.

The preceding description of argument alterability_df comes from tsraking(). This function
(rkMeta_to_blSpecs()) slightly changes the specification of alterability coefficients with argu-
ment alterability_df by allowing either

* asingle observation, specifying the set of alterability coefficients to use for all periods,

* or one or several observations with an additional column named timeVal allowing the speci-
fication of both period-specific alterability coefficients (timeVal is not NA) and generic coef-
ficients to use for all other periods (timeVal is NA). Values for column timeVal correspond to
the time values of a "ts" object as returned by stats: : time(), conceptually corresponding to
year + (period — 1)/ frequency.

Another difference with tsraking() is that missing (NA) values are allowed in the alterability coef-
ficients data frame (argument alterability_df) and result in using the generic coefficients (obser-
vations for which timeVal is NA) or the default coefficients (arguments alterSeries, alterTotall

and alterTotal?2).

Note that apart from discarding alterability coefficients for series not listed in the tsraking() meta-
data data frame (argument metadata_df), this function does not validate the values specified in the
alterability coefficients data frame (argument alterability_df) nor the ones specified with col-
umn alterAnnual in the tsraking() metadata data frame (argument metadata_df). The function
transfers them as is in the returned tsbalancing() problem specs data frame.

46 stack_bmkDF

Value

A tsbalancing() problem specs data frame (argument problem_specs_df).

See Also

tsraking() tsbalancing()

Examples

“tsraking()" metadata for a 2-dimensional raking problem (2 x 2 table)
my_metadata <- data.frame(series = c("A1", "A2", "B1", "B2"),
totall = c("totA”, "totA”, "totB”, "totB"),
total2 = c("tot1”, "tot2", "totl", "tot2"))
my_metadata

Convert to ~tsbalancing()~ specifications

Include the default “tsraking()" alterability coefficients
rkMeta_to_blSpecs(my_metadata)

Almost binding 1st marginal totals (small alter. coef for columns ~totA™ and ~totB~)
tail(rkMeta_to_blSpecs(my_metadata, alterTotall = 1e-6))

Do not include alterability coefficients (aggregation constraints only)
rkMeta_to_blSpecs(my_metadata, alterability_df_only = TRUE)

With an alterability coefficients file (argument ~alterability_df~)
my_alter = data.frame(B2 = 0.5)
tail(rkMeta_to_blSpecs(my_metadata, alterability_df = my_alter))

Only include the alterability coefficients from ~alterability_df"

(i.e., for column “B2° only)

tail(rkMeta_to_blSpecs(my_metadata, alterability_df = my_alter,
alterability_df_only = TRUE))

stack_bmkDF Stack benchmarks data

Description

Convert a multivariate benchmarks data frame (see ts_to_bmkDF()) for the benchmarking func-
tions (benchmarking() and stock_benchmarking()) into a stacked (tall) data frame with six vari-
ables (columns):

* one (1) for the benchmark name (e.g., series name)

* four (4) for the benchmark coverage

« one (1) for the benchmark value

stack_bmkDF

47

Missing (NA) benchmark values are not included in the output stacked data frame by default. Specify
argument keep_NA = TRUE in order to keep them.

This function is useful when intending to use the by argument (BY-group processing mode) of the
benchmarking functions in order to benchmark multiple series in a single function call.

Usage
stack_bmkDF (
bmk_df,
ser_cName = "series”,
startYr_cName = "startYear”,
startPer_cName = "startPeriod”,
endYr_cName = "endYear",
endPer_cName = "endPeriod”,
val_cName = "value”,
keep_NA = FALSE
)
Arguments
bmk_df (mandatory)
Data frame (object of class "data.frame") that contains the multivariate bench-
marks to be stacked.
ser_cName (optional)

startYr_cName,

val_cName

keep_NA

String specifying the name of the character variable (column) in the output
stacked data frame that will contain the benchmark names (name of the bench-
mark variables in the input multivariate benchmarks data frame). This variable
can then be used as the BY-group variable (argument by) with the benchmarking
functions.
Default value is ser_cName = "series”.

startPer_cName, endYr_cName, endPer_cName
(optional)
Strings specifying the name of the numeric variables (columns) in the input
multivariate benchmarks data frame that define the benchmark coverage, i.e.,
the starting and ending year and period (cycle) identifiers. These variables are
transferred to the output stacked data frame with the same variable names.
Default values are startYr_cName = "startYear”, startPer_cName = "startPeriod”
endYr_cName = "endYear" and endPer_cName = "endPeriod”.
(optional)
String specifying the name of the numeric variable (column) in the output stacked
data frame that will contain the benchmark values.
Default value is val_cName = "value"”.
(optional)
Logical argument specifying whether missing (NA) benchmark values in the in-
put multivariate benchmarks data frame should be kept in the output stacked
data frame.
Default value is keep_NA = FALSE.

48 stack tsDF

Value

The function returns a data frame with six variables:

* Benchmark (series) name, type character (see argument ser_cName)
* Benchmark coverage starting year, type numeric (see argument startYr_cName)
* Benchmark coverage starting period, type numeric (see argument startPer_cName)
* Benchmark coverage ending year, type numeric (see argument endtYr_cName)
* Benchmark coverage ending period, type numeric (see argument endPer_cName)
* Benchmark value, type numeric (see argument val_cName)
Note: the function returns a "data.frame" object than can be explicitly coerced to another type

of object with the appropriate asx() function (e.g., tibble::as_tibble() would coerce it to a
tibble).

See Also

stack_tsDF() ts_to_bmkDF () benchmarking() stock_benchmarking()

Examples

Create an annual benchmarks data frame for 2 quarterly indicator series
(with missing benchmark values for the last 2 years)
my_benchmarks <- ts_to_bmkDF (ts(data.frame(ser1l = c(1:3 * 10, NA, NA),
ser2 = c(1:3 * 100, NA, NA)),
start = c(2019, 1), frequency = 1),
ind_frequency = 4)
my_benchmarks

Stack the benchmarks ...

discarding “NA~ values in the output stacked data frame (default behavior)
stack_bmkDF (my_benchmarks)

keep “NA” values in the output stacked data frame
stack_bmkDF (my_benchmarks, keep_NA = TRUE)

using custom variable (column) names
stack_bmkDF (my_benchmarks, ser_cName = "bmk_name"”, val_cName = "bmk_val")

stack_tsDF Stack time series data

stack_tsDF 49

Description

Convert a multivariate time series data frame (see ts_to_tsDF()) for the benchmarking functions
(benchmarking() and stock_benchmarking()) into a stacked (tall) data frame with four variables
(columns):

* one (1) for the series name

* two (2) for the data point identification (year and period)

* one (1) for the data point value
Missing (NA) series values are not included in the output stacked data frame by default. Specify
argument keep_NA = TRUE in order to keep them.

This function is useful when intending to use the by argument (BY-group processing mode) of the
benchmarking functions in order to benchmark multiple series in a single function call.

Usage
stack_tsDF(
ts_df,
ser_cName = "series”,
yr_cName = "year"”,
per_cName = "period”,
val_cName = "value”,
keep_NA = FALSE
)
Arguments
ts_df (mandatory)
Data frame (object of class "data.frame") that contains the multivariate time se-
ries data to be stacked.
ser_cName (optional)

String specifying the name of the character variable (column) in the output
stacked data frame that will contain the series names (name of the time series
variables in the input multivariate time series data frame). This variable can
then be used as the BY-group variable (argument by) with the benchmarking
functions.
Default value is ser_cName = "series”.

yr_cName, per_cName
(optional)
Strings specifying the name of the numeric variables (columns) in the input
multivariate time series data frame that contain the data point year and period
(cycle) identifiers. These variables are transferred to the output stacked data
frame with the same variable names.
Default values are yr_cName = "year” and per_cName = "period”.

val_cName (optional)
String specifying the name of the numeric variable (column) in the output stacked
data frame that will contain the data point values.
Default value is val_cName = "value”.

50

stack tsDF

keep_NA (optional)

Logical argument specifying whether NA time series values in the input multi-
variate time series data frame should be kept in the output stacked data frame.

Default value is keep_NA = FALSE.

Value

The function returns a data frame with four variables:

 Series name, type character (see argument ser_cName)
* Data point year, type numeric (see argument yr_cName)
* Data point period, type numeric (see argument per_cName)
 Data point value, type numeric (see argument val_cName)
Note: the function returns a "data.frame" object than can be explicitly coerced to another type

of object with the appropriate as*() function (e.g., tibble::as_tibble() would coerce it to a
tibble).

See Also

unstack_tsDF () stack_bmkDF () ts_to_tsDF() benchmarking() stock_benchmarking()

Examples

Create a data frame with 2 quarterly indicators series
(with missing values for the last 2 quarters)
my_indicators <- ts_to_tsDF(ts(data.frame(serl = c(1:5 * 10, NA, NA),
ser2 = c(1:5 x 100, NA, NA)),
start = c(2019, 1), frequency = 4))
my_indicators

Stack the indicator series ...

discarding “NA" values in the output stacked data frame (default behavior)
stack_tsDF(my_indicators)

keeping “NA" values in the output stacked data frame
stack_tsDF(my_indicators, keep_NA = TRUE)

using custom variable (column) names
stack_tsDF(my_indicators, ser_cName = "ser_name"”, val_cName = "ser_val")

stock_benchmarking 51

stock_benchmarking Restore temporal constraints for stock series

Description

Function specifically aimed at benchmarking stock series where the benchmarks are anchor points
covering a single period of the indicator series. Benchmarks covering more than one period of
the indicator series cannot be used with this function. Function benchmarking() should be used
instead to benchmark non-stock series (flows).

Several stock series can be benchmarked in a single function call.

Note that functions stock_benchmarking() and benchmarking() mainly share the same argu-
ments and return the same type of object. Differences are listed below:

* Argument verbose is not defined for stock_benchmarking().
* Extra arguments defined for stock_benchmarking():
— low_freq_periodicity
— n_low_freq_proj
— proj_knots_rho_bd
* The list returned by stock_benchmarking() contains an extra (fourth) data frame:

— splineKnots

See section Details for more information on the similarities and differences of functions stock_benchmarking()
and benchmarking().

A direct equivalent of stock_benchmarking() does not exist in SAS® G-Series 2.0.

Usage

stock_benchmarking(
series_df,
benchmarks_df,
rho,
lambda,
biasOption,
bias = NA,
low_freq_periodicity = NA,
n_low_freq_proj = 1,
proj_knots_rho_bd = 0.995,

tolV = 0.001,

tolP = NA,
warnNegResult = TRUE,
tolN = -0.001,

var = "value”,

with = NULL,

by = NULL,

constant = 0,

52

stock_benchmarking

neglnput_option = 0,
allCols = FALSE,

quiet = FALSE
)

Arguments

series_df

benchmarks_df

rho

lambda

biasOption

bias

(mandatory)

Data frame (object of class "data.frame") that contains the indicator time series
data to be benchmarked. In addition to the series data variable(s), specified with
argument var, the data frame must also contain two numeric variables, year and
period, identifying the periods of the indicator time series.

(mandatory)

Data frame (object of class "data.frame") that contains the benchmarks. In ad-
dition to the benchmarks data variable(s), specified with argument with, the
data frame must also contain four numeric variables, startYear, startPeriod,
endYear and endPeriod, identifying the indicator time series periods covered
by each benchmark.

(mandatory)

Real number in the [0, 1] interval that specifies the value of the autoregressive
parameter p. See section Details for more information on the effect of parameter
p-

(mandatory)

Real number, with suggested values in the [—3, 3] interval, that specifies the
value of the adjustment model parameter A. Typical values are lambda = 0.0
for an additive model and 1ambda = 1.0 for a proportional model.

(mandatory)
Specification of the bias estimation option:

* 1: Do not estimate the bias. The bias used to correct the indicator series
will be the value specified with argument bias.

 2: Estimate the bias, display the result, but do not use it. The bias used to
correct the indicator series will be the value specified with argument bias.

» 3: Estimate the bias, display the result and use the estimated bias to cor-
rect the indicator series. Any value specified with argument bias will be
ignored.

Argument biasOption isignored when rho = 1.0. See section Details for more
information on the bias.

(optional)

Real number, or NA, specifying the value of the user-defined bias to be used for
the correction of the indicator series prior to benchmarking. The bias is added to
the indicator series with an additive model (argument lambda = @.0) while it is
multiplied otherwise (argument lambda !=0.0). No bias correction is applied
when bias = NA, which is equivalent to specifying bias = 0.0 when lambda =
0.0 and bias = 1.0 otherwise. Argument bias is ignored when biasOption =
3 or rho =1.0. See section Details for more information on the bias.

Default value is bias = NA (no user-defined bias).

stock_benchmarking 53

low_freq_periodicity
(optional)
Positive integer representing the number of periods defining the low (e.g., bench-
marks) frequency for adding the extra spline knots (before the first benchmark
and after the last benchmark). For example, low_freq_periodicity = 3 with
monthly indicators would define quarterly knots. Annual knots are added when
low_freq_periodicity = NA.

Default value is low_freq_periodicity = NA (annual knots).

n_low_freqg_proj
(optional)
Nonnegative integer representing the number of low frequency knots (as defined
with argument low_freq_periodicity) to add at both ends (before the first
benchmark and after the last benchmark) before starting to add high (indicator
series) frequency knots.

Default value is n_low_freqg_proj =1.

proj_knots_rho_bd
(optional)
Bound that applies to the value specified with argument rho and determines
the type of extra knots to be added at both ends (before the first benchmark
and after the last benchmark). When rho > proj_knots_rho_bd, high (indi-
cator series) frequency knots are used right away. Otherwise, when rho <=
proj_knots_rho_bd, low frequency knots (see arguments low_freq_periodicity
and n_low_freq_proj) are first projected on either side. Note that for quarterly
stocks, the cube of the specified proj_knots_rho_bd value is actually used.
Therefore, the value for argument proj_knots_rho_bd should correspond to
monthly stock indicators; it is internally adjusted for quarterly stocks. This argu-
ment aims at reaching a compromise for the set periods outside (before or after)
the provided benchmarks (anchor points), i.e., Denton-type (straight line) ad-
justments as rho approaches 1 (when rho > proj_knots_rho_bd) and a natural
looking (not overly contorted) spline otherwise (when rho <= proj_knots_rho_bd).
Section Details contains more information on this subject and some illustrative
cases are provided in section Examples.

Default value is proj_knots_rho_bd = @.995 (0.995? for quarterly stock indi-
cators).

tolV, tolP (optional)

Nonnegative real number, or NA, specifying the tolerance, in absolute value or
percentage, to be used for the validation of the output binding benchmarks (al-
terability coefficient of 0.0). This validation compares the input binding bench-
mark values with the equivalent values calculated from the benchmarked series
(output) data. Arguments tolV and tolP cannot be both specified (one must be
specified while the other must be NA).

Example: to set a tolerance of 10 units, specify tolV = 10, tolP = NA; to set
a tolerance of 1%, specify tolV = NA, tolP = 0.01.

Default values are tolV =0.001 and tolP = NA.

warnNegResult (optional)

54

tolN

var

with

by

stock_benchmarking

Logical argument specifying whether a warning message is generated when a
negative value created by the function in the benchmarked (output) series is
smaller than the threshold specified by argument tolN.

Default value is warnNegResult = TRUE.

(optional)

Negative real number specifying the threshold for the identification of negative
values. A value is considered negative when it is smaller than this threshold.
Default value is tolN = -0.001.

(optional)

String vector (minimum length of 1) specifying the variable name(s) in the indi-
cator series data frame (argument series_df) containing the values and (option-
ally) the user-defined alterability coefficients of the series to be benchmarked.
These variables must be numeric.

The syntax is var = c("series1 </ alt_ser1>", "series2 </ alt_ser2>",
...). Default alterability coefficients of 1.0 are used when a user-defined al-
terability coefficients variable is not specified alongside an indicator series vari-
able. See section Details for more information on alterability coefficients.
Example: var = "value / alter"” would benchmark indicator series data frame
variable value with the alterability coefficients contained in variable alter
while var = c("value / alter”, "value2") would additionally benchmark vari-
able value?2 with default alterability coefficients of 1.0.

Default value is var = "value” (benchmark variable value using default alter-
ability coefficients of 1.0).

(optional)

String vector (same length as argument var), or NULL, specifying the variable
name(s) in the benchmarks data frame (argument benchmarks_df) containing
the values and (optionally) the user-defined alterability coefficients of the bench-
marks. These variables must be numeric. Specifying with = NULL results in us-
ing benchmark variable(s) with the same names(s) as those specified with argu-
ment var without user-defined benchmark alterability coefficients (i.e., default
alterability coefficients of 0.0 corresponding to binding benchmarks).

The syntax iswith = NULL orwith = c("bmk1 </ alt_bmk1>", "bmk2 </ alt_bmk2>",
...). Default alterability coefficients of 0.0 (binding benchmarks) are used
when a user-defined alterability coefficients variable is not specified alongside
a benchmark variable. See section Details for more information on alterability
coefficients.

Example: with = "val_bmk" would use benchmarks data frame variable val_bmk
with default benchmark alterability coefficients of 0.0 to benchmark the indica-
tor series while with = c(”val_bmk", "val_bmk2 / alt_bmk2") would addi-
tionally benchmark a second indicator series using benchmark variable val_bmk2
with the benchmark alterability coefficients contained in variable alt_bmk2.
Default value is with = NULL (same benchmark variable(s) as argument var
using default benchmark alterability coefficients of 0.0).

(optional)
String vector (minimum length of 1), or NULL, specifying the variable name(s) in
the input data frames (arguments series_df and benchmarks_df) to be used to

stock_benchmarking

constant

negInput_option

allCols

quiet

55

form groups (for BY-group processing) and allow the benchmarking of multiple
series in a single function call. BY-group variables can be numeric or character
(factors or not), must be present in both input data frames and will appear in
all three output data frames (see section Value). BY-group processing is not
implemented when by = NULL. See "Benchmarking Multiple Series" in section
Details for more information.

Default value is by = NULL (no BY-group processing).

(optional)

Real number that specifies a value to be temporarily added to both the indica-
tor series and the benchmarks before solving proportional benchmarking prob-
lems (1ambda !=@.0). The temporary constant is removed from the final output
benchmarked series. E.g., specifying a (small) constant would allow propor-
tional benchmarking with rho = 1 (e.g., proportional Denton benchmarking) on
indicator series that include values of 0. Otherwise, proportional benchmarking
with values of 0 in the indicator series is only possible when rho < 1. Speci-
fying a constant with additive benchmarking (1ambda = @.0) has no impact on
the resulting benchmarked data. The data variables in the graphTable output
data frame include the constant, corresponding to the benchmarking problem
that was actually solved.

Default value is constant = @ (no temporary additive constant).

(optional)
Handling of negative values in the input data for proportional benchmarking
(lambda !'=0.0):

* 9: Do not allow negative values with proportional benchmarking. An er-
ror message is displayed in the presence of negative values in the input
indicator series or benchmarks and missing (NA) values are returned for the
benchmarked series. This corresponds to the G-Series 2.0 behaviour.

* 1: Allow negative values with proportional benchmarking but display a
warning message.

» 2: Allow negative values with proportional benchmarking without display-
ing any message.

Default value is negInput_option = @ (do not allow negative values with pro-
portional benchmarking).

(optional)

Logical argument specifying whether all variables in the indicator series data
frame (argument series_df), other than year and period, determine the set of
series to benchmark. Values specified with arguments var and with are ignored
when allCols = TRUE, which automatically implies default alterability coeffi-
cients, and variables with the same names as the indicator series must exist in
the benchmarks data frame (argument benchmarks_df).

Default value is al1Cols = FALSE.

(optional)

Logical argument specifying whether or not to display only essential informa-
tion such as warning messages, error messages and variable (series) or BY-group

56 stock_benchmarking

information when multiple series are benchmarked in a single call to the func-

tion. We advise against wrapping your benchmarking() call with suppressMessages()
to further suppress the display of variable (series) or BY-group information when
processing multiple series as this would make troubleshooting difficult in case

of issues with individual series. Note that specifying quiet = TRUE would also

nullify argument verbose.

Default value is quiet = FALSE.

Details

Comparison with benchmarking():

With stock series, benchmarking() is known to produce breaks in the benchmarking adjustments
at periods corresponding to the benchmark stocks (anchor points). stock_benchmarking() ad-
dresses this issue by working directly on the benchmarking adjustments. Smooth adjustments for
stocks are ensured by estimating a slope=0 cubic spline (a spline that is flat at the end knots) going
through knots corresponding to the difference (when argument lambda = @. @) or ratio (otherwise)
between the benchmarks (anchor points) and the corresponding indicator series values. These
knots are sometimes referred to as BI (Benchmark-to-Indicator) differences or BI ratios. Inter-
polations from the estimated cubic spline then provide the adjustments for the periods between
benchmarks.

Arguments rho, lambda, biasOptionand bias play a similar role as in benchmarking(). How-
ever, note that for stock_benchmarking(), argument rho only affects the results for periods
outside of, or around the, first and last benchmarks and lambda only takes two values in prac-
tice: lambda = 0.0 for additive adjustments (spline interpolations where the knots are BI dif-
ferences) or lambda = 1.0 for multiplicative adjustments (spline interpolations where the knots
are BI ratios). Any nonzero value for lambda would return the same result as lambda =1.0.
Alterability coefficients also play a similar role as in benchmarking() and have the same de-
fault values, i.e., 1.0 for the indicator series (nonbinding values) and 0.0 for the benchmarks
(binding benchmarks). However, similar to argument lambda, alterability coefficients in this
function only take two values in practice: 0.0 for binding values or 1.0 for nonbinding values.
Any nonzero alterability coefficient would return the same result as a coefficient of 1.0. An-
other difference with benchmarking() is that user-defined alterability coefficients are allowed
even when rho =1 with stock_benchmarking(). Finally, specifying a nonbinding benchmark
with stock_benchmarking() is equivalent to ignoring the benchmark entirely, as if the bench-
mark was not included in the input benchmarks file. Compared to benchmarking(), this gener-
ally translates into nonbinding benchmarks having a larger impact on the resulting benchmarked
stocks.

Solution around the first and last benchmarks (benchmarking timeliness issue):

A slope=0 spline is chosen because it conceptually corresponds to the (popular) Denton bench-
marking approach (rho =1). In order to provide a solution before the first benchmark and af-
ter the last benchmark that is similar to benchmarking() when rho <1, i.e., adjustments con-
verging to the bias at a speed dictated by argument rho, extra knots are added at both ends
before estimating the spline. By default, one extra low frequency (as defined with argument
low_freq_periodicity) knot is added on each side (beginning and end), i.e. one extra knot
is added before the first benchmark and after the last benchmark. Then, high (indicator se-
ries) frequency knots are added to cover the indicator series span to which is added an extra
year worth of high frequency knots. The value of all those extra knots is based on arguments

stock_benchmarking 57

rho, biasOption and bias. This produces natural looking, smooth adjustments for periods out-
side of or around the first and last benchmarks that gradually converge to the bias, similarly to
benchmarking(). The number of extra low frequency knots to be added can be modified with
argument n_low_freq_proj. Using high frequency knots right away (n_low_freq_proj = @)
would produce the same projected adjustments as benchmarking(). However, note that this
tends to produce an unnatural looking (overly contorted) spline around the first and last bench-
marks that could be substantially revised once the next benchmark is available. Using the default
n_low_freq_proj =1 generally works better. However, when rho is close to 1 (see argument
proj_knots_rho_bd), high frequency knots are immediately added on each side in order to en-
sure Denton-type (straight line) projected adjustments for periods outside of the first and last
benchmarks. Finally, a slope=0 cubic spline is fitted through the (original and extra) knots. Note
that in practice, the slope=0 spline is actually approximated by replicating the value of the end
knots 100 times within the following period (at a frequency corresponding to 100 times the indi-
cator series frequency).

A natural spline at the original end knots (first and last benchmarks) can be approximated by spec-

ifying a large value for argument low_freq_periodicity. The larger the value of low_freq_periodicity,
the more the cubic spline at the end knots will behave like a natural spline (2nd derivative equal

to O at the end knots, i.e., a spline that keeps a constant slope at the end knots as opposed to being

flat like a slope=0 spline).

In summary, the projected adjustments are controlled with arguments rho, bias (and biasOption),
n_low_freqg_proj, proj_knots_rho_bd and low_freq_periodicity:

¢ Default values for these arguments produce benchmarking() function-like projected adjust-
ments (reasonably slow convergence to the bias).

* Smaller values of rho would generate faster convergence to the bias.

 Specifying a user-defined bias with argument bias when rho < 1 is another way to influence
the shape of the projected adjustments.

» Specifying rho =1 produce Denton-like projected adjustments (repeated first/last adjust-
ments without convergence to the bias).

 Specifying a large value for low_freq_periodicity generates projected adjustments that
behave more like a natural spline, i.e., adjustments that continue in the same direction at the
first/last benchmark. The larger the value of low_freq_periodicity, the more the projected
adjustments keep on going in the same direction before turning around.

Note on revisions to the benchmarking adjustments:

benchmarking() adjustments would not be revised if all future benchmarks were to fall exactly
on the projected ones (based on the bias and value of rho) and the bias was fixed. The same could
be achieved with stock_benchmarking() if enough low (e.g., benchmarks) frequency knots were
projected. The problem with this approach, however, is that the projected adjustments may not
look natural as the spline may oscillate more than desired around the projected knots. This is
clearly noticeable as rho approaches 1 and the spline oscillates around the horizontally aligned
projected knots instead of being aligned in a perfectly straight line. The default implementation
of the spline around the first and last benchmarks described previously aims at reaching a best
compromise solution:

* anatural looking spline around the end knots avoiding oscillations and excessive contortions;

 small revisions to the spline if the next benchmark is close to the projected one when rho is
far enough from 1 (rho <= proj_knots_rho_bd);

58

stock_benchmarking

* projected adjustments that are in a straight line (free of oscillations) as rho approaches 1 (rho
> proj_knots_rho_bd).

Subsections Benchmarking Multiple Series, Arguments constant and neglnput_option and
Treatment of Missing (NA) Values at the end of the benchmarking() Details section are also
relevant for stock_benchmarking(). Consult them as necessary.

Finally, note that the cubic spline associated to the stock_benchmarking() adjustments can be
conveniently plotted with plot_benchAdj(). The latter is used in the Examples to illustrate some
of the topics discussed above.

Value

The function returns is a list of four data frames:

* series: data frame containing the benchmarked data (primary function output). BY-group
variables specified with argument by would be included in the data frame but not alterability
coefficient variables specified with argument var.

* benchmarks: copy of the input benchmarks data frame (excluding invalid benchmarks when
applicable). BY-group variables specified with argument by would be included in the data
frame but not alterability coefficient variables specified with argument with.

* graphTable: data frame containing supplementary data useful to produce analytical tables
and graphs (see function plot_graphTable()). It contains the following variables in addition
to the BY-group variables specified with argument by:

varSeries: Name of the indicator series variable

varBenchmarks: Name of the benchmark variable

altSeries: Name of the user-defined indicator series alterability coefficients variable
altSeriesValue: Indicator series alterability coefficients

altbenchmarks: Name of the user-defined benchmark alterability coefficients variable
altBenchmarksValue: Benchmark alterability coefficients

t: Indicator series period identifier (1 to T")

m: Benchmark coverage periods identifier (1 to M)

year: Data point calendar year

period: Data point period (cycle) value (1 to periodicity)

rho: Autoregressive parameter p (argument rho)

lambda: Adjustment model parameter A (argument lambda)

bias: Bias adjustment (default, user-defined or estimated bias according to arguments
biasOption and bias)

periodicity: The maximum number of periods in a year (e.g. 4 for a quarterly indicator
series)

date: Character string combining the values of variables year and period
subAnnual: Indicator series values

benchmarked: Benchmarked series values

avgBenchmark: Benchmark values divided by the number of coverage periods

avgSubAnnual: Indicator series values (variable subAnnual) averaged over the bench-
mark coverage period

subAnnualCorrected: Bias corrected indicator series values

stock_benchmarking 59

— benchmarkedSubAnnualRatio: Difference (A = 0) or ratio (A # 0) of the values of
variables benchmarked and subAnnual

— avgBenchmarkSubAnnualRatio: Difference (A = 0) or ratio (A # 0) of the values of
variables avgBenchmark and avgSubAnnual

— growthRateSubAnnual: Period to period difference (A = 0) or relative difference (A #
0) of the indicator series values (variable subAnnual)

— growthRateBenchmarked: Period to period difference (A = 0) or relative difference
(A # 0) of the benchmarked series values (variable benchmarked)

splineKnots: set of x and y coordinates (knots) used to estimate the natural cubic spline with
function stats: :spline(). In addition to the original set of knots corresponding to binding
benchmarks (anchor points), extra knots are also added at the beginning and end in order to
deal with the benchmarking timeliness issue and approximate a slope=0 spline at both ends
(see section Details). It contains the following variables in addition to the BY-group variables
specified with argument by:

— varSeries: Name of the indicator series variable

varBenchmarks: Name of the benchmark variable

x: Cubic spline x coordinate

y: Cubic spline y coordinate

— extraKnot: Logical value identifying the extra knots added at the beginning and end

Rows for which extraKnot == FALSE correspond to rows in the graphTable output data
frame for which m is not missing (not NA), with x = t and y = benchmarkedSubAnnualRatio.

Notes:

The output benchmarks data frame always contains the original benchmarks provided in the
input benchmarks data frame. Modified nonbinding benchmarks, when applicable, can be
recovered (calculated) from the output series data frame.

The function returns a NULL object if an error occurs before data processing could start. Oth-
erwise, if execution gets far enough so that data processing could start, then an incomplete
object would be returned in case of errors (e.g., output series data frame with NA values for
the benchmarked data).

The function returns "data.frame" objects that can be explicitly coerced to other types of ob-
jects with the appropriate as*() function (e.g., tibble::as_tibble() would coerce any of
them to a tibble).

References

Statistics Canada (2012). "Chapter 5: Benchmarking Stock". Theory and Application of Bench-
marking (Course code 0436). Statistics Canada, Ottawa, Canada.

See Also

benchmarking() plot_graphTable() bench_graphs plot_benchAdj()

60 stock_benchmarking

Examples

Quarterly stock series (same pattern repeated every year)
my_series <- ts_to_tsDF(ts(rep(c(85, 95, 125, 95), 7),
start = c(2013, 1),
frequency = 4))
head(my_series)

Annual benchmarks (end-of-year stocks)
my_benchmarks <- ts_to_bmkDF(ts(c(135, 125, 155, 145, 165),
start = 2013,
frequency = 1),
discrete_flag = TRUE,
alignment = "e",
ind_frequency = 4)
my_benchmarks

Benchmark using...

- recommended “rho> value for quarterly series (“rho = 0.7297)

- proportional model (“lambda = 17)

- bias-corrected indicator series with the estimated bias (“biasOption = 37)
... with “benchmarking()~ ("Proc Benchmarking"” approach)

out_PB <- benchmarking(my_series,
my_benchmarks,
rho = 0.729,
lambda = 1,
biasOption = 3)

... with “stock_benchmarking()~ ("Stock Benchmarking” approach)
out_SB <- stock_benchmarking(my_series,

my_benchmarks,

rho = 0.729,

lambda = 1,

biasOption = 3)

Compare the benchmarking adjustments of both approaches
plot_benchAdj(PB_graphTable = out_PB$graphTable,
SB_graphTable = out_SB$graphTable)

Have you noticed how smoother the ~stock_benchmarking()~ adjustments are compared
to the ~benchmarking()~ ones?

The gain in the quality of the resulting benchmarked stocks might not necessarily
be obvious in this example
plot(out_SB$graphTable$t, out_SB$graphTable$benchmarked,

type = "b", col = "red"”, xlab = "t", ylab = "Benchmarked Stock")
lines(out_PB$graphTable$t, out_PB$graphTable$benchmarked,

type = "b", col = "blue")
legend(x = "topleft”, bty = "n"”, inset = 0.05, 1ty = 1, pch =1,

col = c("red”, "blue"), legend = c("out_SB", "out_PB"))

title("Benchmarked Stock")

stock_benchmarking 61

What about cases where a flat indicator is used, which may happen in practice
in absence of a good indicator of the quarterly (sub-annual) movement?
my_series2 <- my_series
my_series2%$value <- 1 # flat indicator
head(my_series?2)
out_PB2 <- benchmarking(my_series2,

my_benchmarks,

rho = 0.729,

lambda = 1,

biasOption = 3,

quiet = TRUE) # don't show the function header

out_SB2 <- stock_benchmarking(my_series2,
my_benchmarks,
rho = 0.729,
lambda = 1,
biasOption = 3,
quiet = TRUE) # don't show the function header

plot(out_SB2$graphTable$t, out_SB2$graphTable$benchmarked,
type = "b", col = "red"”, xlab = "t", ylab = "Benchmarked Stock")
lines(out_PB2$graphTable$t, out_PB2%$graphTable$benchmarked,
type = "b", col = "blue”)
legend(x = "bottomright”, bty = "n", inset = 0.05, 1ty = 1, pch =1,
col = c("red”, "blue"), legend = c("out_SB2", "out_PB2"))
title("Benchmarked Stock - Flat Indicator”)

The awkwardness of the benchmarked stocks produced by ~benchmarking()” suddenly
becomes obvious. That's because the benchmarked series corresponds to the
benchmarking adjustments when using a flat indicator (e.g., a series on 1's
with proportional benchmarking):
plot_benchAdj(PB_graphTable = out_PB2$%$graphTable,
SB_graphTable = out_SB2$%$graphTable)

The shortcomings of the "Proc Benchmarking” approach (function ~benchmarking()™)
with stocks is also quite noticeable in this case when looking at the resulting

quarterly growth rates, which are conveniently produced by “plot_graphTable()".

Pay particular attention to the transition in the growth rates from Q4 to Q1

every year in the generated PDF graphs.

plot_graphTable(out_PB2$graphTable, file.path(tempdir(), "PB_stock_flat_ind.pdf"))
plot_graphTable(out_SB2$graphTable, file.path(tempdir(), "SB_stock_flat_ind.pdf"))

Illustrate approximating a natural cubic spline at the original end knots (first and
last benchmarks) by specifying a large ~low_freg_periodicity™ value.
out_SB3 <- stock_benchmarking(my_series,

my_benchmarks,

rho = 0.729,

lambda = 1,

62

stock_benchmarking

biasOption = 3,

Large value to approximate a natural cubic spline
low_freg_periodicity = 100,

quiet = TRUE)

plot_benchAdj(SB_graphTable = out_SB3$graphTable,
SB_splineKnots = out_SB3$splineKnots,
legendPos = "topleft”)

Illustrate "oscillations” of the cubic spline beyond the original end knots with
Denton-type benchmarking (“rho ~ 1) caused by using low frequency (annual) extra knots.
out_SB4 <- stock_benchmarking(my_series,

my_benchmarks,

rho = ©0.999,

lambda = 1,

biasOption = 3,

Use 3 annual extra knots first
n_low_freq_proj = 3,
proj_knots_rho_bd = 1,

quiet = TRUE)

plot_benchAdj(SB_graphTable = out_SB4$graphTable,
SB_splineKnots = out_SB4$splineKnots)

No "oscillations” with the default ~“proj_knots_rho_bd™ value because high frequency
(quarterly) extra knots are used right away ("n_low_freg_proj" is ignored) since
“rho = 0.999° exceeds the default “proj_knots_rho_bd™ value (0.995*3 for quarterly data).
These projected adjustments are more in line with Denton-type adjustments (straight line).
out_SB4b <- stock_benchmarking(my_series,

my_benchmarks,

rho = ©.999,

lambda = 1,

biasOption = 3,

quiet = TRUE)

plot_benchAdj(SB_graphTable = out_SB4b$graphTable,
SB_splineKnots = out_SB4b$splineKnots)

Illustrate "contortions” of the cubic spline around the original end knots caused
by using high frequency extra knots right away ("n_low_freg_proj = @), i.e., using
the same projected adjustments as those that would be obtained with ~benchmarking()".

To exacerbate the phenomenon, we'll use monthly data (11 periods between each annual
benchmark compared to only 3 for quarterly data, i.e., a less constrained spline)
and a rather small value for “rho™ (0.5 < 0.9 = recommended value for monthly data)
for a faster convergence to the bias of the projected adjustments.

e R

time_values_conv 63

yr_vec <- unique(my_series$year)
my_series3 <- data.frame(year = rep(yr_vec, each = 12),
period = rep(1:12, length(yr_vec)),
value = rep(1, 12 * length(yr_vec))) # flat indicator
my_benchmarks2 <- my_benchmarks
my_benchmarks2[c("startPeriod”, "endPeriod”)] <- 12

out_SB5 <- stock_benchmarking(my_series3,
my_benchmarks2,
rho = 0.5,
lambda = 1,
biasOption = 3,

Use monthly extra knots right away
n_low_freq_proj = 0,

quiet = TRUE)

plot_benchAdj(SB_graphTable = out_SB5$graphTable,
SB_splineKnots = out_SB5%$splineKnots)

No excessive "contortions” around the original end knots with the default
“n_low_freq_proj = 17, i.e., use 1 low frequency (annual) extra knot first.
out_SB5b <- stock_benchmarking(my_series3,

my_benchmarks2,

rho = 0.5,

lambda = 1,

biasOption = 3,

quiet = TRUE)

plot_benchAdj(SB_graphTable = out_SB5b$graphTable,
SB_splineKnots = out_SB5b$splineknots)

To even better highlight the potential excessive "contortions” of the cubic spline
when enforcing the “benchmarking()~ projected adjustment (i.e., low frequency extra
knots right away with “n_low_freq_proj = @), let's plot the previous two sets of
adjustments on the same plot (the blue line corresponds to the “n_low_freq_proj = @~
case, i.e., the “benchmarking()" projected adjustments while the red line corresponds
to the default ~stock_benchmarking()™ adjustments, i.e., “n_low_freq_proj = 17).
plot_benchAdj(PB_graphTable = out_SB5$graphTable,

SB_graphTable = out_SB5b$graphTable,

legend = NULL)

#
#
#
#
#
#

time_values_conv Time values conversion functions

Description

Time values conversion functions used internally by other gseries functions.

64 time_values_conv

Usage

gs.time2year(ts)

gs.time2per(ts)

gs.time2str(ts, sep = "-")
Arguments
ts (mandatory)

Time series (object of class "ts" or "mts").
sep (optional)

String (character constant) specifying the separator to use between the year and
period values.

n_n

Default value is sep =

Value

gs.time2year () returns an integer vector of the "nearest” year (time unit) values. This function is
the equivalent of stats: :cycle() for time unit values.

gs.time2per () returns an integer vector of the period (cycle) values (see stats: :cycle()).

gs.time2str () returns a character vector corresponding to gs. time2year (ts) if stats: : frequency(ts)
==1or gs.time2year(ts) and gs.time2per(ts) separated with sep otherwise.

See Also

ts_to_tsDF() ts_to_bmkDF () gs.build_proc_grps()

Examples

Dummy monthly time series

mth_ts <- ts(rep(NA, 15), start = c(2019, 1), frequency = 12)
mth_ts

gs.time2year(mth_ts)

gs.time2per(mth_ts)

gs.time2str(mth_ts)

gs.time2str(mth_ts, sep = "m")

Dummy quarterly time series

gtr_ts <- ts(rep(NA, 5), start = c(2019, 1), frequency = 4)
qtr_ts

gs.time2year(qtr_ts)

gs.time2per(qtr_ts)

gs.time2str(qtr_ts)

gs.time2str(qgtr_ts, sep = "q")

tsbalancing 65

tsbalancing Restore cross-sectional (contemporaneous) linear constraints

Description

Replication of the G-Series 2.0 SAS® GSeriesTSBalancing macro. See the G-Series 2.0 documen-
tation for details (Statistics Canada 2016).

This function balances (reconciles) a system of time series according to a set of linear constraints.
The balancing solution is obtained by solving one or several quadratic minimization problems (see
section Details) with the OSQP solver (Stellato et al. 2020). Given the feasibility of the balancing
problem(s), the resulting time series data respect the specified constraints for every time period.
Linear equality and inequality constraints are allowed. Optionally, the preservation of temporal
totals may also be specified.

Usage

tsbalancing(
in_ts,
problem_specs_df,
temporal_grp_periodicity = 1,
temporal_grp_start = 1,
osqgp_settings_df = default_osgp_sequence,
display_level =1,
alter_pos =1,
alter_neg
alter_mix =1,
alter_temporal = 0,

1
-

lower_bound = -Inf,
upper_bound = Inf,
tolV = 0,

tolV_temporal = 0,
tolP_temporal = NA,

New in G-Series 3.0
validation_tol = 0.001,
trunc_to_zero_tol = validation_tol,
full_sequence = FALSE,
validation_only = FALSE,

quiet = FALSE

Arguments

in_ts (mandatory)

Time series (object of class "ts" or "mts") that contains the time series data to be
reconciled. They are the balancing problems’ input data (initial solutions).

tsbalancing

problem_specs_df
(mandatory)

Balancing problem specifications data frame (object of class "data.frame"). Us-
ing a sparse format inspired from the SAS/OR® LP procedure’s sparse data
input format (SAS Institute 2015), it contains only the relevant information
such as the nonzero coefficients of the balancing constraints as well as the non-
default alterability coefficients and lower/upper bounds (i.e., values that would
take precedence over those defined with arguments alter_pos, alter_neg,
alter_mix, alter_temporal, lower_bound and upper_bound).

The information is provided using four mandatory variables (type, col, row
and coef) and one optional variable (timeVal). An observation (a row) in the
problem specs data frame either defines a label for one of the seven types of the
balancing problem elements with columns type and row (see Label definition
records below) or specifies coefficients (numerical values) for those balancing
problem elements with variables col, row, coef and timeVal (see Information
specification records below).
* Label definition records (type is not missing (is not NA))

— type (chr): reserved keyword identifying the type of problem element
being defined:

EQ: equality (=) balancing constraint
LE: lower or equal (<) balancing constraint
% GE: greater or equal (>) balancing constraint
% lowerBd: period value lower bound
upperBd: period value upper bound
% alter: period values alterability coefficient
* alterTmp: temporal total alterability coefficient
— row (chr): label to be associated to the problem element (type keyword)

— all other variables are irrelevant and should contain missing data (NA
values)

* Information specification records (type is missing (is NA))

— type (chr): not applicable (NA)

— col (chr): series name or reserved word _rhs_ to specify a balancing
constraint right-hand side (RHS) value.

— row (chr): problem element label.

— coef (num): problem element value:
balancing constraint series coefficient or RHS value
* series period value lower or upper bound
% series period value or temporal total alterability coefficient

— timeVal (num): optional time value to restrict the application of series
bounds or alterability coefficients to a specific time period (or temporal
group). It corresponds to the time value, as returned by stats: : time(),
of a given input time series (argument in_ts) period (observation) and
is conceptually equivalent to year + (period — 1)/ frequency.

tsbalancing 67

nn

Note that empty strings ("" or '') for character variables are interpreted as
missing (NA) by the function. Variable row identifies the elements of the bal-
ancing problem and is the key variable that makes the link between both types
of records. The same label (row) cannot be associated with more than one type
of problem element (type) and multiple labels (row) cannot be defined for the
same given type of problem element (type), except for balancing constraints
(values "EQ", "LE" and "GE" of column type). User-friendly features of the
problem specs data frame include:

* The order of the observations (rows) is not important.

 Character values (variables type, row and col) are not case sensitive (e.g.,
strings "Constraint 1" and "CONSTRAINT 1" for row would be considered
as the same problem element label), except when col is used to specify a
series name (a column of the input time series object) where case sensitiv-
ity is enforced.

* The variable names of the problem specs data frame are also not case sen-
sitive (e.g., type, Type or TYPE are all valid) and time_val is an accepted
variable name (instead of timeVal).

Finally, the following table lists valid aliases for the type keywords (type of
problem element):

Keyword Aliases

EQ ==, =

LE <=, <

GE >= >
lowerBd lowerBound, lowerBnd, + same terms with °’_’, °. or ’ ’ between words
upperBd upperBound, upperBnd, + same terms with ’_’, ’.” or ’ ’ between words

alterTmp alterTemporal, alterTemp, + same terms with’_’, ’. or ’ ’ between words

Reviewing the Examples should help conceptualize the balancing problem spec-
ifications data frame.

temporal_grp_periodicity
(optional)
Positive integer defining the number of periods in temporal groups for which the
totals should be preserved. E.g., specify temporal_grp_periodicity = 3 with
a monthly time series for quarterly total preservation and temporal_grp_periodicity
=12 (or temporal_grp_periodicity = frequency(in_ts)) for annual total
preservation. Specifying temporal_grp_periodicity = 1 (default) corresponds
to period-by-period processing without temporal total preservation.
Default value is temporal_grp_periodicity =1 (period-by-period process-
ing without temporal total preservation).

temporal_grp_start
(optional)
Integer in the [1 .. temporal_grp_periodicity] interval specifying the start-
ing period (cycle) for temporal total preservation. E.g., annual totals corre-
sponding to fiscal years defined from April to March of the following year
would be specified with temporal_grp_start =4 for a monthly time series

68

tsbalancing

(frequency(in_ts) = 12) and temporal_grp_start = 2 for a quarterly time
series (frequency(in_ts) =4). This argument has no effect for period-by-

period processing without temporal total preservation (temporal_grp_periodicity

=1).

Default value is temporal _grp_start =1.

osqp_settings_df

display_level

Displayed information 0 1
Function header v v
Balancing problem elements v
Individual problem solving details
Individual problem results (values and constraints)

alter_pos

alter_neg

(optional)

Data frame (object of class "data.frame") containing a sequence of OSQP set-
tings for solving the balancing problems. The package includes two predefined
OSQP settings sequence data frames:

* default_osqp_sequence: fast and effective (default);
* alternate_osqp_sequence: geared towards precision at the expense of exe-
cution time.

See vignette("osgp-settings-sequence-dataframe”) for more details on
this topic and to see the actual contents of these two data frames. Note that the
concept of a solving sequence with different sets of solver settings is new in
G-Series 3.0 (a single solving attempt was made in G-Series 2.0).
Default value is osqp_settings_df = default_osqgp_sequence.
(optional)
Integer in the [0 .. 3] interval specifying the level of information to display in
the console (stdout()). Note that specifying argument quiet = TRUE would
nullify argument display_level (none of the following information would be
displayed).

ASRNENEN
ANENENENE®

Default value is display_level = 1.

(optional)

Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with positive coefficients in all balancing con-
straints in which they are involved (e.g., component series in aggregation table
raking problems). Alterability coefficients provided in the problem specification
data frame (argument problem_specs_df) override this value.

Default value is alter_pos = 1.0 (nonbinding values).

(optional)

Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with negative coefficients in all balancing con-
straints in which they are involved (e.g., marginal totals in aggregation table
raking problems). Alterability coefficients provided in the problem specifica-
tion data frame (argument problem_specs_df) override this value.

Default value is alter_neg = 1.0 (nonbinding values).

tsbalancing 69

alter_mix (optional)

Nonnegative real number specifying the default alterability coefficient associ-
ated to the values of time series with a mix of positive and negative coefficients
in the balancing constraints in which they are involved. Alterability coefficients
provided in the problem specification data frame (argument problem_specs_df)
override this value.

Default value is alter_mix = 1.0 (nonbinding values).

alter_temporal (optional)

Nonnegative real number specifying the default alterability coefficient associ-
ated to the time series temporal totals. Alterability coefficients provided in the
problem specification data frame (argument problem_specs_df) override this
value.

Default value is alter_temporal = 0.0 (binding values).

lower_bound (optional)

Real number specifying the default lower bound for the time series values.
Lower bounds provided in the problem specification data frame (argument problem
_specs_df) override this value.

Default value is lower_bound = -Inf (unbounded).

upper_bound (optional)

Real number specifying the default upper bound for the time series values. Up-
per bounds provided in the problem specification data frame (argument problem
_specs_df) override this value.

Default value is upper_bound = Inf (unbounded).

tolV (optional)

Nonnegative real number specifying the tolerance, in absolute value, for the
balancing constraints right-hand side (RHS) values:

e EQconstraints: Ax=b become b-ec<Ax<b-+e¢

e LE constraints: Ax<b become Ax<b-+¢

e GE constraints: Ax>b become Ax>b—¢
where € is the tolerance specified with tolV. This argument does not apply to the
period value (lower and upper) bounds specified with arguments lower_bound
and upper_bound or in the problem specs data frame (argument prob_specs_df).
Le., tolV does not affect the time series values lower and upper bounds, unless

they are specified as balancing constraints instead (with GE and LE constraints
in the problem specs data frame).

Default value is tolV = 0.0 (no tolerance).
tolV_temporal, tolP_temporal
(optional)
Nonnegative real number, or NA, specifying the tolerance, in percentage (tolP_temporal)

or absolute value (tolV_temporal), for the implicit temporal aggregation con-
straints associated to binding temporal totals (>, z;; = >_, y; +), which be-

come:
g Yi,t — €abs < E Tit < E Yi,t T €abs
t t t

tsbalancing

or

D vii(l=6a) Y s < wie (1+ €ral)
t t t

where e, and € are the absolute and percentage tolerances specified respec-

tively with tolV_temporal and tolP_temporal. Both arguments cannot be
specified together (one must be specified while the other must be NA).

Example: to set a tolerance of 10 units, specify tolV_temporal = 10, tolP_temporal
= NA; to set a tolerance of 1%, specifytolV_temporal = NA, tolP_temporal = 0.01.
Default values are tolV_temporal = 9.0 and tolP_temporal = NA (no toler-

ance).

validation_tol (optional)
Nonnegative real number specifying the tolerance for the validation of the bal-
ancing results. The function verifies if the final (reconciled) time series values
meet the constraints, allowing for discrepancies up to the value specified with
this argument. A warning is issued as soon as one constraint is not met (discrep-
ancy greater than validation_tol).
With constraints defined as 1 < Ax < u, where 1 = u for EQ constraints,
1 = —oo for LE constraints and u = oo for GE constraints, constraint dis-
crepancies correspond to max (0,1 — Ax, Ax — u), where constraint bounds 1
and u include the tolerances, when applicable, specified with arguments tolV,
tolV_temporal and tolP_temporal.
Default value is validation_tol = 0.001.

trunc_to_zero_tol
(optional)
Nonnegative real number specifying the tolerance, in absolute value, for replac-
ing by zero (small) values in the output (reconciled) time series data (output
object out_ts). Specify trunc_to_zero_tol = @ to disable this truncation to
zero process on the reconciled data. Otherwise, specify trunc_to_zero_tol >
@ to replace with 0.0 any value in the [—e, €] interval, where € is the tolerance
specified with trunc_to_zero_tol.
Note that the final constraint discrepancies (see argument validation_tol) are
calculated on the zero truncated reconciled time series values, therefore ensuring
accurate validation of the actual reconciled data returned by the function.
Default value is trunc_to_zero_tol = validation_tol.

full_sequence (optional)
Logical argument specifying whether all the steps of the OSQP settings se-
quence data frame should be performed or not. See argument osgp_settings_df
and vignette("osgp-settings-sequence-dataframe”) for more details on
this topic.
Default value is full_sequence = FALSE.

validation_only
(optional)
Logical argument specifying whether the function should only perform input
data validation or not. When validation_only = TRUE, the specified balancing
constraints and period value (lower and upper) bounds constraints are validated
against the input time series data, allowing for discrepancies up to the value

tsbalancing 71

specified with argument validation_tol. Otherwise, when validation_only
= FALSE (default), the input data are first reconciled and the resulting (output)
data are then validated.

Default value is validation_only = FALSE.

quiet (optional)
Logical argument specifying whether or not to display only essential informa-
tion such as warnings, errors and the period (or set of periods) being reconciled.
You could further suppress, if desired, the display of the balancing period(s) in-
formation by wrapping your tsbalancing() call with suppressMessages().
In that case, the proc_grp_df output data frame can be used to identify (unsuc-
cessful) balancing problems associated with warning messages (if any). Note
that specifying quiet = TRUE would also nullify argument display_level.
Default value is quiet = FALSE.

Details

This function solves one balancing problem per processing group (see section Processing groups
for details). Each of these balancing problems is a quadratic minimization problem of the following
form:

minixmize (y —x)"W(y —x)

subjectto 1< Ax <u

where

* y is the vector of the initial problem values, i.e., the initial time series period values and, when
applicable, temporal totals;

* x is the final (reconciled) version of vector y;
0 if [e;ys[=0

. , where ¢; is
otherwise v

» matrix W = diag (w) with vector w elements w; = {
[ciyil
the alterability coefficient of problem value y; and cases corresponding to |c;y;| = 0 are fixed

problem values (binding period values or temporal totals);

* matrix A and vectors 1 and u specify the balancing constraints, the implicit temporal total
aggregation constraints (when applicable), the period value (upper and lower) bounds as well
as x; = y; constraints for fixed y; values (|c;y;| = 0).

In practice, the objective function of the problem solved by OSQP excludes constant term y ™ Wy,
therefore corresponding to xTWx — 2 (wy) " x, and the fixed y; values (|c;y;] = 0) are removed
from the problem, adjusting the constraints accordingly, i.e.:

* rows corresponding to the x; = y; constraints for fixed y; values are removed from A, 1 and
u;

* columns corresponding to fixed y; values are removed from A while appropriately adjusting 1
and u.

Alterability Coefficients:

Alterability coefficients are nonnegative numbers that change the relative cost of modifying an
initial problem value. By changing the actual objective function to minimize, they allow the gen-
eration of a wide range of solutions. Since they appear in the denominator of the objective function

tsbalancing

(matrix W), the larger the alterability coefficient the less costly it is to modify a problem value
(period value or temporal total) and, conversely, the smaller the alterability coefficient the more
costly it becomes. This results in problem values with larger alterability coefficients proportion-
ally changing more than the ones with smaller alterability coefficients. Alterability coefficients
of 0.0 define fixed (binding) problem values while alterability coefficients greater than 0.0 define
free (nonbinding) values. The default alterability coefficients are 0.0 for temporal totals (argument
alter_temporal) and 1.0 for period values (arguments alter_pos, alter_neg, alter_mix). In
the common case of aggregation table raking problems, the period values of the marginal totals
(time series with a coefficient of —1 in the balancing constraints) are usually binding (specified
with alter_neg = @) while the period values of the component series (time series with a coef-
ficient of 1 in the balancing constraints) are usually nonbinding (specified with alter_pos > 0,
e.g., alter_pos = 1). Almost binding problem values (e.g., marginal totals or temporal totals) can
be obtained in practice by specifying very small (almost 0.0) alterability coefficients relative to
those of the other (nonbinding) problem values.

Temporal total preservation refers to the fact that temporal totals, when applicable, are usu-
ally kept “as close as possible” to their initial value. Pure preservation is achieved by default
with binding temporal totals while the change is minimized with nonbinding temporal totals (in
accordance with the set of alterability coefficients).

Validation and troubleshooting:

Successful balancing problems (problems with a valid solution) have sol_status_val > @ or,
equivalently, n_unmet_con =@ or max_discr <=validation_tol in the output proc_grp_df
data frame. Troubleshooting unsuccessful balancing problems is not necessarily straightforward.
Following are some suggestions:

* Investigate the failed constraints (unmet_flag = TRUE or, equivalently, discr_out > validation_tol
in the output prob_con_df data frame) to make sure that they do not cause an empty solution
space (infeasible problem).

* Change the OSQP solving sequence. E.g., try:
1. argument full_sequence = TRUE
2. argument osgp_settings_df = alternate_osgp_sequence
3. arguments osgp_settings_df = alternate_osqgp_sequence and full_sequence = TRUE
See vignette("osgp-settings-sequence-dataframe”) for more details on this topic.

* Increase (review) the validation_tol value. Although this may sound like cheating, the
default validation_tol value (1 x 10~2) may actually be too small for balancing prob-
lems that involve very large values (e.g., in billions) or, conversely, too large with very small
problem values (e.g, < 1.0). Multiplying the average scale of the problem data by the ma-
chine tolerance (.Machine$double.eps) gives an approximation of the average size of the
discrepancies that tsbalancing() should be able to handle (distinguish from 0) and should
probably constitute an absolute lower bound for argument validation_tol. In practice, a
reasonable validation_tol value would likely be 1 x 103 to 1 x 10° times larger than this
lower bound.

* Address constraints redundancy. Multi-dimensional aggregation table raking problems are
over-specified (involve redundant constraints) when all totals of all dimensions of the data
cube are binding (fixed) and a constraint is defined for all of them. Redundancy also occurs
for the implicit temporal aggregation constraints in single- or multi-dimensional aggregation
table raking problems with binding (fixed) temporal totals. Over-specification is generally
not an issue for tsbalancing() if the input data are not contradictory with regards to the

tsbalancing 73

redundant constraints, i.e., if there are no inconsistencies (discrepancies) associated to the
redundant constraints in the input data or if they are negligible (reasonably small relative to
the scale of the problem data). Otherwise, this may lead to unsuccessful balancing problems
with tsbalancing(). Possible solutions would then include:

1. Resolve (or reduce) the discrepancies associated to the redundant constraints in the input
data.

2. Select one marginal total in every dimension, but one, of the data cube and remove
the corresponding balancing constraints from the problem. This cannot be done for the
implicit temporal aggregation constraints.

3. Select one marginal total in every dimension, but one, of the data cube and make them
nonbinding (alterability coefficient of, say, 1.0).

4. Do the same as (3) for the temporal totals of one of the inner-cube component series
(make them nonbinding).

5. Make all marginal totals of every dimension, but one, of the data cube amlost binding,
i.e., specify very small alterability coefficients (say 1 x 10~%) compared to those of the
inner-cube component series.

6. Do the same as (5) for the temporal totals of all inner-cube component series (very small
alterability coefficients, e.g., with argument alter_temporal).

7. Use tsraking() (if applicable), which handles these inconsistencies by using the Moore-
Penrose inverse (uniform distribution among all binding totals).

Solutions (2) to (7) above should only be considered if the discrepancies associated to the
redundant constraints in the input data are reasonably small as they would be distributed
among the omitted or nonbinding totals with tsbalancing() and all binding totals with
tsraking(). Otherwise, one should first investigate solution (1) above.

 Relax the bounds of the problem constraints, e.g.:
— argument tolV for the balancing constraints;

— arguments tolV_temporal and tolP_temporal for the implicit temporal aggregation
constraints;

— arguments lower_bound and upper_bound.

Value

The function returns is a list of seven objects:

* out_ts: modified version of the input time series object (class "ts" or "mts"; see argument
in_ts) with the resulting reconciled time series values (primary function output). It can
be explicitly coerced to another type of object with the appropriate as*() function (e.g.,
tsibble::as_tsibble() would coerce it to a tsibble).

* proc_grp_df: processing group summary data frame, useful to identify problems that have
succeeded or failed. It contains one observation (row) for each balancing problem with the
following columns:

— proc_grp (num): processing group id.
— proc_grp_type (chr): processing group type. Possible values are:
* "period”;
+ "temporal group”.
— proc_grp_label (chr): string describing the processing group in the following format:

tsbalancing

* "<year>-<period>" (single periods)
* "<start year>-<start period> - <end year>-<end period>" (temporal groups)

— sol_status_val, sol_status (num, chr): solution status numerical (integer) value and
description string:

% 1:"valid initial solution”;

% =1: "invalid initial solution”;

% 2: "valid polished osqgp solution”;

% —2: "invalid polished osqgp solution”;

% 3: "valid unpolished osgp solution”;

—3: "invalid unpolished osqgp solution”;

* —4: "unsolvable fixed problem” (invalid initial solution).

n_unmet_con (num): number of unmet constraints (sum(prob_conf_df$unmet_flag)).

max_discr (num): maximum constraint discrepancy (max (prob_conf_df$discr_out)).

validation_tol (num): specified tolerance for validation purposes (argument validation_tol).

sol_type (chr): returned solution type. Possible values are:

* "initial” (initial solution, i.e., input data values);

* "osqgp" (OSQP solution).
osqgp_attempts (num): number of attempts made with OSQP (depth achieved in the
solving sequence).

osqp_seqno (num): step # of the solving sequence corresponding to the returned solution.
NA when sol_type = "initial".

osgp_status (chr): OSQP status description string (osqp_sol_info_df$status). NA
when sol_type = "initial".

osqgp_polished (logi): TRUE if the returned OSQP solution is polished (osqp_sol_info_df
$status_polish = 1), FALSE otherwise. NA when sol_type = "initial".

total_solve_time (num): total time, in seconds, of the solving sequence.

Column proc_grp constitutes a unique key (distinct rows) for the data frame. Successful bal-
ancing problems (problems with a valid solution) correspond to rows with sol_status_val
> 0 or, equivalently, to n_unmet_con =@ or to max_discr <= validation_tol. The initial
solution (sol_type ="initial") is returned only if a) there are no initial constraint dis-
crepancies, b) the problem is fixed (all values are binding) or c¢) it beats the OSQP solu-
tion (smaller total constraint discrepancies). The OSQP solving sequence is described in
vignette("osgp-settings -sequence-dataframe”).

periods_df: time periods data frame, useful to match periods to processing groups. It con-
tains one observation (row) for each period of the input time series object (argument in_ts)
with the following columns:

— proc_grp (num): processing group id.

— t (num): time id (1:nrow(in_ts)).

— time_val (num): time value (stats::time(in_ts)). It conceptually corresponds to

year + (period — 1)/ frequency.

Columns t and time_val both constitute a unique key (distinct rows) for the data frame.
prob_val_df: problem values data frame, useful to analyze change diagnostics, i.e., initial

vs final (reconciled) values. It contains one observation (row) for each value involved in each
balancing problem, with the following columns:

tsbalancing 75

— proc_grp (num): processing group id.
— val_type (chr): problem value type. Possible values are:
+ "periodvalue”;
+ "temporal total”.
— name (chr): time series (variable) name.
— t (num): time id (1:nrow(in_ts)); id of the first period of the temporal group for a
temporal total.

— time_val (num): time value (stats::time(in_ts)); value of the first period of the
temporal group for a temporal total. It conceptually corresponds to year + (period —
1)/ frequency.

— lower_bd, upper_bd (num): period value bounds; always -Inf and Inf for a temporal
total.

— alter (num): alterability coefficient.

— value_in, value_out (num): initial and final (reconciled) values.

— dif (num): value_out - value_in.

— rdif (num): dif / value_in; NA if value_in = 0.
Columns val_type + name + t and val_type + name + time_val both constitute a unique key
(distinct rows) for the data frame. Binding (fixed) problem values correspond to rows with

alter = 0@ or value_in = 0. Conversely, nonbinding (free) problem values correspond to rows
with alter !=0 and value_in !=0.

* prob_con_df: problem constraints data frame, useful for troubleshooting problems that failed
(identify unmet constraints). It contains one observation (row) for each constraint involved in
each balancing problem, with the following columns:

— proc_grp (num): processing group id.

— con_type (chr): problem constraint type. Possible values are:
% "balancing constraint”;
+ "temporal aggregation constraint”;
+ "period value bounds”.

While balancing constraints are specicied by the user, the other two types of constraints
(temporal aggregation constraints and period value bounds) are automatically added to
the problem by the function (when applicable).

— name (chr): constraint label or time series (variable) name.

— t (num): time id (1:nrow(in_ts)); id of the first period of the temporal group for a
temporal aggregation constraint.

— time_val (num): time value (stats::time(in_ts)); value of the first period of the
temporal group for a temporal aggregation constraint. It conceptually corresponds to
year + (period — 1)/ frequency.
— 1, u, Ax_in, Ax_out (num): initial and final constraint elements (1 < Ax < u).
— discr_in, discr_out (num): initial and final constraint discrepancies (max (0,1 — Ax, Ax — u)).
— validation_tol (num): specified tolerance for validation purposes (argument validation_tol).
— unmet_flag (logi): TRUE if the constraint is not met (discr_out > validation_tol),
FALSE otherwise.

Columns con_type + name + t and con_type + name + time_val both constitute a unique key
(distinct rows) for the data frame. Constraint bounds 1 = u for EQ constraints,] = —oo for LE

76 tsbalancing

constraints, u = oo for GE constraints, and include the tolerances, when applicable, specified
with arguments tolV, tolV_temporal and tolP_temporal.

* osqgp_settings_df: OSQP settings data frame. It contains one observation (row) for each
problem (processing group) solved with OSQP (proc_grp_df$sol_type = "osqp"), with the
following columns:

— proc_grp (num): processing group id.

— one column corresponding to each element of the list returned by the osqp: : GetParams ()
method applied to a OSQP solver object (class "osqp_model" object as returned by
osqgp::osgp()), e.g.:

+ Maximum iterations (max_iter);
Primal and dual infeasibility tolerances (eps_prim_inf and eps_dual_inf);
% Solution polishing flag (polish);
Number of scaling iterations (scaling);
* etc.
— extra settings specific to tsbalancing():

* prior_scaling (logi): TRUE if the problem data were scaled (using the average of the
free (nonbinding) problem values as the scaling factor) prior to solving with OSQP,
FALSE otherwise.

* require_polished (logi): TRUE if a polished solution from OSQP (osqp_sol_info_df
$status_polish = 1) was required for this step in order to end the solving sequence,
FALSE otherwise. See vignette("osqgp-settings-sequence-dataframe”) for more
details on the solving sequence used by tsbalancing().

Column proc_grp constitutes a unique key (distinct rows) for the data frame. Visit https://
osqp.org/docs/interfaces/solver_settings.html for all available OSQP settings. Prob-
lems (processing groups) for which the initial solution was returned (proc_grp_df$sol_type
="initial") are not included in this data frame.

e osgp_sol_info_df: OSQP solution information data frame. It contains one observation
(row) for each problem (processing group) solved with OSQP (proc_grp_df$sol_type =
"osqp"), with the following columns:

— proc_grp (num): processing group id.

— one column corresponding to each element of the info list of a OSQP solver object
(class "osqp_model" object as returned by osqgp: : osqp()) after having been solved with
the osqp: : Solve() method, e.g.:

+ Solution status (status and status_val);
* Polishing status (status_polish);
+ Number of iterations (iter);
Objective function value (obj_val);
+ Primal and dual residuals (pri_res and dua_res);
% Solve time (solve_time);
* etc.
— extra information specific to tsbalancing():

prior_scaling_factor (num): value of the scaling factor when osqp_settings_df
$prior_scaling = TRUE (prior_scaling_factor = 1.0 otherwise).

https://osqp.org/docs/interfaces/solver_settings.html
https://osqp.org/docs/interfaces/solver_settings.html

tsbalancing 77

* obj_val_ori_prob (num): original balancing problem’s objective function value,
which is the OSQP objective function value (obj_val) on the original scale (when
osgp_settings_df$prior_scaling = TRUE) plus the constant term of the original
balancing problem’s objective function, i.e., obj_val_ori_prob = obj_val * prior
_scaling_factor + <constant term>, where <constant term> corresponds toy ™ Wy.
See section Details for the definition of vector y, matrix W and, more generally
speaking, the complete expression of the balancing problem’s objective function.

Column proc_grp constitutes a unique key (distinct rows) for the data frame. Visit https://
osqp.org for more information on OSQP. Problems (processing groups) for which the initial
solution was returned (proc_grp_df$sol_type = "initial") are not included in this data
frame.

Note that the "data.frame" objects returned by the function can be explicitly coerced to other types
of objects with the appropriate as*() function (e.g., tibble: :as_tibble() would coerce any of
them to a tibble).

Processing groups

The set of periods of a given reconciliation (raking or balancing) problem is called a processing
group and either corresponds to:

* asingle period with period-by-period processing or, when preserving temporal totals, for the
individual periods of an incomplete temporal group (e.g., an incomplete year)

* or the set of periods of a complete temporal group (e.g., a complete year) when preserving
temporal totals.

The total number of processing groups (total number of reconciliation problems) depends on the
set of periods in the input time series object (argument in_ts) and on the value of arguments
temporal_grp_periodicity and temporal_grp_start.

Common scenarios include temporal_grp_periodicity =1 (default) for period-by period pro-
cessing without temporal total preservation and temporal_grp_periodicity = frequency(in_ts)
for the preservation of annual totals (calendar years by default). Argument temporal_grp_start
allows the specification of other types of (non-calendar) years. E.g., fiscal years starting on April
correspond to temporal_grp_start =4 with monthly data and temporal_grp_start =2 with
quarterly data. Preserving quarterly totals with monthly data would correspond to temporal_grp
_periodicity = 3.

By default, temporal groups covering more than a year (i.e., corresponding to temporal_grp
_periodicity > frequency(in_ts) start on a year that is a multiple of ceiling(temporal_grp
_periodicity / frequency(in_ts)). E.g., biennial groups corresponding to temporal_grp_per
iodicity = 2 * frequency(in_ts) start on an even year by default. This behaviour can be changed
with argument temporal_grp_start. E.g., the preservation of biennial totals starting on an odd
year instead of an even year (default) corresponds to temporal_grp_start = frequency(in_ts)
+ 1 (along with temporal_grp_periodicity =2 * frequency(in_ts)).

See the gs.build_proc_grps() Examples for common processing group scenarios.

Comparing tsraking() and tsbalancing()

e tsraking() is limited to one- and two-dimensional aggregation table raking problems (with
temporal total preservation if required) while tsbalancing() handles more general balancing

https://osqp.org
https://osqp.org

78 tsbalancing

problems (e.g., higher dimensional raking problems, nonnegative solutions, general linear
equality and inequality constraints as opposed to aggregation rules only, etc.).

* tsraking() returns the generalized least squared solution of the Dagum and Cholette regression-
based raking model (Dagum and Cholette 2006) while tsbalancing() solves the correspond-
ing quadratic minimization problem using a numerical solver. In most cases, convergence to
the minimum is achieved and the tsbalancing() solution matches the (exact) tsraking()
least square solution. It may not be the case, however, if convergence could not be achieved
after a reasonable number of iterations. Having said that, only in very rare occasions will the
tsbalancing() solution significantly differ from the tsraking() solution.

* tshalancing() is usually faster than tsraking(), especially for large raking problems, but is
generally more sensitive to the presence of (small) inconsistencies in the input data associated
to the redundant constraints of fully specified (over-specified) raking problems. tsraking()
handles these inconsistencies by using the Moore-Penrose inverse (uniform distribution among
all binding totals).

* tshalancing() accommodates the specification of sparse problems in their reduced form.
This is not true in the case of tsraking() where aggregation rules must always be fully
specified since a complete data cube without missing data is expected as input (every single
inner-cube component series must contribute to all dimensions of the cube, i.e., to every single
outer-cube marginal total series).

* Both tools handle negative values in the input data differently by default. While the solutions
of raking problems obtained from tsbalancing() and tsraking() are identical when all
input data points are positive, they will differ if some data points are negative (unless argument
Vmat_option = 2 is specified with tsraking()).

* While both tsbalancing() and tsraking() allow the preservation of temporal totals, time
management is not incorporated in tsraking(). For example, the construction of the pro-
cessing groups (sets of periods of each raking problem) is left to the user with tsraking()
and separate calls must be submitted for each processing group (each raking problem). That’s
where helper function tsraking_driver () comes in handy with tsraking().

* tsbalancing() returns the same set of series as the input time series object while tsraking()

returns the set of series involved in the raking problem plus those specified with argument id
(which could correspond to a subset of the input series).

References

Dagum, E. B. and P. Cholette (2006). Benchmarking, Temporal Distribution and Reconciliation
Methods of Time Series. Springer-Verlag, New York, Lecture Notes in Statistics, Vol. 186.

Ferland, M., S. Fortier and J. Bérubé (2016). "A Mathematical Optimization Approach to Balanc-
ing Time Series: Statistics Canada’s GSeriesTSBalancing”". In JSM Proceedings, Business and
Economic Statistics Section. Alexandria, VA: American Statistical Association. 2292-2306.
Ferland, M. (2018). "Time Series Balancing Quadratic Problem — Hessian matrix and vector of
linear objective function coefficients". Internal document. Statistics Canada, Ottawa, Canada.
Quenneville, B. and S. Fortier (2012). "Restoring Accounting Constraints in Time Series — Meth-

ods and Software for a Statistical Agency". Economic Time Series: Modeling and Seasonality.
Chapman & Hall, New York.

SAS Institute Inc. (2015). "The LP Procedure Sparse Data Input Format". SAS/OR® 14.1
User’s Guide: Mathematical Programming Legacy Procedures. https://support.sas.com/

https://support.sas.com/documentation/cdl/en/ormplpug/68158/HTML/default/viewer.htm#ormplpug_lp_details03.htm

tsbalancing 79

documentation/cdl/en/ormplpug/68158/HTML/default/viewer.htm#ormplpug_lp_details@3.
htm

Statistics Canada (2016). "The GSeriesTSBalancing Macro". G-Series 2.0 User Guide. Statistics
Canada, Ottawa, Canada.

Statistics Canada (2018). Theory and Application of Reconciliation (Course code 0437). Statis-
tics Canada, Ottawa, Canada.

Stellato, B., G. Banjac, P. Goulart et al. (2020). "OSQP: an operator splitting solver for quadratic
programs". Math. Prog. Comp. 12, 637-672 (2020). doi:10.1007/512532020001792

See Also
tsraking() tsraking_driver() rkMeta_to_blSpecs() gs.build_proc_grps() build_balancing_problem()
aliases
Examples
HHHHHHHERE
Example 1: In this first example, the objective is to balance a following simple
accounting table ("Profits = Revenues - Expenses™) for 5 quarters
without modifying “Profits™ where “Revenues >= @~ and “Expenses >= 0~.

Problem specifications
my_specs1 <- data.frame(type = c("EQ", rep(NA, 3),

"alter”, NA,
"lowerBd", NA, NA),
col = c(NA, "Revenues”, "Expenses"”, "Profits”,
NA, "Profits”,
NA, "Revenues”, "Expenses"),

row = c(rep("Accounting Rule”, 4),
rep("Alterability Coefficient”, 2),
rep("Lower Bound”, 3)),

coef = c(NA, 1, -1, -1,
NA, 0,
NA, @, 9))
my_specs]

Problem data
my_seriesl <- ts(matrix(c(15, 10, 10,

4, 8, -1,
250, 250, 5,
8, 12, O,
0, 45, -55),
ncol = 3,
byrow = TRUE,
dimnames = list(NULL, c("Revenues”, "Expenses”, "Profits"”))),

start = c(2022, 1),
frequency = 4)

Reconcile the data
out_balancedl <- tsbalancing(in_ts = my_series]1,
problem_specs_df = my_specs1,

https://support.sas.com/documentation/cdl/en/ormplpug/68158/HTML/default/viewer.htm#ormplpug_lp_details03.htm
https://support.sas.com/documentation/cdl/en/ormplpug/68158/HTML/default/viewer.htm#ormplpug_lp_details03.htm
https://support.sas.com/documentation/cdl/en/ormplpug/68158/HTML/default/viewer.htm#ormplpug_lp_details03.htm
https://doi.org/10.1007/s12532-020-00179-2

80

tsbalancing

display_level = 3)

Initial data
my_series]

Reconciled data
out_balancedl$out_ts

Check for invalid solutions
any(out_balanced1$proc_grp_df$sol_status_val < @)

Display the maximum output constraint discrepancies
out_balanced1$proc_grp_df[, c("proc_grp_label”, "max_discr")]

The solution returned by ~tsbalancing()~ corresponds to equal proportional changes
(pro-rating) and is related to the default alterability coefficients of 1. Equal

absolute changes could be obtained instead by specifying alterability coefficients
equal to the inverse of the initial values.
#
#
#

Let’s do this for the processing group 2022Q2 (" timeVal = 2022.25%), with the default
displayed level of information (“display_level = 17).

my_specs1b <- rbind(cbind(my_specsT1,
data.frame(timeVal = rep(NA_real_, nrow(my_specsi1)))),
data.frame(type = rep(NA, 2),
col = c("Revenues”, "Expenses"),
row = rep("Alterability Coefficient”, 2),
coef = c(0.25, 0.125),
timeVal = rep(2022.25, 2)))

my_specsi1b

out_balancedlb <- tsbalancing(in_ts = my_series1,
problem_specs_df = my_specsib)

Display the initial 2022Q2 values and both solutions
cbind(data.frame(Status = c("initial”, "pro-rating”, "equal change")),
rbind(as.data.frame(my_series1[2, , drop = FALSE]),
as.data.frame(out_balanced1$out_ts[2, , drop = FALSE]),
as.data.frame(out_balancedlb$out_ts[2, , drop = FALSE])),
data.frame(Accounting_discr = c(my_series1[2, 1] - my_series1[2, 2] -
my_series1[2, 3],
out_balanced1$out_ts[2, 1] -
out_balancedl1$out_ts[2, 2] -
out_balanced1$out_ts[2, 31,
out_balanced1b$out_ts[2, 1] -
out_balanced1b$out_ts[2, 2] -
out_balancedlb$out_ts[2, 31),

RelChg_Rev = c(NA,
out_balanced1$out_ts[2, 1] / my_series1[2, 1] - 1,
out_balancedlb$out_ts[2, 1] / my_seriesi[2, 1] - 1),
RelChg_Exp = c(NA,

out_balanced1$out_ts[2, 2] / my_series1[2, 2] - 1,

tsbalancing

WA
Example 2:
#

R E E E E E E EEE

81

out_balancedlb$out_ts[2, 2] / my_series1[2, 2] - 1),
c(NA,
out_balanced1$out_ts[2, 1] - my_seriesi[2, 1],
out_balancedlb$out_ts[2, 1] - my_seriesi[2, 1]),
AbsChg_Exp = c(NA,
out_balanced1$out_ts[2, 2] - my_seriesi[2, 2],
out_balancedlb$out_ts[2, 2] - my_series1[2, 2])))

AbsChg_Rev

In this second example, consider the simulated data on quarterly

vehicle sales by region (West, Centre and East), along with a national
total for the three regions, and by type of vehicles (cars, trucks and

a total that may include other types of vehicles). The input data correspond
to directly seasonally adjusted data that have been benchmarked to the
annual totals of the corresponding unadjusted time series data as part

of the seasonal adjustment process (e.g., with the FORCE spec in the
X-13ARIMA-SEATS software).

The objective is to reconcile the regional sales to the national sales
without modifying the latter while ensuring that the sum of the sales of
cars and trucks do not exceed 95% of the sales for all types of vehicles
in any quarter. For illustrative purposes, we assume that the sales of
trucks in the Centre region for the 2nd quarter of 2022 cannot be modified.

Problem specifications

my_specs2 <-

data.frame(

type = c("EQ", rep(NA, 4),
"EQ", rep(NA, 4),
"EQ", rep(NA, 4),
"LE", rep(NA, 3),
"LE", rep(NA, 3),
"LE", rep(NA, 3),
"alter”, rep(NA, 4)),

col = c(NA, "West_AllTypes"”, "Centre_AllTypes"”, "East_AllTypes”, "National_AllTypes”,
NA, "West_Cars"”, "Centre_Cars”, "East_Cars"”, "National_Cars”,
NA, "West_Trucks"”, "Centre_Trucks"”, "East_Trucks"”, "National_Trucks",
NA, "West_Cars”, "West_Trucks”, "West_AllTypes”,
NA, "Centre_Cars"”, "Centre_Trucks"”, "Centre_AllTypes”,
NA, "East_Cars”, "East_Trucks"”, "East_AllTypes",

NA,

"National_AllTypes"”, "National_Cars"”, "National_Trucks"”, "Centre_Trucks"),

row = c(rep(”“National Total - ALl Types”, 5),
rep(”National Total - Cars”, 5),
rep("National Total - Trucks”, 5),
rep("West Region Sum”, 4),
rep("Center Region Sum”, 4),
rep("East Region Sum”, 4),
rep(”"Alterability Coefficient”, 5)),

coef = c(NA, 1, 1, 1, -1,

82

NA, 1, 1, 1, -1,
NA, 1, 1, 1, -1,
NA, 1, 1, -.95,
NA, 1, 1, -.95,
NA, 1, 1, -.95,
NA, @, 0, 0, 0),

time_val = c(rep(NA, 31), 2022.25))

Beginning and end of the specifications data frame

head(my_specs2, n = 10)
tail(my_specs2)

Problem data
my_series2 <- ts(
matrix(c(43, 49, 47, 136,
40, 45, 42, 114,
35, 47, 40, 133,
44, 44 45, 138,
46, 48, 55, 135,
ncol = 12,
byrow = TRUE,

20,
16,
14,
19,
16,

dimnames = list(NULL,
c("West_AllTypes”,

start = c(2022, 1),
frequency = 4)

18,
16,
15,
20,
15,

12,
19,
16,
14,
19,

53,
44,
50,
52,
51,

20,
21,
19,
21,
27,

22,
26,
25,
18,
25,

26,
21,
19,
27,
28,

tsbalancing

61,
59,
7,
74,
54),

"Centre_AllTypes"”, "East_AllTypes”,
"National_AllTypes"”, "West_Cars"”, "Centre_Cars”,
"East_Cars”, "National_Cars"”, "West_Trucks"”,
"Centre_Trucks"”, "East_Trucks"”, "National_Trucks"))),

Reconcile without displaying the function header and enforce nonnegative data
out_balanced2 <- tsbalancing(

in_ts

problem_specs_df
temporal_grp_periodicity
lower_bound

quiet

Initial data
my_series?2

Reconciled data
out_balanced2$out_ts

my_series2,

my_specs2,
frequency(my_series2),

o,

TRUE)

Check for invalid solutions
any(out_balanced2$proc_grp_df$sol_status_val < @)

Display the maximum output constraint discrepancies
out_balanced2$proc_grp_df[, c("proc_grp_label”, "max_discr")]

I

Example 3: Reproduce the ~“tsraking_driver()" 2nd example with ~tsbalancing()"

tsbalancing 83

(1-dimensional raking problem with annual total preservation).

~tsraking()" metadata

my_metadata3 <- data.frame(series = c("cars_alb"”, "cars_sask”, "cars_man"),
totall = rep("cars_tot", 3))

my_metadata3

~tsbalancing()" problem specifications
my_specs3 <- rkMeta_to_blSpecs(my_metadata3)
my_specs3

Problem data

my_series3 <- ts(matrix(c(14, 18, 14, 58,
17, 14, 16, 44,
14, 19, 18, 58,
20, 18, 12, 53,
16, 16, 19, 44,
14, 15, 16, 50,
19, 20, 14, 52,
16, 15, 19, 51),

ncol = 4,
byrow = TRUE,
dimnames = list(NULL, c("cars_alb"”, "cars_sask”,

"cars_man"”, "cars_tot"))),
start = c(2019, 2),
frequency = 4)

Reconcile the data with ~tsraking()~ (through "tsraking_driver()™)
out_raked3 <- tsraking_driver(in_ts = my_series3,
metadata_df = my_metadata3,
temporal_grp_periodicity = frequency(my_series3),
quiet = TRUE)

Reconcile the data with ~tsbalancing()”

out_balanced3 <- tsbalancing(in_ts = my_series3,
problem_specs_df = my_specs3,
temporal_grp_periodicity = frequency(my_series3),
quiet = TRUE)

Initial data
my_series3

Both sets of reconciled data
out_raked3

out_balanced3$out_ts

Check for invalid “tsbalancing()~ solutions
any(out_balanced3$proc_grp_df$sol_status_val < @)

Display the maximum output constraint discrepancies from the ~tsbalancing()" solutions
out_balanced3$proc_grp_df[, c("proc_grp_label”, "max_discr"”)]

Confirm that both solutions (" tsraking() and "“tsbalancing()~) are the same

84 tsDF to_ts

all.equal(out_raked3, out_balanced3$out_ts)

tsDF_to_ts Reciprocal function of ts_to_tsDF ()

Description

Convert a (non-stacked) time series data frame (benchmarking() and stock_benchmarking() data
format) into a "ts" (or "mts") object.

This function is useful to convert the benchmarked data frame returned by a call to benchmarking ()
or stock_benchmarking() into a "ts" object, where one or several series were benchmarked in non
BY-group processing mode. Stacked time series data frames associated to executions in BY-group
mode must first be unstacked with unstack_tsDF ().

Usage
tsDF_to_ts(
ts_df,
frequency,
yr_cName = "year"”,
per_cName = "period”
)
Arguments
ts_df (mandatory)
Data frame (object of class "data.frame") to be converted.
frequency (mandatory)

Integer specifying the frequency of the time series to be converted. The fre-

quency of a time series corresponds to the maximum number of periods in a

year (12 for a monthly data, 4 for a quarterly data, 1 for annual data).
yr_cName, per_cName

(optional)

Strings specifying the name of the numeric variables (columns) in the input data

frame that contain the data point year and period identifiers.

Default values are yr_cName = "year" and per_cName = "period”.

Value

The function returns a time series object (class "ts" or "mts"), which can be explicitly coerced to
another type of object with the appropriate as*() function (e.g., tsibble::as_tsibble() would
coerce it to a tsibble).

See Also

ts_to_tsDF() unstack_tsDF() benchmarking() stock_benchmarking()

tsraking

Examples

85

Initial quarterly time series (indicator series to be benchmarked)
gtr_ts <- ts(c(1.9, 2.4, 3.1, 2.2, 2.0, 2.6, 3.4, 2.4, 2.3),

c(2015, 1), frequency = 4)

Annual time series (benchmarks)
ann_ts <- ts(c(10.3, 10.2), start = 2015, frequency = 1)

Proportional benchmarking
out_bench <- benchmarking(ts_to_tsDF(qtr_ts),

ts_to_bmkDF (ann_ts, ind_frequency = 4)
rho = 0.729, lambda = 1, biasOption =
quiet = TRUE)

37

Initial and final (benchmarked) quarterly time series ("ts” objects)

qtr_ts

tsDF_to_ts(out_bench$series, frequency = 4)

Proportional end-of-year stock benchmarking - multiple (3) series processed

with argument “by~ (in BY-group mode)

gtr_mts <- ts.union(ser1 = qtr_ts, ser2 = qtr_ts * 100, ser3 = qtr_ts * 10)
ann_mts <- ts.union(ser1 = ann_ts / 4, ser2 = ann_ts * 25, ser3 = ann_ts % 2.5)
out_bench2 <- stock_benchmarking(stack_tsDF (ts_to_tsDF(qtr_mts)),

stack_bmkDF (ts_to_bmkDF (
ann_mts, ind_frequency = 4,
discrete_flag = TRUE, alignment = "e")),
rho = 0.729, lambda = 1, biasOption = 3,
by = "series”,
quiet = TRUE)

Initial and final (benchmarked) quarterly time series ("mts"” objects)

gtr_mts

tsDF_to_ts(unstack_tsDF (out_bench2$series), frequency = 4)

tsraking

Restore cross-sectional (contemporaneous) aggregation constraints

Description

Replication of the G-Series 2.0 SAS® TSRAKING procedure (PROC TSRAKING). See the G-Series
2.0 documentation for details (Statistics Canada 2016).

This function will restore cross-sectional aggregation constraints in a system of time series. The
aggregation constraints may come from a 1 or 2-dimensional table. Optionally, temporal constraints

can also be preserved.

tsraking() is usually called in practice through tsraking_driver() in order to reconcile all
periods of the time series system in a single function call.

86

Usage

tsraking(
data_df,
metadata_df,

alterability_d

alterSeries =
alterTotall
alterTotal2
alterAnnual =
tolV = 0.001,
tolP = NA,

warnNegResult
tolN = -0.001
id = NULL,

0 O = —h

tsraking

= NULL,

= TRUE,

’

verbose = FALSE,

New in G-Series 3.0

Vmat_option =

1,

warnNegInput = TRUE,

quiet = FALSE

Arguments

data_df

metadata_df

alterability_df

(mandatory)

Data frame (object of class "data.frame") that contains the time series data to be
reconciled. It must minimally contain variables corresponding to the component
series and cross-sectional control totals specified in the metadata data frame
(argument metadata_df). If more than one observation (period) is provided,
the sum of the provided component series values will also be preserved as part
of implicit temporal constraints.

(mandatory)

Data frame (object of class "data.frame") that describes the cross-sectional ag-
gregation constraints (additivity rules) for the raking problem. Two character
variables must be included in the metadata data frame: series and totall.
Two variables are optional: total2 (character) and alterAnnual (numeric).
The values of variable series represent the variable names of the component
series in the input time series data frame (argument data_df). Similarly, the val-
ues of variables totall and total2 represent the variable names of the 1st and
2nd dimension cross-sectional control totals in the input time series data frame.
Variable alterAnnual contains the alterability coefficient for the temporal con-
straint associated to each component series. When specified, the latter will over-
ride the default alterability coefficient specified with argument alterAnnual.

(optional)
Data frame (object of class "data.frame"), or NULL, that contains the alterabil-
ity coefficients variables. They must correspond to a component series or a

tsraking

alterSeries

alterTotall

alterTotal2

alterAnnual

tolV, tolP

87

cross-sectional control total, that is, a variable with the same name must exist
in the input time series data frame (argument data_df). The values of these
alterability coefficients will override the default alterability coefficients speci-
fied with arguments alterSeries, alterTotall and alterTotal2. When the
input time series data frame contains several observations and the alterability
coefficients data frame contains only one, the alterability coefficients are used
(repeated) for all observations of the input time series data frame. Alternatively,
the alterability coefficients data frame may contain as many observations as the
input time series data frame.

Default value is alterability_df = NULL (default alterability coefficients).
(optional)

Nonnegative real number specifying the default alterability coefficient for the
component series values. It will apply to component series for which alterability
coefficients have not already been specified in the alterability coefficients data
frame (argument alterability_df).

Default value is alterSeries = 1.0 (nonbinding component series values).
(optional)

Nonnegative real number specifying the default alterability coefficient for the Ist
dimension cross-sectional control totals. It will apply to cross-sectional control
totals for which alterability coefficients have not already been specified in the
alterability coefficients data frame (argument alterability_df).

Default value is alterTotall =0.0 (binding 1st dimension cross-sectional
control totals)

(optional)

Nonnegative real number specifying the default alterability coefficient for the
2nd dimension cross-sectional control totals. It will apply to cross-sectional
control totals for which alterability coefficients have not already been specified
in the alterability coefficients data frame (argument alterability_df).
Default value is alterTotal2 = 9.0 (binding 2nd dimension cross-sectional
control totals).

(optional)

Nonnegative real number specifying the default alterability coefficient for the
component series temporal constraints (e.g., annual totals). It will apply to com-
ponent series for which alterability coefficients have not already been specified
in the metadata data frame (argument metadata_df).

Default value is alterAnnual = 0.0 (binding temporal control totals).
(optional)

Nonnegative real number, or NA, specifying the tolerance, in absolute value or
percentage, to be used when performing the ultimate test in the case of binding
totals (alterability coefficient of 0.0 for temporal or cross-sectional control to-
tals). The test compares the input binding control totals with the ones calculated
from the reconciled (output) component series. Arguments tolV and tolP can-
not be both specified together (one must be specified while the other must be
NA).

Example: to set a tolerance of 10 units, specify tolV = 10, tolP = NA;to set
a tolerance of 1%, specify tolV = NA, tolP = 0.01.

88

warnNegResult

tolN

id

verbose

Vmat_option

warnNegInput

quiet

tsraking

Default values are tolV =0.001 and tolP = NA.
(optional)
Logical argument specifying whether a warning message is generated when a

negative value created by the function in the reconciled (output) series is smaller
than the threshold specified by argument tolN.

Default value is warnNegResult = TRUE.

(optional)

Negative real number specifying the threshold for the identification of negative
values. A value is considered negative when it is smaller than this threshold.
Default value is tolN = -0.001.

(optional)

String vector (minimum length of 1), or NULL, specifying the name of addi-
tional variables to be transferred from the input time series data frame (argument
data_df) to the output time series data frame, the object returned by the func-
tion (see section Value). By default, the output series data frame only contains
the variables listed in the metadata data frame (argument metadata_df).

Default value is id = NULL.
(optional)
Logical argument specifying whether information on intermediate steps with ex-

ecution time (real time, not CPU time) should be displayed. Note that specifying
argument quiet = TRUE would nullify argument verbose.

Default value is verbose = FALSE.

(optional)

Specification of the option for the variance matrices (V. and V,; see section
Details):

Value Description
1 Use vectors « and g in the variance matrices.
2 Use vectors |z| and |g| in the variance matrices.

See Ferland (2016) and subsection Arguments Vmat_option and warnNegInput
in section Details for more information.

Default value is Vmat_option = 1.
(optional)
Logical argument specifying whether a warning message is generated when a

negative value smaller than the threshold specified by argument tolN is found
in the input time series data frame (argument data_df).

Default value is warnNegInput = TRUE.

(optional)

Logical argument specifying whether or not to display only essential informa-
tion such as warnings and errors. Specifying quiet = TRUE would also nullify
argument verbose and is equivalent to wrapping your tsraking() call with
suppressMessages().

Default value is quiet = FALSE.

tsraking 89

Details

This function returns the generalized least squared solution of a specific, simple variant of the
general regression-based raking model proposed by Dagum and Cholette (Dagum and Cholette

2006). The model, in matrix form, is:
T 1 e
o= lelo+ [

* 1z is the vector of the initial component series values.

where

* @ is the vector of the final (reconciled) component series values.

* e ~ (0,V,) is the vector of the measurement errors of x with covariance matrix V, =
diag (c;x), or V, = diag (|c,2|) when argument Vmat_option = 2, where ¢, is the vector
of the alterability coefficients of x.

* g is the vector of the initial control totals, including the component series temporal totals
(when applicable).

e ~ (0,V;) is the vector of the measurement errors of g with covariance matrix V, =
diag (cqg), or V. = diag(|cyg|) when argument Vmat_option = 2, where ¢, is the vector
of the alterability coefficients of g.

* (G is the matrix of aggregation constraints, including the implicit temporal constraints (when
applicable).

The generalized least squared solution is:
=2+ V,GT (GV.GT+V.)" (g- Go)

where AT designates the Moore-Penrose inverse of matrix A.

tsraking() solves a single raking problem, i.e., either a single period of the time series system,
or a single temporal group (e.g., all periods of a given year) when temporal total preservation is
required. Several call to tsraking() are therefore necessary in order to reconcile all the periods
of the time series system. tsraking_driver() can achieve this in a single call: it conveniently
determines the required set of raking problems to be solved and internally generates the individual
calls to tsraking().

Alterability Coefficients:

Alterability coefficients c; and ¢, conceptually represent the measurement errors associated with
the input component series values x and control totals g respectively. They are nonnegative real
numbers which, in practice, specify the extent to which an initial value can be modified in rela-
tion to other values. Alterability coefficients of 0.0 define fixed (binding) values while alterability
coefficients greater than 0.0 define free (nonbinding) values. Increasing the alterability coeffi-
cient of an intial value results in more changes for that value in the reconciled (output) data and,
conversely, less changes when decreasing the alterability coefficient. The default alterability co-
efficients are 1.0 for the component series values and 0.0 for the cross-sectional control totals
and, when applicable, the component series temporal totals. These default alterability coefficients
result in a proportional allocation of the discrepancies to the component series. Setting the com-
ponent series alterability coefficients to the inverse of the component series initial values would
result in a uniform allocation of the discrepancies instead. Almost binding totals can be obtained

90

tsraking

in practice by specifying very small (almost 0.0) alterability coefficients relative to those of the
(nonbinding) component series.

Temporal total preservation refers to the fact that temporal totals, when applicable, are usu-
ally kept “as close as possible” to their initial value. Pure preservation is achieved by default
with binding temporal totals while the change is minimized with nonbinding temporal totals (in
accordance with the set of alterability coefficients).

Arguments Vmat_option and warnNegInput:

These arguments allow for an alternative handling of negative values in the input data, similar to
that of tsbalancing(). Their default values correspond to the G-Series 2.0 behaviour (SAS®
PROC TSRAKING) for which equivalent options are not defined. The latter was developed with
"nonnegative input data only" in mind, similar to SAS® PROC BENCHMARKING in G-Series
2.0 that did not allow negative values either with proportional benchmarking, which explains
the "suspicious use of proportional raking" warning in presence of negative values with PROC
TSRAKING in G-Series 2.0 and when warnNegInput = TRUE (default). However, (proportional)
raking in the presence of negative values generally works well with Vmat_option =2 and pro-
duces reasonable, intuitive solutions. E.g., while the default Vmat_option =1 fails at solving
constraint A + B =C with input data A =2, B=-2, C=1 and the default alterability coefficients,
Vmat_option = 2 returns the (intuitive) solution A=2.5,B=-1.5, C =1 (25% increase for A and
B). See Ferland (2016) for more details.

Treatment of Missing (NA) Values:

Missing values in the input time series data frame (argument data_df) or alterability coefficients
data frame (argument alterability_df) for any of the raking problem data (variables listed in
the metadata data frame with argument metadata_df) will generate an error message and stop
the function execution.

Value

The function returns a data frame containing the reconciled component series, reconciled cross-

sectional control totals and variables specified with argument id. Note that the "data.frame" ob-

ject can be explicitly coerced to another type of object with the appropriate as*() function (e.g.,

tibble::as_tibble() would coerce it to a tibble).

Comparing tsraking() and tsbalancing()

* tsraking() is limited to one- and two-dimensional aggregation table raking problems (with
temporal total preservation if required) while tsbalancing() handles more general balancing
problems (e.g., higher dimensional raking problems, nonnegative solutions, general linear
equality and inequality constraints as opposed to aggregation rules only, etc.).

* tsraking() returns the generalized least squared solution of the Dagum and Cholette regression-
based raking model (Dagum and Cholette 2006) while tsbalancing() solves the correspond-
ing quadratic minimization problem using a numerical solver. In most cases, convergence to
the minimum is achieved and the tsbalancing() solution matches the (exact) tsraking()
least square solution. It may not be the case, however, if convergence could not be achieved
after a reasonable number of iterations. Having said that, only in very rare occasions will the
tsbalancing() solution significantly differ from the tsraking() solution.

tsraking 91

* tshalancing() is usually faster than tsraking(), especially for large raking problems, but is
generally more sensitive to the presence of (small) inconsistencies in the input data associated
to the redundant constraints of fully specified (over-specified) raking problems. tsraking()
handles these inconsistencies by using the Moore-Penrose inverse (uniform distribution among
all binding totals).

* tsbalancing() accommodates the specification of sparse problems in their reduced form.
This is not true in the case of tsraking() where aggregation rules must always be fully
specified since a complete data cube without missing data is expected as input (every single
inner-cube component series must contribute to all dimensions of the cube, i.e., to every single
outer-cube marginal total series).

* Both tools handle negative values in the input data differently by default. While the solutions
of raking problems obtained from tsbalancing() and tsraking() are identical when all
input data points are positive, they will differ if some data points are negative (unless argument
Vmat_option = 2 is specified with tsraking()).

* While both tsbalancing() and tsraking() allow the preservation of temporal totals, time
management is not incorporated in tsraking(). For example, the construction of the pro-
cessing groups (sets of periods of each raking problem) is left to the user with tsraking()
and separate calls must be submitted for each processing group (each raking problem). That’s
where helper function tsraking_driver() comes in handy with tsraking().

* tshalancing() returns the same set of series as the input time series object while tsraking()
returns the set of series involved in the raking problem plus those specified with argument id
(which could correspond to a subset of the input series).

References

Bérubé, J. and S. Fortier (2009). "PROC TSRAKING: An in-house SAS® procedure for balancing
time series". In JSM Proceedings, Business and Economic Statistics Section. Alexandria, VA:
American Statistical Association.

Dagum, E. B. and P. Cholette (2006). Benchmarking, Temporal Distribution and Reconciliation
Methods of Time Series. Springer-Verlag, New York, Lecture Notes in Statistics, Vol. 186.
Ferland, M. (2016). "Negative Values with PROC TSRAKING". Internal document. Statistics
Canada, Ottawa, Canada.

Fortier, S. and B. Quenneville (2009). "Reconciliation and Balancing of Accounts and Time Series".
In JSM Proceedings, Business and Economic Statistics Section. Alexandria, VA: American
Statistical Association.

Quenneville, B. and S. Fortier (2012). "Restoring Accounting Constraints in Time Series — Meth-
ods and Software for a Statistical Agency". Economic Time Series: Modeling and Seasonality.
Chapman & Hall, New York.

Statistics Canada (2016). "The TSRAKING Procedure”. G-Series 2.0 User Guide. Statistics
Canada, Ottawa, Canada.

Statistics Canada (2018). Theory and Application of Reconciliation (Course code 0437). Statis-
tics Canada, Ottawa, Canada.

See Also

tsraking_driver() tsbalancing() rkMeta_to_blSpecs() gs.gInv_MP() build_raking_problem()
aliases

92

Examples

R

tsraking

Example 1: Simple 1-dimensional raking problem where the values of “cars™ and “vans®

#

must sum up to the value of “total”.

Problem metadata

my_metadatal

my_metadatal

<- data.frame(series = c("cars”, "vans"),
totall = c("total”, "total”))

Problem data

my_seriesl <-

data.frame(cars = 25, vans = 5, total = 40)

Reconcile the data

out_rakedl <-

tsraking(my_series1, my_metadatal)

Initial data

my_series]

Reconciled
out_raked1

data

Check the output cross-sectional constraint
all.equal(rowSums(out_raked1[c("cars"”, "vans")]), out_rakedl1$total)

Check the control total (fixed)

all.equal(my_

HHHHHHEE
Example 2:
#

* %

series1$total, out_rakedl$total)

2-dimensional raking problem similar to the 1st example but adding
regional sales for the 3 prairie provinces (Alb., Sask. and Man.)
and where the sales of vans in Sask. are non-alterable
(alterability coefficient = @), with “quiet = TRUE™ to avoid
displaying the function header.

Problem metadata

my_metadata?2

my_metadata2

<- data.frame(series = c("cars_alb"”, "cars_sask”, "cars_man",
"vans_alb"”, "vans_sask”, "vans_man"),
totall = c(rep(”cars_total”, 3),
rep("vans_total"”, 3)),
total2

Problem data

my_series2 <-

Reconciled

out_raked2 <-

data.frame(cars_alb = 12, cars_sask = 14, cars_man = 13,
vans_alb = 20, vans_sask = 20, vans_man = 24,
alb_total = 30, sask_total = 31, man_total = 32,
cars_total = 40, vans_total = 53)

data
tsraking(my_series2, my_metadata2,

rep(c("alb_total”, "sask_total”, "man_total”), 2))

tsraking_driver 93

alterability_df = data.frame(vans_sask = 0),
quiet = TRUE)

Initial data
my_series?

Reconciled data
out_raked?2

Check the output cross-sectional constraints

all.equal(rowSums(out_raked2[c("cars_alb"”, "cars_sask”, "cars_man")]), out_raked2$cars_total)
all.equal(rowSums(out_raked2[c("vans_alb", "vans_sask”, "vans_man")]), out_raked2$vans_total)
all.equal(rowSums(out_raked2[c("cars_alb”, "vans_alb")]), out_raked2$alb_total)
all.equal(rowSums(out_raked2[c("cars_sask”, "vans_sask")]), out_raked2$sask_total)
all.equal(rowSums(out_raked2[c("cars_man"”, "vans_man")]), out_raked2$man_total)

Check the control totals (fixed)
tot_cols <- union(unique(my_metadata2$totall), unique(my_metadata2$total?))
all.equal(my_series2[tot_cols], out_raked2[tot_cols])

Check the value of vans in Saskatchewan (fixed at 20)
all.equal(my_series2$vans_sask, out_raked2$vans_sask)

tsraking_driver Helper function for tsraking()

Description

Helper function for the tsraking() function that conveniently determines the required set of raking
problems to be solved and internally generates the individual calls to tsraking(). It is especially
useful in the context of temporal total (e.g., annual total) preservation where each individual raking
problem either involves a single period for incomplete temporal groups (e.g., incomplete years) or
several periods for complete temporal groups (e.g., the set of periods of a complete year).

Usage

tsraking_driver(
in_ts,
., # “tsraking()" arguments excluding “data_df"
temporal_grp_periodicity = 1,
temporal_grp_start = 1
)

Arguments

in_ts (mandatory)

Time series (object of class "ts" or "mts") that contains the time series data to be
reconciled. They are the raking problems’ input data (initial solutions).

Arguments passed on to tsraking

tsraking_driver

metadata_df (mandatory)
Data frame (object of class "data.frame") that describes the cross-sectional
aggregation constraints (additivity rules) for the raking problem. Two char-
acter variables must be included in the metadata data frame: series and
totall. Two variables are optional: total2 (character) and alterAnnual
(numeric). The values of variable series represent the variable names of
the component series in the input time series data frame (argument data_df).
Similarly, the values of variables totall and total2 represent the variable
names of the 1st and 2nd dimension cross-sectional control totals in the in-
put time series data frame. Variable alterAnnual contains the alterability
coefficient for the temporal constraint associated to each component series.
When specified, the latter will override the default alterability coefficient
specified with argument alterAnnual.

alterability_df (optional)
Data frame (object of class "data.frame"), or NULL, that contains the alter-
ability coefficients variables. They must correspond to a component series
or a cross-sectional control total, that is, a variable with the same name
must exist in the input time series data frame (argument data_df). The
values of these alterability coefficients will override the default alterabil-
ity coefficients specified with arguments alterSeries, alterTotall and
alterTotal2. When the input time series data frame contains several ob-
servations and the alterability coefficients data frame contains only one, the
alterability coefficients are used (repeated) for all observations of the input
time series data frame. Alternatively, the alterability coefficients data frame
may contain as many observations as the input time series data frame.
Default value is alterability_df = NULL (default alterability coefficients).

alterSeries (optional)
Nonnegative real number specifying the default alterability coefficient for
the component series values. It will apply to component series for which
alterability coefficients have not already been specified in the alterability
coefficients data frame (argument alterability_df).
Default value is alterSeries = 1.0 (nonbinding component series val-
ues).

alterTotall (optional)
Nonnegative real number specifying the default alterability coefficient for
the 1st dimension cross-sectional control totals. It will apply to cross-
sectional control totals for which alterability coefficients have not already
been specified in the alterability coefficients data frame (argument alterability_df).
Default value is alterTotall = 0.0 (binding 1st dimension cross-sectional
control totals)

alterTotal2 (optional)
Nonnegative real number specifying the default alterability coefficient for
the 2nd dimension cross-sectional control totals. It will apply to cross-
sectional control totals for which alterability coefficients have not already
been specified in the alterability coefficients data frame (argument alterability_df).
Default value is alterTotal2 = 0.0 (binding 2nd dimension cross-sectional
control totals).

alterAnnual (optional)

tsraking_driver

95

Nonnegative real number specifying the default alterability coefficient for
the component series temporal constraints (e.g., annual totals). It will apply
to component series for which alterability coefficients have not already been
specified in the metadata data frame (argument metadata_df).

Default value is alterAnnual = 0.0 (binding temporal control totals).

tolV, tolP (optional)

Nonnegative real number, or NA, specifying the tolerance, in absolute value
or percentage, to be used when performing the ultimate test in the case of
binding totals (alterability coefficient of 0.0 for temporal or cross-sectional
control totals). The test compares the input binding control totals with the
ones calculated from the reconciled (output) component series. Arguments
tolV and tolP cannot be both specified together (one must be specified
while the other must be NA).

Example: to set a tolerance of 10 units, specify tolV = 10, tolP = NA;
to set a tolerance of 1%, specify tolV = NA, tolP = 0.01.

Default values are tolV = 0.001 and tolP = NA.

warnNegResult (optional)

Logical argument specifying whether a warning message is generated when
a negative value created by the function in the reconciled (output) series is
smaller than the threshold specified by argument tolN.

Default value is warnNegResult = TRUE.

tolN (optional)

Negative real number specifying the threshold for the identification of neg-
ative values. A value is considered negative when it is smaller than this
threshold.

Default value is tolN = -0.001.

id (optional)

String vector (minimum length of 1), or NULL, specifying the name of ad-
ditional variables to be transferred from the input time series data frame
(argument data_df) to the output time series data frame, the object re-
turned by the function (see section Value). By default, the output series
data frame only contains the variables listed in the metadata data frame
(argument metadata_df).

Default value is id = NULL.

verbose (optional)

Logical argument specifying whether information on intermediate steps
with execution time (real time, not CPU time) should be displayed. Note
that specifying argument quiet = TRUE would nullify argument verbose.
Default value is verbose = FALSE.

Vmat_option (optional)

Specification of the option for the variance matrices (V. and V; see section
Details):

Value Description

1
2

Use vectors z and g in the variance matrices.
Use vectors |z| and |g| in the variance matrices.

96 tsraking_driver

See Ferland (2016) and subsection Arguments Vmat_option and warnNegInput
in section Details for more information.
Default value is Vmat_option =1.

warnNegInput (optional)
Logical argument specifying whether a warning message is generated when
a negative value smaller than the threshold specified by argument tolN is
found in the input time series data frame (argument data_df).
Default value is warnNegInput = TRUE.
quiet (optional)
Logical argument specifying whether or not to display only essential infor-
mation such as warnings and errors. Specifying quiet = TRUE would also
nullify argument verbose and is equivalent to wrapping your tsraking()
call with suppressMessages().
Default value is quiet = FALSE.
temporal_grp_periodicity
(optional)
Positive integer defining the number of periods in temporal groups for which the
totals should be preserved. E.g., specify temporal_grp_periodicity = 3 with
a monthly time series for quarterly total preservation and temporal_grp_periodicity
=12 (or temporal_grp_periodicity = frequency(in_ts)) for annual total
preservation. Specifying temporal_grp_periodicity = 1 (default) corresponds
to period-by-period processing without temporal total preservation.

Default value is temporal_grp_periodicity =1 (period-by-period process-
ing without temporal total preservation).

temporal_grp_start
(optional)
Integer in the [1 .. temporal_grp_periodicity] interval specifying the start-
ing period (cycle) for temporal total preservation. E.g., annual totals corre-
sponding to fiscal years defined from April to March of the following year
would be specified with temporal_grp_start =4 for a monthly time series
(frequency(in_ts) =12) and temporal_grp_start = 2 for a quarterly time
series (frequency(in_ts) =4). This argument has no effect for period-by-
period processing without temporal total preservation (temporal_grp_periodicity
=1).

Default value is temporal_grp_start =1.

Details

This function solves one raking problem with tsraking() per processing group (see section Pro-
cessing groups for details). The mathematical expression of these raking problem can be found in
the Details section of the tsraking() documentation.

The alterability coefficients data frame (argument alterability_df) specified with tsraking_driver()

can either contain:

» A single observation: the specified coefficients will be used for all periods of input time series
object (argument in_ts).

tsraking_driver 97

* A number of observations equal to frequency(in_ts): the specified coefficients will be used
for the corresponding cycle of the input time series object (argument in_ts) periods. Monthly
data example: 1st observation for January, 2nd observation for February, etc.).

* A number of observations equal to nrow(in_ts): the specified coefficients will be used for the
corresponding periods of the input time series object (argument in_ts), i.e., Ist observation
for the 1st period, 2nd observation for the 2nd period, etc.).

Specifying quiet = TRUE will suppress the tsraking() messages (e.g., function header) and only
display essential information such as warnings, errors and the period (or set of periods) being recon-
ciled. We advise against wrapping your tsraking_driver () function call with suppressMessages()
to further suppress the display of the raking period(s) information as this would make troubleshoot-
ing difficult in case of issues with individual raking problems.

Although tsraking() could be called with *apply() to successively reconcile all the periods of
the input time series (in_ts), using tsraking_driver () has a few advantages, namely:

* temporal total preservation (only period-by-period processing, without temporal total preser-
vation, would be possible with *apply());

» more flexibility in the specification of user-defined alterability coefficients (e.g., period-specific
values);

* display of the period being processed (reconciled) in the console, which is useful for trou-
bleshooting individual raking problems;

 improved error handling, i.e., better management of warnings or errors if they were to occur
only for some raking problems (periods);

* readily returns a "ts" ("mts") object.

Value

The function returns a time series object (class "ts" or "mts") containing the reconciled component
series, reconciled cross-sectional control totals and other series specified with tsraking() argu-
ment id. It can be explicitly coerced to another type of object with the appropriate as* () function
(e.g., tsibble::as_tsibble() would coerce it to a tsibble).

Note that a NULL object is returned if an error occurs before data processing could start. Otherwise,
if execution gets far enough so that data processing could start, then an incomplete object (with NA
values) would be returned in case of errors.

Processing groups

The set of periods of a given reconciliation (raking or balancing) problem is called a processing
group and either corresponds to:

* asingle period with period-by-period processing or, when preserving temporal totals, for the
individual periods of an incomplete temporal group (e.g., an incomplete year)

* or the set of periods of a complete temporal group (e.g., a complete year) when preserving
temporal totals.

The total number of processing groups (total number of reconciliation problems) depends on the
set of periods in the input time series object (argument in_ts) and on the value of arguments
temporal_grp_periodicity and temporal_grp_start.

98

tsraking_driver

Common scenarios include temporal_grp_periodicity =1 (default) for period-by period pro-
cessing without temporal total preservation and temporal_grp_periodicity = frequency(in_ts)
for the preservation of annual totals (calendar years by default). Argument temporal_grp_start
allows the specification of other types of (non-calendar) years. E.g., fiscal years starting on April
correspond to temporal_grp_start =4 with monthly data and temporal_grp_start =2 with
quarterly data. Preserving quarterly totals with monthly data would correspond to temporal_grp
_periodicity =3.

By default, temporal groups covering more than a year (i.e., corresponding to temporal_grp
_periodicity > frequency(in_ts) start on a year that is a multiple of ceiling(temporal_grp
_periodicity / frequency(in_ts)). E.g., biennial groups corresponding to temporal_grp_per
iodicity = 2 * frequency (in_ts) start on an even year by default. This behaviour can be changed
with argument temporal_grp_start. E.g., the preservation of biennial totals starting on an odd
year instead of an even year (default) corresponds to temporal_grp_start = frequency(in_ts)
+ 1 (along with temporal_grp_periodicity =2 * frequency(in_ts)).

See the gs.build_proc_grps() Examples for common processing group scenarios.

References

Statistics Canada (2018). "Chapter 6: Advanced topics", Theory and Application of Reconcilia-
tion (Course code 0437), Statistics Canada, Ottawa, Canada.

See Also

tsraking() tsbalancing() rkMeta_to_blSpecs() gs.build_proc_grps()

Examples

1-dimensional raking problem where the quarterly sales of cars in the 3 prairie
provinces (Alb., Sask. and Man.) for 8 quarters, from 2019 Q2 to 2021 Q1, must
sum up to the total (“cars_tot™).

Problem metadata
my_metadata <- data.frame(series = c("cars_alb”, "cars_sask"”, "cars_man"),
totall = rep("cars_tot", 3))

my_metadata

Problem data

my_series <- ts(matrix(c(14, 18, 14, 58,
17, 14, 16, 44,
14, 19, 18, 58,
20, 18, 12, 53,
16, 16, 19, 44,
14, 15, 16, 50,
19, 20, 14, 52,
16, 15, 19, 51),

ncol = 4,
byrow = TRUE,
dimnames = list(NULL, c("cars_alb"”, "cars_sask”,

"cars_man"”, "cars_tot"))),
start = c(2019, 2),

tsraking_driver 99

frequency = 4)
HHEHHEHHHHEE
Example 1: Period-by-period processing without temporal total preservation.

Reconcile the data
out_rakedl <- tsraking_driver(my_series, my_metadata)

Initial data
my_series

Reconciled data
out_raked1

Check the output cross-sectional constraint
all.equal(rowSums(out_raked1[, my_metadata$series]), as.vector(out_raked1[, "cars_tot"]))

Check the control total (fixed)
all.equal(my_series[, "cars_tot"], out_raked1[, "cars_tot"])

HH A

Example 2: Annual total preservation for year 2020 (period-by-period processing

for incomplete years 2019 and 2021), with “quiet = TRUE® to avoid

displaying the function header for all processing groups.

First, check that the 2020 annual total for the total series (“cars_tot™) and the
sum of the component series (“cars_alb™, “cars_sask™ and “cars_man’) matches.

Otherwise, this "grand total” discrepancy would first have to be resolved before
calling ~tsraking_driver()".

tot2020 <- aggregate.ts(window(my_series, start = c(2020, 1), end = c(2020, 4)))
all.equal(as.numeric(tot2020[, "cars_tot"]), sum(tot2020[, my_metadata$series]))

Reconcile the data
out_raked2 <- tsraking_driver(in_ts = my_series,
metadata_df = my_metadata,
quiet = TRUE,
temporal_grp_periodicity = frequency(my_series))

Initial data
my_series

Reconciled data
out_raked?2

Check the output cross-sectional constraint
all.equal (rowSums(out_raked2[, my_metadata$series]), as.vector(out_raked2[, "cars_tot"]))

Check the output temporal constraints (2020 annual totals for each series)
all.equal(tot2020,
aggregate.ts(window(out_raked2, start = c(2020, 1), end = c(2020, 4))))

100 tsraking_driver

Check the control total (fixed)
all.equal(my_series[, "cars_tot"], out_raked2[, "cars_tot"])

HHHHHHEE
Example 3: Annual total preservation for fiscal years defined from April to March
(2019Q2-2020Q1 and 2020Q2-2021Q1).

Calculate the fiscal year totals (as an annual "ts” object)
fiscalYr_tot <- ts(rbind(aggregate.ts(window(my_series,
start = c(2019, 2),
end = c(2020, 1))),
aggregate.ts(window(my_series,
start = c(2020, 2),
end = c(2021, 1)))),
start = 2019,
frequency = 1)

Discrepancies in both fiscal year totals (total series vs. sum of the component series)
as.numeric(fiscalYr_tot[, "cars_tot"]) - rowSums(fiscalYr_tot[, my_metadata$series])

3a) Reconcile the fiscal year totals (rake the fiscal year totals of the component series
to those of the total series).
new_fiscalYr_tot <- tsraking_driver(in_ts = fiscalYr_tot,

metadata_df = my_metadata,

quiet = TRUE)

Confirm that the previous discrepancies are now "gone" (are both zero)
as.numeric(new_fiscalYr_tot[, "cars_tot"]) - rowSums(new_fiscalYr_tot[, my_metadata$series])

3b) Benchmark the quarterly component series to these new (coherent) fiscal year totals.
out_bench <- benchmarking(series_df = ts_to_tsDF(my_series[, my_metadata$series]),
benchmarks_df = ts_to_bmkDF(
new_fiscalYr_tot[, my_metadata$series],
ind_frequency = frequency(my_series),

Fiscal years starting on Q2 (April)
bmk_interval_start = 2),

rho = 0.729,
lambda = 1,
biasOption = 2,
allCols = TRUE,
quiet = TRUE)
my_new_ser <- tsDF_to_ts(cbind(out_bench$series, cars_tot = my_series[, "cars_tot"]),
frequency = frequency(my_series))

3c) Reconcile the quarterly data with preservation of fiscal year totals.
out_raked3 <- tsraking_driver(in_ts = my_new_ser,
metadata_df = my_metadata,
temporal_grp_periodicity = frequency(my_series),

ts_to_bmkDF 101

Fiscal years starting on Q2 (April)
temporal_grp_start = 2,

quiet = TRUE)

Initial data
my_series

With coherent fiscal year totals
my_new_ser

Reconciled data
out_raked3

Check the output cross-sectional constraint
all.equal(rowSums(out_raked3[, my_metadata$series]), as.vector(out_raked3[, "cars_tot"]))

Check the output temporal constraints (both fiscal year totals for all series)
all.equal(rbind(aggregate.ts(window(my_new_ser, start = c(2019, 2), end = c(2020, 1))),
aggregate.ts(window(my_new_ser, start = c(2020, 2), end = c(2021, 1)))),
rbind(aggregate.ts(window(out_raked3, start = c(2019, 2), end = c(2020, 1))),
aggregate.ts(window(out_raked3, start = c(2020, 2), end = c(2021, 1)))))

Check the control total (fixed)
all.equal(my_series[, "cars_tot"], out_raked3[, "cars_tot"])

ts_to_bmkDF Convert a "ts" object to a benchmarks data frame

Description

Convert a "ts" (or "mts") object into a benchmarks data frame for the benchmarking functions with
five or more variables (columns):

¢ four (4) for the benchmark coverage

¢ one (1) for each benchmark time series

For discrete benchmarks (anchor points covering a single period of the indicator series, e.g., end of

year stocks), specify discrete_flag = TRUE and alignment = "b", "e" or "m".

Usage

ts_to_bmkDF (
in_ts,
ind_frequency,
discrete_flag = FALSE,
alignment = "b",
bmk_interval_start = 1,
startYr_cName = "startYear",

102 ts_to_bmkDF

startPer_cName = "startPeriod”,
endYr_cName = "endYear”,
endPer_cName = "endPeriod”,
val_cName = "value"
)
Arguments
in_ts (mandatory)

Time series (object of class "ts" or "mts") to be converted.

ind_frequency (mandatory)

Integer specifying the frequency of the indicator (high frequency) series for
which the benchmarks (low frequency series) are related to. The frequency of a
time series corresponds to the maximum number of periods in a year (e.g., 12
for a monthly data, 4 for a quarterly data, 1 for annual data).

discrete_flag (optional)
Logical argument specifying whether the benchmarks correspond to discrete
values (anchor points covering a single period of the indicator series, e.g., end
of year stocks) or not. discrete_flag = FALSE defines non-discrete bench-
marks, i.e., benchmarks that cover several periods of the indicator series (e.g.
annual benchmarks cover 4 quarters or 12 months, quarterly benchmarks cover
3 months, etc.).

Default value is discrete_flag = FALSE.

alignment (optional)

Character identifying the alignment of discrete benchmarks (argument discrete_flag
= TRUE) in the benchmark (low frequency series) interval coverage window:

e alignment = "b": beginning of the benchmark interval window (first pe-
riod)
e alignment = "e": end of the benchmark interval window (last period)
e alignment = "m": middle of the benchmark interval window (middle pe-
riod)
This argument has no effect for non-discrete benchmarks (discrete_flag =
FALSE).
Default value is alignment = "b".
bmk_interval_start
(optional)
Integer in the [1 .. ind_frequency] interval specifying the period (cycle) of
the indicator (high frequency) series at which the benchmark (low frequency
series) interval window starts. E.g., annual benchmarks corresponding to fiscal
years defined from April to March of the following year would be specified with
bmk_interval_start = 4 for a monthly indicator series (ind_frequency = 12)
and bmk_interval_start = 2 for a quarterly indicator series (ind_frequency
=4).
Default value is bmk_interval_start =1.

ts_to_bmkDF 103

startYr_cName, startPer_cName, endYr_cName, endPer_cName
(optional)
Strings specifying the name of the numeric variables (columns) in the output
data frame that will define the benchmarks coverage, i.e., the starting and ending
year and period (cycle) identifiers.

Default values are startYr_cName = "startYear”, startPer_cName = "startPeriod”

endYr_cName = "endYear" and endPer_cName = "endPeriod”.

val_cName (optional)
String specifying the name of the numeric variable (column) in the output data
frame that will contain the benchmark values. This argument has no effect for
"mts" objects (benchmark variable names are automatically inherited from the
"mts" object).
Default value is val_cName = "value”.

Value

The function returns a data frame with five or more variables:

* Benchmark coverage starting year, type numeric (see argument startYr_cName)

* Benchmark coverage starting period (cycle), type numeric (see argument startPer_cName)

* Benchmark coverage ending year, type numeric (see argument endtYr_cName)

* Benchmark coverage ending period (cycle), type numeric (see argument endPer_cName)

* One ("ts" object) or many ("mts" object) benchmark data variable(s), type numeric (see argu-

ment val_cName)

Note: the function returns a "data.frame" object than can be explicitly coerced to another type
of object with the appropriate as*() function (e.g., tibble::as_tibble() would coerce it to a
tibble).

See Also

ts_to_tsDF() stack_bmkDF () benchmarking() stock_benchmarking() time_values_conv

Examples

Annual and quarterly time series

my_ann_ts <- ts(1:5 * 100, start = 2019, frequency = 1)
my_ann_ts

my_qgtr_ts <- ts(my_ann_ts, frequency = 4)

my_qtr_ts

Annual benchmarks for a monthly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 12)

Annual benchmarks for a quarterly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 4)

Quarterly benchmarks for a monthly indicator series

104 ts_to_tsDF

ts_to_bmkDF (my_qtr_ts, ind_frequency = 12)

Start of year stocks for a quarterly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 4,
discrete_flag = TRUE)

End of quarter stocks for a monthly indicator series
ts_to_bmkDF (my_qgtr_ts, ind_frequency = 12,
discrete_flag = TRUE, alignment = "e")

April to March annual benchmarks for a ...
... monthly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency
bmk_interval_start = 4)
... quarterly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 4,
bmk_interval_start = 2)

12,

End-of-year (April to March) stocks for a ...
... monthly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 12,
discrete_flag = TRUE, alignment = "e", bmk_interval_start
... quarterly indicator series
ts_to_bmkDF (my_ann_ts, ind_frequency = 4,
discrete_flag = TRUE, alignment = "e", bmk_interval_start = 2)

4

Custom name for the benchmark data variable (column)
ts_to_bmkDF (my_ann_ts, ind_frequency = 12,
val_cName = "bmk_val")

Multiple time series: argument ~val_cName™ ignored

(the "mts” object column names are always used)

ts_to_bmkDF (ts.union(ser1 = my_ann_ts, ser2 = my_ann_ts / 10), ind_frequency = 12,
val_cName = "useless_column_name")

ts_to_tsDF Convert a "ts" object to a time series data frame

Description

Convert a "ts" (or "mts") object into a time series data frame for the benchmarking functions with
three or more variables (columns):

* two (2) for the data point identification (year and period)

* one (1) for each time series

Usage

ts_to_tsDF(
in_ts,

ts_to _tsDF 105

yr_cName = "year"”,
per_cName = "period”,
val_cName = "value"
)
Arguments
in_ts (mandatory)

Time series (object of class "ts" or "mts") to be converted.
yr_cName, per_cName
(optional)
Strings specifying the name of the numeric variables (columns) in the output
data frame that will contain the data point year and period identifiers.

Default values are yr_cName = "year" and per_cName = "period”.

val_cName (optional)

String specifying the name of the numeric variable (column) in the output data
frame that will contain the data point value. This argument has no effect for
"mts" objects (time series data variable names are automatically inherited from
the "mts" object).

Default value is val_cName = "value".

Value
The function returns a data frame with three or more variables:
 Data point year, type numeric (see argument startYr_cName)

 Data point period, type numeric (see argument startPer_cName)

* One ("ts" object) or many ("mts" object) time series data variable(s), type numeric (see argu-
ment val_cName)

Note: the function returns a "data.frame" object than can be explicitly coerced to another type
of object with the appropriate asx() function (e.g., tibble::as_tibble() would coerce it to a
tibble).

See Also

tsDF_to_ts() ts_to_bmkDF () stack_tsDF () benchmarking() stock_benchmarking() time_values_conv

Examples

Quarterly time series
my_ts <- ts(1:10 x 100, start = 2019, frequency = 4)
my_ts

With the default variable (column) names
ts_to_tsDF(my_ts)

Using a custom name for the time series data variable (column)

106 unstack_tsDF

ts_to_tsDF(my_ts, val_cName = "ser_val")

Multiple time series: argument ~val_cName™ ignored
(the "mts” object column names are always used)
ts_to_tsDF(ts.union(ser1 = my_ts,
ser2 = my_ts / 10),
val_cName = "useless_column_name")

unstack_tsDF Reciprocal function of stack_tsDF ()

Description

Convert a stacked (tall) multivariate time series data frame (benchmarking () and stock_benchmarking()
data format) into a non-stacked (wide) multivariate time series data frame.

This function, combined with tsDF_to_ts(), is useful to convert the benchmarked data frame
returned by a call to benchmarking() or stock_benchmarking() back into a "mts" object, where
multiple series were benchmarked in BY-group processing mode.

Usage
unstack_tsDF(
ts_df,
ser_cName = "series”,
yr_cName = "year"”,
per_cName = "period”,
val_cName = "value”
)
Arguments
ts_df (mandatory)
Data frame (object of class "data.frame") that contains the multivariate time se-
ries data to be unstacked.
ser_cName (optional)

String specifying the name of the character variable (column) in the input time
series data frame that contains the series identifier (the time series variable
names in the output data frame).
Default value is ser_cName = "series”.

yr_cName, per_cName
(optional)
Strings specifying the name of the numeric variables (columns) in the input time
series data frame that contain the data point year and period identifiers. These
variables are transferred to the output data frame with the same names.
Default values are yr_cName = "year" and per_cName = "period”.

unstack tsDF 107

val_cName (optional)

String specifying the name of the numeric variable (column) in the input time
series data frame that contains the data point values.

Default value is val_cName = "value”.

Value
The function returns a data frame with three or more variables:

* Data point year, type numeric (see argument yr_cName)
 Data point period, type numeric (see argument per_cName)

* One time series data variable for each distinct value of the input data frame variable specified
with argument ser_cName, type numeric (see arguments ser_cName and val_cName)

Note: the function returns a "data.frame" object than can be explicitly coerced to another type
of object with the appropriate as*() function (e.g., tibble::as_tibble() would coerce it to a
tibble).

See Also

stack_tsDF() tsDF_to_ts() benchmarking() stock_benchmarking()

Examples

Proportional benchmarking for multiple (3) quarterly series processed with
argument “by~ (in BY-group mode)

ind_vec <- c(1.9, 2.4, 3.1, 2.2, 2.0, 2.6, 3.4, 2.4, 2.3)
ind_df <- ts_to_tsDF(ts(data.frame(ser1l = ind_vec,
ser2 = ind_vec * 100,
ser3 = ind_vec * 10),
start = c(2015, 1), frequency = 4))

bmk_vec <- ¢(10.3, 10.2)
bmk_df <- ts_to_bmkDF (ts(data.frame(ser1 = bmk_vec,
ser2 = bmk_vec * 100,
ser3 = bmk_vec * 10),
start = 2015, frequency = 1),
ind_frequency = 4)

out_bench <- benchmarking(stack_tsDF (ind_df),
stack_bmkDF (bmk_df),
rho = 0.729, lambda = 1, biasOption = 3,
by = "series”,
quiet = TRUE)

Initial and final (benchmarked) quarterly time series data frames
ind_df
unstack_tsDF (out_bench$series)

Index

+ datasets
osqgp_settings_sequence, 34

adj_plot (bench_graphs), 15

adj_plot(), 15,17

aliases, 12,79, 91

alternate_osqp_sequence, 34, 68

alternate_osgp_sequence
(osqp_settings_sequence), 34

bench_graphs, 12, 14, 37,42, 59
benchmarking, 2
benchmarking(), 6, 9, 17, 33, 34, 36, 37, 39,
41, 42,46, 48-51, 56-59, 84, 103,
105-107
build_balancing_problem, 19
build_balancing_problem(), 28, 79
build_raking_problem, 26
build_raking_problem(), 24, 91

default_osgp_sequence, 34, 68
default_osqgp_sequence
(osqp_settings_sequence), 34

ggtext, 16

GR_plot (bench_graphs), 15
GR_plot(), 15,17

GR_table (bench_graphs), 15
GR_table(), 15, 17
gs.build_proc_grps, 29
gs.build_proc_grps(), 31,64, 77,79, 98
gs.glnv_MP, 33

gs.gIlnv_MP(), 12,91

gs.time2per (time_values_conv), 63
gs.time2per(), 30, 64

gs.time2str (time_values_conv), 63
gs.time2str(), 64

gs.time2year (time_values_conv), 63
gs.time2year(), 30, 64

ori_plot (bench_graphs), 15

108

ori_plot(), 15,17

osgp::osqp(), 76
osqp_settings_sequence, 34

plot_benchAdj, 36

plot_benchAdj(), 12, 17,42, 58, 59

plot_graphTable, 39

plot_graphTable(), 10, 12, 15-17, 37, 41,
58, 59

print(), 17,42

rkMeta_to_blSpecs, 43
rkMeta_to_blSpecs(), 79, 91, 98

stack_bmkDF, 46
stack_bmkDF (), 9, 50, 103
stack_tsDF, 48
stack_tsDF(), 9, 48, 105-107
stats::cycle(), 64
stats::frequency(), 30
stats::time(), 45
stock_benchmarking, 51
stock_benchmarking(), 12, 17, 36, 37, 39,
41, 42, 46, 48-51, 56-58, 84, 103,
105-107
suppressMessages(), 6, 56, 71, 88, 96, 97

time_values_conv, 31, 63, 103, 105
ts_to_bmkDF, 101
ts_to_bmkDF (), 46, 48, 64, 105
ts_to_tsDF, 104
ts_to_tsDF (), 49, 50, 64, 84, 103
tsbalancing, 65

tsbalancing(), 19, 23, 24, 29, 31, 34, 35, 43,

45, 46, 71-73, 76-78, 90, 91, 98
tsDF_to_ts, 84
tsDF_to_ts(), 105-107
tsraking, 85, 93
tsraking(), 26, 28, 33, 34, 43, 45, 46, 73
77-79, 85, 88-91, 93, 96-98

INDEX 109

tsraking_driver, 93
tsraking_driver(), 29, 31,78, 79, 85, 89,
91, 96, 97

unstack_tsDF, 106
unstack_tsDF (), 50, 84

	benchmarking
	bench_graphs
	build_balancing_problem
	build_raking_problem
	gs.build_proc_grps
	gs.gInv_MP
	osqp_settings_sequence
	plot_benchAdj
	plot_graphTable
	rkMeta_to_blSpecs
	stack_bmkDF
	stack_tsDF
	stock_benchmarking
	time_values_conv
	tsbalancing
	tsDF_to_ts
	tsraking
	tsraking_driver
	ts_to_bmkDF
	ts_to_tsDF
	unstack_tsDF
	Index

