
Package ‘grmtree’
January 14, 2026

Title Recursive Partitioning for Graded Response Models

Version 0.1.0

Date 2026-01-08

Maintainer Olayinka I. Arimoro <olayinka.arimoro@ucalgary.ca>

Description Provides methods for recursive partitioning based on the
'Graded Response Model' ('GRM'), extending the 'MOB' algorithm from the
'partykit' package. The package allows for fitting
'GRM' trees that partition the population into homogeneous
subgroups based on item response patterns and covariates.
Includes specialized plotting functions for visualizing 'GRM' trees
with different terminal node displays (threshold regions,
parameter profiles, and factor score distributions).
For more details on the methods, see Samejima (1969) <doi:10.1002/J.2333-
8504.1968.TB00153.X>, Komboz et al. (2018) <doi:10.1177/0013164416664394> and Ari-
moro et al. (2025) <doi:10.1007/s11136-025-04018-6>.

License GPL-3

Depends R (>= 4.1.0), partykit (>= 1.2-9), mirt (>= 1.36.1)

Imports stats, graphics, grid, dplyr, ggplot2, rlang, magrittr,
strucchange

Suggests hlt, testthat (>= 3.0.0), knitr, rmarkdown, psychotools,
psychotree, psych

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

URL https://github.com/Predicare1/grmtree

BugReports https://github.com/Predicare1/grmtree/issues

Repository CRAN

VignetteBuilder knitr

LazyData true

NeedsCompilation no

1

https://doi.org/10.1002/J.2333-8504.1968.TB00153.X
https://doi.org/10.1002/J.2333-8504.1968.TB00153.X
https://doi.org/10.1177/0013164416664394
https://doi.org/10.1007/s11136-025-04018-6
https://github.com/Predicare1/grmtree
https://github.com/Predicare1/grmtree/issues

2 discrpar_grmtree

Author Olayinka I. Arimoro [aut, cre] (ORCID:
<https://orcid.org/0009-0009-9464-589X>),

Tolulope T. Sajobi [aut],
Lisa M. Lix [aut],
Matthew T. James [ctb],
Maria Santana [ctb],
Emmanuel Ugochukwu [ctb]

Date/Publication 2026-01-14 18:00:02 UTC

Contents
discrpar_grmtree . 2
fscores_grmtree . 3
generate_node_scores_dataset . 4
grmforest . 5
grmforest.control . 7
grmtree . 9
grmtree.control . 13
grmtree_data . 14
itempar_grmtree . 15
plot.grmtree . 16
plot.varimp . 18
print.grmforest . 19
print.grmtree . 19
threshpar_grmtree . 20
varimp . 22

Index 23

discrpar_grmtree Extract Discrimination Parameters from GRM Tree

Description

Extracts discrimination parameters (slope parameters) for each item from all terminal nodes of a
graded response model tree. The discrimination parameter indicates how well an item distinguishes
between respondents with different levels of the latent trait.

Usage

discrpar_grmtree(object, node = NULL, ...)

Arguments

object A grmtree object.
node Optional vector of node IDs to extract from. If NULL (default), extracts from

all terminal nodes.
... Additional arguments (currently unused).

https://orcid.org/0009-0009-9464-589X

fscores_grmtree 3

Value

A data.frame with discrimination parameters for each item in each node, with columns:

Node Node ID
Item Item name
Discrimination Discrimination parameter (a1)

See Also

grmtree fits a Graded Response Model Tree, grmforest for GRM Forests, fscores_grmtree for
computing factor scores, threshpar_grmtree for extracting threshold parameters, itempar_grmtree
for extracting item parameters

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Get all discrimination parameters
discr <- discrpar_grmtree(tree)
print(discr)

fscores_grmtree Compute Latent Factor Scores for Each Terminal Node in a GRM Tree

Description

This function calculates latent factor scores for each terminal node in a GRM tree object using
specified scoring method (EAP, MAP, ML, or WLE).

Usage

fscores_grmtree(grmtree_obj, method = "EAP")

Arguments

grmtree_obj A GRM tree object (from grmtree() function) containing fitted models in its
terminal nodes.

method Scoring method to use: "EAP" (default), "MAP", "ML", or "WLE". See mirt::fscores()
for details.

4 generate_node_scores_dataset

Value

A named list where each element contains the factor scores for a terminal node. Names correspond
to node IDs. Returns NULL for nodes where computation fails. If no scores can be computed for
any node, returns NULL with a warning.

See Also

fscores for factor scoring methods, grmtree fits a Graded Response Model Tree, grmforest for
GRM Forests, threshpar_grmtree for extracting threshold parameters, discrpar_grmtree for
extracting discrimination parameters, itempar_grmtree for extracting item parameters, generate_node_scores_dataset
generates combined dataset with node assignments and factor scores

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Compute EAP scores for all terminal nodes
node_scores <- fscores_grmtree(tree)

Compute MAP scores instead
node_scores_map <- fscores_grmtree(tree, method = "MAP")

generate_node_scores_dataset

Generate Combined Dataset with Node Assignments and Factor
Scores

Description

Creates a dataset combining original data with node assignments and computed factor scores. Main-
tains original row order while adding node membership and factor score information.

Usage

generate_node_scores_dataset(grmtree_obj, method = "EAP")

grmforest 5

Arguments

grmtree_obj A GRM tree object (from grmtree() function).

method Scoring method to use: "EAP" (default), "MAP", "ML", or "WLE".

Value

A data.frame containing: - Original variables from the model frame - ’node’: Factor indicating
terminal node membership (e.g., "Node 1") - ’factor_score’: Computed latent factor scores Rows
are in original order with sequential row names.

See Also

grmtree fits a Graded Response Model Tree, grmforest for GRM Forests, fscores_grmtree for
computing factor scores, threshpar_grmtree for extracting threshold parameters, discrpar_grmtree
for extracting discrimination parameters, itempar_grmtree for extracting item parameters

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Generate combined dataset
scored_data <- generate_node_scores_dataset(tree)

Plot scores by node
boxplot(factor_score ~ node, data = scored_data)

grmforest Fit a Forest of Graded Response Model Trees for Ensemble-Based DIF
Detection

Description

This function implements a forest of graded response model trees (GRM Forest) using bootstrap
aggregation (bagging) or random subsampling to enhance the detection and analysis of differential
item functioning (DIF) in polytomous items. The GRM Forest approach combines the strengths
of multiple GRMTrees to provide more robust and stable DIF detection, particularly for complex
datasets with high-dimensional covariates or subtle DIF patterns.

6 grmforest

Usage

grmforest(formula, data, control = grmforest.control(), ...)

Arguments

formula A formula specifying the model structure with the response matrix on the left
and partitioning variables on the right (e.g., response_matrix ~ age + gender
+ education + clinical_variables).

data A data frame containing the response matrix and partitioning variables. The
response matrix should contain polytomous items coded as ordered factors.

control A control object created by grmforest.control().
... Additional arguments passed to underlying grmtree() function.

Details

The algorithm works by fitting multiple GRMTrees, each on a random sample of the original data
(either through bootstrap sampling or subsampling). For each tree, approximately one-third of the
observations are left out as out-of-bag (OOB) samples, which are used for internal validation and
variable importance calculation. The ensemble approach reduces variance, minimizes overfitting,
and provides more reliable identification of covariates associated with DIF.

Key advantages of the GRM Forest approach include:

• Enhanced stability in DIF detection across different sampling variations
• Robust variable importance measures that quantify the relative contribution of each covariate

to DIF patterns
• Reduced false positive rates through consensus-based detection
• Ability to handle high-dimensional covariate spaces effectively
• Internal validation through out-of-bag error estimation

The forest implementation supports both bootstrap aggregation (where samples are drawn with
replacement) and subsampling (without replacement), allowing flexibility for different data charac-
teristics and research objectives.

Value

An object of class grmforest containing:

trees List of fitted GRM trees
oob_samples List of out-of-bag samples for each tree
formula The model formula
data The original dataset
call The function call

See Also

grmtree fits a Graded Response Model Tree, grmtree.control creates a control object for grmtree,
grmforest.control creates a control object for grmforest, varimp calculates the variable impor-
tance for GRM Forest, plot.varimp creates a bar plot of variable importance scores

grmforest.control 7

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit forest with default parameters
forest <- grmforest(resp ~ gender + group, data = asti)

Fit with custom control
ctrl <- grmforest.control(n_tree = 50, sampling = "subsample")
forest <- grmforest(resp ~ gender + group, data = asti, control = ctrl)

grmforest.control Control Parameters for GRM Forest

Description

Creates a control object for grmforest containing parameters that control the forest growing pro-
cess including sampling, tree growing, and error handling.

Usage

grmforest.control(
n_tree = 100,
sampling = "bootstrap",
sample_fraction = 0.632,
mtry = NULL,
remove_dead_trees = TRUE,
control = grmtree.control(),
alpha = 0.05,
minbucket = 20,
seed = NULL

)

Arguments

n_tree Number of trees in the forest (default: 100).

sampling Sampling method: "bootstrap" (with replacement) or "subsample" (without re-
placement) (default: "bootstrap").

sample_fraction

Fraction of data to sample for each tree (default: 0.632).

mtry Number of variables randomly sampled as candidates at each split. If NULL, all
variables are considered (default: NULL).

8 grmforest.control

remove_dead_trees

Logical indicating whether to remove trees that encounter errors during fitting
(default: TRUE).

control Control parameters for individual trees created by grmtree.control().

alpha Significance level for splitting (default: 0.05).

minbucket Minimum number of observations in terminal nodes (default: 20).

seed Random seed for reproducibility (default: NULL).

Value

A list of class grmforest_control containing:

n_tree Number of trees

sampling Sampling method

sample_fraction

Sample fraction

mtry Number of variables to try at each split

remove_dead_trees

Whether to remove failed trees

control Tree control parameters

seed Random seed

See Also

grmtree.control creates a control object for grmtree, plot.grmtree creates plot for the grmtree
object, grmforest for GRM Forests,

Examples

library(grmtree)
Control with 50 trees using subsampling
ctrl <- grmforest.control(n_tree = 50, sampling = "subsample")

Control with specific tree parameters
ctrl <- grmforest.control(

control = grmtree.control(minbucket = 30, alpha = 0.01)
)

grmtree 9

grmtree Fit a Graded Response Model Tree for Differential Item Functioning
Detection

Description

This function implements a tree-based graded response model (GRM) using model-based recursive
partitioning to detect and account for differential item functioning (DIF) in polytomous items. The
GRMTree combines the statistical framework of item response theory with recursive partitioning
to identify heterogeneous subgroups in the population where item parameters (discrimination and
thresholds) vary systematically across covariates.

Usage

grmtree(
formula,
data,
na.action = na.omit,
control = grmtree.control(),
mtry = NULL,
...

)

Arguments

formula A formula specifying the model structure with the response matrix on the left
and partitioning variables on the right (e.g., response_matrix ~ age + gender).

data A data frame containing the variables in the model.

na.action How to handle missing values (default: na.omit).

control A list of control parameters created by grmtree.control().

mtry Number of variables randomly sampled as candidates at each split. If NULL, all
variables are considered.

... Additional arguments passed to the fitting function.

Details

The algorithm works by first estimating a global GRM for the entire sample, then recursively testing
for parameter instability with respect to available covariates. When significant DIF is detected, the
sample is partitioned into homogeneous subgroups, each with their own set of item parameters.
This approach allows for the identification of complex interaction effects and provides interpretable
tree structures that visualize how item functioning varies across different patient subgroups.

GRMTree is particularly useful in health outcomes research where patient-reported outcome mea-
sures may function differently across diverse demographic, clinical, or socioeconomic subgroups.
The resulting tree diagrams facilitate the development of personalized assessment strategies and can
inform targeted interventions by identifying specific patient characteristics associated with differ-
ential item interpretation.

10 grmtree

Conventional Graded Response Model (GRM):
Let Yim denote the response of the ith (i = 1, . . . , N) individual to the mth (m = 1, 2, . . . ,M)
item. The graded response model is described as:

P (Yim ≥ j|τmj , λm, θi) =
exp(−(τmj − λmθi))

1 + exp(−(τmj − λmθi))

where:

• P (Yim ≥ j|τmj , λm, θi) is the probability that individual i’s response is in category j or
higher on item m,

• τmj is the threshold parameter between categories j − 1 and j for item m,
• λm is the discrimination parameter for item m,
• θi ∼ N(0, 1) is the latent trait score for individual i.

This parametrization is equivalent to the conventional IRT formulation where item discrimination
is am = λm and item difficulty is bmj = τmj/λm.

Graded Response Model Tree (GRMTree) Implementation:
The GRMTree is a hybrid model that integrates the GRM with model-based recursive partitioning
to detect and account for differential item functioning (DIF) across subgroups defined by covari-
ates. The algorithm proceeds through the following steps:
Step 1: Global Model Estimation
Estimate the GRM item parameters (τ̂mj , λ̂m) jointly for all individuals in the study cohort at the
root node via maximum likelihood estimation:

β̂global = argmax
β

N∑
i=1

logL(β;yi)

where β = (a1, . . . , aJ , b11, . . . , bJ,m−1) contains all item parameters (discrimination and diffi-
culty), providing a baseline model assuming parameter invariance.
Step 2: Parameter Stability Testing
For each available covariate Xp (p = 1, . . . , P), assess the stability of the item parameters by
conducting score-based structural change tests. This involves: 1. Calculating the score function
contributions s(β̂; yi, xi) for each individual, 2. Ordering these scores with respect to each co-
variate Xp, 3. Testing the null hypothesis H0 : E[s(β̂; yi, xi)] = 0 for all i against the alternative
that scores fluctuate systematically with Xp, indicating parameter instability (DIF).
Step 3: Recursive Partitioning
If significant instability is detected (p < αadj):

• Covariate Selection: Identify the covariate X∗
p with the most significant instability (smallest

adjusted p-value),
• Split Point Determination: Find the optimal cut-point c∗ that maximizes the partitioned

log-likelihood:

ℓleft(β) + ℓright(β) =
∑

i:Xpi≤c∗

logL(β; yi) +
∑

i:Xpi>c∗

logL(β; yi)

over all possible cut-points on X∗
p ,

grmtree 11

• Sample Splitting: Partition the sample into two child nodes based on the rule X∗
p ≤ c∗.

Step 4: Recursive Application & Stopping Criteria
Repeat Steps 1-3 recursively within each resulting child node until one of the following stopping
criteria is met:

1. No Significant Instability: No covariate shows significant parameter instability after mul-
tiple testing correction (αadj = α/m, where multiple adjustment methods can be applied,
including Bonferroni, Holm, Benjamini-Hochberg, etc.).

2. Minimum Node Size: The subsample size falls below a prespecified minimum (e.g., n <
10× the number of item parameters).

Formal GRMTree Structure:
The final GRMTree provides a piecewise GRM where each terminal node represents a subgroup
with homogeneous item parameters, explicitly modeling the detected DIF structure within the
data. The resulting GRMTree model can be expressed as a mixture of subgroup-specific GRMs:

P (Yij = k|θi,xi) =

B∑
b=1

I(xi ∈ Xb) · Pb(Yij = k|θi)

where:

• B is the number of terminal nodes,
• Xb is the covariate subspace defining terminal node b,
• Pb is the node-specific GRM with parameters βb,
• I(·) is the indicator function.

Each terminal node b contains a complete GRM with:

• Node-specific item parameters: βb = (a1b, . . . , aJb, b11b, . . . , bJ,m−1,b)

• Local ability distribution: θi|xi ∈ Xb ∼ N(0, 1)

This approach allows differential item functioning (DIF) to be detected and modeled explicitly
through the tree structure, where item parameters can vary across subgroups defined by covariates,
while maintaining the conditional distribution of the latent trait within each subgroup.

Post-Hoc Multiple Comparison Adjustments:
For holm, BH, BY, hochberg, and hommel methods, the algorithm employs a two-stage approach:
(1) build a tree using initial_alpha as the splitting threshold, (2) apply global p-value ad-
justment across all splits, and (3) prune splits that do not meet the adjusted threshold alpha.
This differs from Bonferroni correction, which is applied locally during tree construction via
partykit::mob. The choice of initial_alpha represents a statistical trade-off. The default
(min(3 * alpha, 0.20)) provides a balance between power and computational efficiency. Note
that global post-hoc adjustments in hierarchical tree structures may be conservative compared to
per-node adjustments, as they account for all tests performed during tree exploration. This global
adjustment approach controls the tree-wide error rate and may be conservative (Type I error often
<3%). This conservativeness ensures strong control of family-wise error rate or false discovery
rate across all splits in the tree. Users requiring less conservative control may prefer the Bonfer-
roni method, which applies per-node adjustment during tree construction.

Value

An object of class grmtree inheriting from modelparty containing the fitted tree structure.

12 grmtree

Author(s)

Olayinka Imisioluwa Arimoro <olayinka.arimoro@ucalgary.ca>, Lisa M. Lix, Tolulope T. Sajobi

References

Methodological Foundations:
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psy-
chometrika Monograph Supplement, 34, 100-114.
Strobl, C., Kopf, J., & Zeileis, A. (2015). Rasch trees: A new method for detecting differential
item functioning in the Rasch model. Psychometrika, 80(2), 289-316.
Komboz, B., Strobl, C., & Zeileis, A. (2018). Tree-based global model tests for polytomous Rasch
models. Educational and psychological measurement, 78(1), 128-166. https://doi.org/10.1177/0013164416664394
Arimoro, O. I., Lix, L. M., Patten, S. B., Sawatzky, R., Sebille, V., Liu, J., Wiebe, S., Josephson,
C. B., & Sajobi, T. T. (2025). Tree-based latent variable model for assessing differential item
functioning in patient-reported outcome measures: a simulation study. Quality of Life Research.
https://doi.org/10.1007/s11136-025-04018-6

Applied Examples:
Arimoro, O. I., Josephson, C. B., James, M. T., Patten, S. B., Wiebe, S., Lix, L. M., & Sajobi, T. T.
(2024). Screening for depression in patients with epilepsy: same questions but different meaning
to different patients. Quality of Life Research, 33(12), 3409-3419. https://doi.org/10.1007/s11136-
024-03782-1

See Also

print.grmtree prints the detailed summary results of the grmtree object, grmtree.control cre-
ates a control object for grmtree, plot.grmtree creates plot for the grmtree object, grmforest for
GRM Forests, varimp calculates the variable importance for GRM Forest, fscores_grmtree for
computing factor scores, threshpar_grmtree for extracting threshold parameters, discrpar_grmtree
for extracting discrimination parameters, itempar_grmtree for extracting item parameters

Examples

library(grmtree)
library(hlt)

Prepare the asti data (from the hlt package)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Print and plot the tree
print(tree)
plot(tree)

grmtree.control 13

Extract item parameters for specific subgroups
discr_params <- discrpar_grmtree(tree)
threshold_params <- threshpar_grmtree(tree)

grmtree.control Control Parameters for GRM Trees

Description

Creates a control object for grmtree containing various parameters that control the tree growing
process.

Usage

grmtree.control(
minbucket = 20,
p_adjust = "none",
alpha = 0.05,
initial_alpha = NULL,
...

)

Arguments

minbucket Minimum number of observations in a terminal node (default: 20).

p_adjust Method for p-value adjustment. One of: "none", "bonferroni", "holm", "BH",
"BY", "hochberg", or "hommel" (default: "none").

alpha Significance level for splitting (default: 0.05).

initial_alpha For post-hoc adjustment methods (holm, BH, BY, hochberg, hommel), the sig-
nificance threshold for initial tree construction before pruning. Must satisfy
alpha < initial_alpha < 1. Default is min(3 * alpha, 0.20). Lower values
produce more conservative results but run faster; higher values provide more
power but require more computation and may increase Type I error. Ignored for
"none" and "bonferroni" methods.

... Additional arguments passed to partykit::mob_control().

Value

A list of control parameters with class grmtree_control.

See Also

grmtree fits a Graded Response Model Tree

14 grmtree_data

Examples

Use Bonferroni correction with alpha = 0.01
ctrl <- grmtree.control(p_adjust = "bonferroni", alpha = 0.01)

grmtree_data Medical Outcomes Study Social Support Survey (MOS-SS) Test Data

Description

A dataset containing sample responses to the MOS-SS emotional domain items and demographic
variables. This data is provided for testing and demonstration purposes within the grmtree package.
The items are numbered 1-5, representing None of the time, A little of the time, Some of the time,
Most of the time, All of the time, respectively.

Usage

grmtree_data

Format

A tibble with 3,500 rows and 17 variables:

MOS_Listen Someone you can count on to listen to you when you need to talk (1-5 Likert scale)

MOS_Info Someone to give you information to help you understand a situation (1-5 Likert scale)

MOS_Advice_Crisis Someone to give good advice about a crisis (1-5 Likert scale)

MOS_Confide Someone to confide in or talk to about yourself or your problems (1-5 Likert scale)

MOS_Advice_Want Someone whose advice you really want (1-5 Likert scale)

MOS_Fears Someone to share private worries or fears (1-5 Likert scale)

MOS_Personal Someone to turn to for suggestions about how to deal with a personal problem
(1-5 Likert scale)

MOS_Understand Someone who understands your problems (1-5 Likert scale)

sex Gender (Male, Female)

age Age in years (numeric)

residency Residence location (rural, urban)

depressed Depression status (No, Yes)

bmi Body Mass Index (numeric)

Education Education level (Primary/High school, College/University)

job Employment status (Employed, Unemployed)

smoker Smoking status (No, Yes)

multimorbidity Number of chronic conditions (0, 1, 2+)

itempar_grmtree 15

Source

Simulated data generated for package testing and demonstration

Examples

library(dplyr)

Load and take a glimpse at the data
data(grmtree_data, package = "grmtree")
glimpse(grmtree_data)

itempar_grmtree Extract Item Parameters from GRM Tree

Description

Extracts both discrimination parameters and average threshold parameters for each item from all
terminal nodes of a graded response model tree. This provides a comprehensive view of item
characteristics across different nodes of the tree.

Usage

itempar_grmtree(object, node = NULL, ...)

Arguments

object A grmtree object.

node Optional vector of node IDs to extract from. If NULL (default), extracts from
all terminal nodes.

... Additional arguments (currently unused).

Value

A data.frame with item parameters for each item in each node, with columns:

Node Node ID

Item Item name

Discrimination Discrimination parameter (a1)

AvgThreshold Average of threshold parameters

Thresholds All threshold parameters as a list column

See Also

grmtree fits a Graded Response Model Tree, grmforest for GRM Forests, fscores_grmtree for
computing factor scores, threshpar_grmtree for extracting threshold parameters, discrpar_grmtree
for extracting discrimination parameters

16 plot.grmtree

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Get all item parameters
items <- itempar_grmtree(tree)
print(items)

plot.grmtree Plot Method for GRM Tree Objects

Description

Visualizes a GRM (Graded Response Model) tree with different types of terminal node plots. This
function extends plot.modelparty from the partykit package with specialized visualizations for
GRM trees.

Usage

S3 method for class 'grmtree'
plot(
x,
type = c("regions", "profile", "histogram"),
what = c("item", "threshold", "discrimination"),
tnex = 2L,
drop_terminal = TRUE,
spacing = 0.1,
...

)

Arguments

x A GRM tree object of class ’grmtree’.

type Type of terminal node plot to display:

"regions" Threshold regions plot (default)
"profile" Item parameter profile plot
"histogram" Histogram of factor scores with normal curve

what Type of parameters to plot when type = "profile":

plot.grmtree 17

"item" Both discrimination and threshold parameters (default)
"threshold" Only threshold parameters
"discrimination" Only discrimination parameters

tnex Numeric scaling factor for terminal node extension (default: 2).

drop_terminal Logical indicating whether to drop terminal node IDs (default: TRUE).

spacing Numeric value controlling spacing between elements (default: 0.1).

... Additional arguments passed to the terminal panel functions.

Details

The function provides three visualization types:

• Regions plot: Shows threshold parameters as colored regions, useful for visualizing the diffi-
culty parameters across items and nodes.

• Profile plot: Displays either item parameters (discrimination and average thresholds), just
thresholds, or just discrimination parameters as line plots across items.

• Histogram: Shows the distribution of factor scores in each node with an overlaid normal
curve.

Value

Invisibly returns the GRM tree object. Primarily called for its side effect of producing a plot.

See Also

plot.modelparty for the underlying plotting infrastructure, grmtree for creating GRM tree ob-
jects, plot.varimp creates a bar plot of variable importance scores

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Default regions plot
plot(tree)

Profile plot showing item parameters
plot(tree, type = "profile")

Profile plot showing only thresholds
plot(tree, type = "profile", what = "threshold")

18 plot.varimp

Histograms of factor scores
plot(tree, type = "histogram")

plot.varimp Plot Variable Importance

Description

Creates a bar plot of variable importance scores with options for both ggplot2 and base R graphics.

Usage

S3 method for class 'varimp'
plot(x, top_n = NULL, use_ggplot = TRUE, ...)

Arguments

x A varimp object from varimp().
top_n Number of top variables to display (NULL for all).
use_ggplot Logical indicating whether to use ggplot2 (if available).
... Additional arguments passed to plotting functions.

Value

Invisibly returns the input object.

See Also

varimp calculates the variable importance for GRM Forest, grmforest for GRM Forests, grmforest.control
creates a control object for grmforest, plot.grmtree creates plot for the grmtree object

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit forest with default parameters
forest <- grmforest(resp ~ gender + group, data = asti)
imp <- varimp(forest)
plot(imp)
plot(imp, top_n = 1) ## select top 1 importance variable
plot(imp, use_ggplot = FALSE) # Use base R graphics

print.grmforest 19

print.grmforest Print Method for GRM Forest

Description

Print Method for GRM Forest

Usage

S3 method for class 'grmforest'
print(x, ...)

Arguments

x A grmforest object

... Additional arguments (currently unused)

Value

Invisibly returns the input object

print.grmtree Print Method for GRM Tree Objects

Description

Displays a formatted summary of a GRM (Graded Response Model) tree object. This function
extends print.modelparty from the partykit package with specialized formatting for GRM trees.

Usage

S3 method for class 'grmtree'
print(
x,
title = "Graded Response Model Tree",
objfun = "negative log-likelihood",
...

)

Arguments

x A GRM tree object of class ’grmtree’.

title Character string specifying the title for the print output (default: "Graded Re-
sponse Model Tree").

objfun Character string labeling the objective function (default: "negative log-likelihood").

... Additional arguments passed to print.modelparty.

20 threshpar_grmtree

Details

The print method provides a comprehensive summary of the GRM tree, including:

• Model formula used for fitting

• Tree structure with node information

• Item parameter estimates for each terminal node

• Confidence intervals for parameters

• Group parameters (mean and covariance)

• Summary statistics (number of nodes, objective function value)

Value

Invisibly returns the GRM tree object. Primarily called for its side effect of printing a formatted
summary.

See Also

print.modelparty for the underlying printing infrastructure, grmtree for creating GRM tree ob-
jects

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Print the tree summary
print(tree)

Alternative syntax (automatically calls print.grmtree)
tree

threshpar_grmtree Extract Threshold Parameters from GRM Tree

Description

Extracts threshold parameters for each item from all terminal nodes of a graded response model tree.
The thresholds represent the points on the latent trait continuum where the probability of scoring in
adjacent response categories is equal.

threshpar_grmtree 21

Usage

threshpar_grmtree(object, node = NULL, ...)

Arguments

object A grmtree object.

node Optional vector of node IDs to extract from. If NULL (default), extracts from
all terminal nodes.

... Additional arguments (currently unused).

Value

A data.frame with threshold parameters for each item in each node, with columns:

Node Node ID

Item Item name

d1, d2, ... Threshold parameters for each category

See Also

grmtree fits a Graded Response Model Tree, grmforest for GRM Forests, fscores_grmtree for
computing factor scores, discrpar_grmtree for extracting discrimination parameters, itempar_grmtree
for extracting item parameters

Examples

library(grmtree)
library(hlt)

data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit GRM tree with gender and group as partitioning variables
tree <- grmtree(resp ~ gender + group,

data = asti,
control = grmtree.control(minbucket = 30))

Get all thresholds
thresholds <- threshpar_grmtree(tree)
print(thresholds)

22 varimp

varimp Calculate Variable Importance for GRM Forest

Description

Computes permutation importance scores for variables in a GRM forest using out-of-bag samples.
Importance is measured by the decrease in log-likelihood when a variable’s values are permuted.

Usage

varimp(forest, method = "permutation", verbose = FALSE, seed = NULL)

Arguments

forest A grmforest object created by grmforest().

method Importance calculation method (currently only "permutation").

verbose Logical indicating whether to show progress messages.

seed Random seed for reproducibility.

Value

A named numeric vector of importance scores with class varimp. Higher values indicate more
important variables.

See Also

grmtree fits a Graded Response Model Tree, grmforest for GRM Forests, grmforest.control
creates a control object for grmforest, plot.varimp creates a bar plot of variable importance
scores

Examples

library(grmtree)
library(hlt)
data("asti", package = "hlt")
asti$resp <- data.matrix(asti[, 1:4])

Fit the GRM Forest
forest <- grmforest(resp ~ gender + group, data = asti,
control = grmforest.control(n_tree = 5))

importance <- varimp(forest)

Print and plot the variable importance scores
print(importance)
plot(importance)

Index

∗ datasets
grmtree_data, 14

discrpar_grmtree, 2, 4, 5, 12, 15, 21

fscores, 4
fscores_grmtree, 3, 3, 5, 12, 15, 21

generate_node_scores_dataset, 4, 4
grmforest, 3–5, 5, 8, 12, 15, 18, 21, 22
grmforest.control, 6, 7, 18, 22
grmtree, 3–6, 9, 13, 15, 17, 20–22
grmtree.control, 6, 8, 12, 13
grmtree_data, 14

itempar_grmtree, 3–5, 12, 15, 21

plot.grmtree, 8, 12, 16, 18
plot.modelparty, 17
plot.varimp, 6, 17, 18, 22
print.grmforest, 19
print.grmtree, 12, 19
print.modelparty, 20

threshpar_grmtree, 3–5, 12, 15, 20

varimp, 6, 12, 18, 22

23

	discrpar_grmtree
	fscores_grmtree
	generate_node_scores_dataset
	grmforest
	grmforest.control
	grmtree
	grmtree.control
	grmtree_data
	itempar_grmtree
	plot.grmtree
	plot.varimp
	print.grmforest
	print.grmtree
	threshpar_grmtree
	varimp
	Index

