Package ‘ggDNAvis’

September 21, 2025

Title 'ggplot2'-Based Tools for Visualising DNA Sequences and
Modifications

Version 0.2.1

Description Uses 'ggplot2' to visualise either (a) a single DNA/RNA sequence split across multi-
ple lines, (b) multiple DNA/RNA sequences, each occupying a whole line, or (c) base modifica-
tions such as DNA methylation called by modified bases models in Dorado or Guppy. Func-
tions starting with visualise_<something>() are the main plotting functions, and functions start-
ing with extract_<something>() are key helper functions for reading files and reformat-
ting data. Source code is avail-
able at <https://github.com/ejade42/ggDNAvis> and a full non-expert user guide is avail-
able at <https://ejade42.github.io/ggDNAvis/>.

Imports ggplot2, dplyr, tidyr, stringr, raster, rlang, ragg, png,
magick

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>=3.5)
LazyData true

Language en-GB

URL https://ejade42.github.io/ggDNAvis/,
https://github.com/ejade42/ggDNAvis

BugReports https://github.com/ejade42/ggDNAvis/issues
NeedsCompilation no

Author Evelyn Jade [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0003-7761-5425>)

Maintainer Evelyn Jade <evelynjade42@gmail.com>
Repository CRAN
Date/Publication 2025-09-21 13:30:07 UTC

https://github.com/ejade42/ggDNAvis
https://ejade42.github.io/ggDNAvis/
https://ejade42.github.io/ggDNAvis/
https://github.com/ejade42/ggDNAvis
https://github.com/ejade42/ggDNAvis/issues
https://orcid.org/0009-0003-7761-5425

2

convert_base to_number

Contents
convert_base _to_number e e e 2
convert_input_seq_to_sequence_list Lo 3
convert_locations_to MM_vector e 4
convert. MM_vector_to_locations 5
convert_modification_to_number_vector 7
convert_sequences_to_annotations e i u e e e 8
convert_sequence_to_numbers Lo 10
create_image_data L. e e 10
debug_join_vector_num L. 11
debug_join_vector_Str 12
example_many_SeqUENCES v« vttt e e e e e e e e e e e 12
extract_and_SOIt_SEqUENCES v v v v vt e e e e e e 13
extract_methylation_from_dataframeo o L. 16
fastg_quality_scores e e e 18
merge_fastq_with_metadata 19
merge_methylation_with_metadata 0L 21
read_fastqo L e 24
read_modified_fastq L 25
reverse_complement L.l L e e e e 26
reverse_locations_if needed 27
reverse_probabilities_if needed L oL 29
reverse_quality_if needed L 30
reverse_sequence_if_needed L L Lo 31
sequence_colour_palettes 33
SIHNG_LO_VECIOT v v v i e e e e e e e e e e e e e e e e e e e 34
VECIOT_tO_SIIING o v o vt e it e e e e e e e e e e e 35
visualise_many_sSeqUenCeso oieu e e e e e e e e 35
visualise_methylation 38
visualise_methylation_colour_scale 42
visualise_single_sequence 44
write_fastq e 47
write_modified_fastq L 49
Index 53

convert_base_to_number

Map a single base to the corresponding number (generic ggDNAvis
helper)

Description

This function takes a single base and numerically encodes it for visualisation via raster: :raster().

Encoding: A=1,C=2,6=3,T/U=4.

convert_input_seq_to_sequence_list 3

Usage

convert_base_to_number(base)

Arguments

base character. A single DNA/RNA base to encode numerically (e.g. "A").

Value

integer. The corresponding number.

Examples

convert_base_to_number("A")
convert_base_to_number("c")
convert_base_to_number("g")
convert_base_to_number("T")
convert_base_to_number("u")

convert_input_seq_to_sequence_list
Split a single input sequence into a vector of "lines" for visualisation
(visualise_single_sequence() helper)

Description

Takes a single input sequence and an integer line length, and splits the input sequence into lines of
that length (with the last line potentially being shorter).

nn

Optionally inserts empty strings "" after each line to space them out.

Usage

convert_input_seq_to_sequence_list(
input_seq,
line_length,
spacing = 1,
spaces_first = TRUE

Arguments

input_seq character. A DNA/RNA sequence (or for the purposes of this function, any
string, though only DNA/RNA will work with later functions) to be split up.

line_length integer. How long each line (split-up section) should be.

4 convert_locations_to_MM_vector

spacing integer. How many blank lines to leave before/after each line of sequence.
Defaults to 9.

spaces_first logical. Whether blank lines should come before (TRUE, default) or after
(FALSE) each line of sequence.

Value
character vector. The input sequence split into multiple lines, with specified spacing in between.

Examples

convert_input_seqg_to_sequence_list(
"GGCGGCGGC",
line_length = 6,
spacing = 1,
spaces_first = TRUE
)

convert_input_seqg_to_sequence_list(
"GGCGGCGGC",
line_length = 3,
spacing = 2,
spaces_first = FALSE
)

convert_input_seq_to_sequence_list(
"GGCGGCGGLC",
line_length = 6,
spacing = @

convert_locations_to_MM_vector
Convert absolute index locations to MM tag
(write_modified_fastq() helper)

Description

This function takes a vector of modified base locations as absolute indices (i.e. a 1 would mean
the first base in the sequence has been assessed for modification; a 15 would mean the 15th base
has), and converts it to a vector in the format of the SAM/BAM MM tags. The MM tag defines a
particular target base (e.g. C for methylation), and then stores the number of skipped instances of
that base between sites where modification was assessed. In practice, this often means counting the
number of non-CpG Cs in between CpG Cs. In a GGC repeat, this should be a bunch of s as every C
is in a CpG, but unique sequence will have many non-CpG Cs.

This function is reversed by convert_MM_vector_to_locations().

convert_MM_vector_to_locations 5

Usage
convert_locations_to_MM_vector(sequence, locations, target_base = "C")
Arguments
sequence character. The DNA sequence about which the methylation information is
being processed.
locations integer vector. All of the base indices at which methylation/modification
information was processed. Must all be instances of the target base.
target_base character. The base type that has been assessed or skipped (defaults to "C").
Value

integer vector. A component of a SAM MM tag, representing the number of skipped target
bases in between each assessed base.

Examples

convert_locations_to_MM_vector(
"GGCGGCGGCGGL",
locations = c(3, 6, 9, 12),
target_base = "C"

convert_locations_to_MM_vector(
"GGCGGCGGCGGL",
locations = c(1, 4, 7, 10),
target_base = "G"

convert_locations_to_MM_vector(
"GGCGGCGGCGGL",
locations = c(1, 2, 4, 5, 7, 8, 10, 11),
target_base = "G"

convert_MM_vector_to_locations

Convert MM tag to absolute index locations
(read_modified_fastq() helper)

Description

This function takes a sequence, a SAM-style vector of number of potential target bases to skip in
between each target base that was actually assessed, and a target base type (defaults to "C" as 5-
methylcytosine is most common).

6 convert MM_vector_to_locations

It identifies the indices/locations of all instances of the target base within the sequence, and then
goes along the vector of these indices, skipping them if requested by skips.

For example, the sequence "GGCGGCGGCGGC" with target "C" and skips c(@, @, 1) would iden-
tify that the indices where "C" occurs are c(3, 6, 9, 12). It would then take the first index, the
second index, skip one, and take the fourth index i.e. return c(3, 6, 12). If instead the skips were
given as c(@, 2) it would take the first index, skip two, and take the fourth index i.e. return c(3,
12). If the skips were given as c(1, 1) it would skip one, take the second index, skip one, and take
the fourth index i.e. return c(6, 12).

The length of skips corresponds to the number of indices/locations that will be returned (i.e. the
length of the returned locations vector).

Ideally the length of skips plus the sum of skips (i.e. the number returned plus the total num-
ber skipped) is the same or less than the number of possible locations. If it is the same, then the last
possible location will be taken; if it is less then some number of possible locations at the end will
be skipped.

Important: if the length of skips plus the sum of skips is greater than the number of possi-
ble locations (instances of the target base within the sequence), then the total number of taken or
skipped locations will be greater than the number of available locations. In this case, the returned
vector will contain NA after the available locations have run out. In the example above, skips
=c(0, 0, 0, 0, 0) would return c(3, 6, 9, 12, NA), and skips =c(9, 2,) would return c(3,
12, NA).

Therefore, if the target base is totally absent from the sequence (e.g. target "A" in "GGCGGCGGCGGC"),
then any non-zero length of skips will return the same length of NAs e.g. skips = c (@) would re-
turn NA, and skips =c(@, 1, @) would return c(NA, NA, NA).

If skips has length zero, it will return numeric ().

This function is reversed by convert_locations_to_MM_vector ().

Usage
convert_MM_vector_to_locations(sequence, skips, target_base = "C")
Arguments
sequence character. The DNA sequence about which the methylation information is
being processed.
skips integer vector. A component of a SAM MM tag, representing the number of
skipped target bases in between each assessed base.
target_base character. The base type that has been assessed or skipped (defaults to "C").
Value

integer vector. All of the base indices at which methylation/modification information was pro-
cessed. Will all be instances of the target base.

convert_modification_to_number_vector 7

Examples

convert_MM_vector_to_locations(
"GGCGGCGGCGGL",
skips = c(0, 0, 0, @),
target_base = "C”

)

convert_MM_vector_to_locations(
"GGCGGCGGCGGL",
skips = c(1, 1, 1, 1),
target_base = "G"

)

convert_MM_vector_to_locations(
"GGCGGCGGCGGL",
skips = c(0, 0, 2, 1, 0),
target_base = "G"

convert_modification_to_number_vector
Convert string-ified modification probabilities and locations to a sin-
gle vector of probabilities (visualise_methylation() helper)

Description

Takes modification locations (indices along the read signifying bases at which modification proba-
bility was assessed) and modification probabilities (the probability of modification at each assessed
location, as an integer from O to 255), as comma-separated strings (e.g. "1,5,25") produced from
numerical vectors via vector_to_string(). Outputs a numerical vector of the modification prob-
ability for each base along the read. i.e. -2 for indices outside sequences, -1 for bases where
modification was not assessed, and probability from 0-255 for bases where modification was as-
sessed.

Usage

convert_modification_to_number_vector(
modification_locations_str,
modification_probabilities_str,
max_length,
sequence_length

8 convert_sequences_to_annotations

Arguments

modification_locations_str
character. A comma-separated string representing a condensed numerical vec-
tor (e.g. "3,6,9,12", produced via vector_to_string()) of the indices along
the read at which modification was assessed. Indexing starts at 1.

modification_probabilities_str
character. A comma-separated string representing a condensed numerical vec-
tor (e.g. "2,212,128,64", produced via vector_to_string()) of the probabil-
ity of modification as an 8-bit (0-255) integer for each base where modification
was assessed.

max_length integer. How long the output vector should be.

sequence_length
integer. How long the sequence itself is. If smaller than max_length, the
remaining spaces will be filled with -2s i.e. set to the background colour in
visualise_methylation().

Value

numeric vector. A vector of length max_length indicating the probability of methylation at each
index along the read - 0 where methylation was not assessed, and probability from 0-255 where
methylation was assessed.

Examples

convert_modification_to_number_vector(
modification_locations_str = "3,6,9,12",
modification_probabilities = "100,200,50,150",
max_length = 15,
sequence_length = 13

convert_sequences_to_annotations
Convert a vector of sequences to a dataframe for plotting sequence
contents and index annotations (visualise_single_sequence()
helper)

Description

Takes the sequence list output from convert_input_seq_to_sequence_list() and creates a
dataframe specifying x and y coordinates and the character to plot at each coordinate. This applies
to both the sequence itself (e.g. determining where on the plot to place an "A") and the periodicit
annotations of index number (e.g. determining where on the plot to annotate base number 15).

convert_sequences_to_annotations 9

Usage

convert_sequences_to_annotations(
sequences,
line_length,
interval = 15,
annotations_above = TRUE,
annotation_vertical_position = 1/3

)
Arguments
sequences character vector. Sequence to be plotted, split into lines and optionally in-
cluding blank spacer lines. Output of convert_input_seq_to_sequence_list().
line_length integer. How long each line should be.
interval integer. How frequently bases should be annotated with their index. Defaults

to 15.

annotations_above
logical. Whether annotations should go above (TRUE, default) or below (FALSE)
each line of sequence.

annotation_vertical_position
numeric. How far annotation numbers should be rendered above (if index_annotations_above
= TRUE) or below (if index_annotations_above = FALSE) each base. Defaults
to 1/3. Not recommended to change at all. Strongly discouraged to set below 0
or above 1.

Value

dataframe Dataframe of coordinates and labels (e.g. "A" or "15), readable by geom_text.

Examples

convert_sequences_to_annotations(
c("GGCGGC", "", "ATCG", ""),
line_length = 6,
interval = 3,
annotations_above = TRUE,
annotation_vertical_position = 1/3

)

convert_sequences_to_annotations(
C (VIGGCGGC n R nn , IVATCGII s n IV) s
line_length = 6,
interval = 0

10 create_image_data

convert_sequence_to_numbers
Map a sequence to a vector of numbers (generic ggDNAvis helper)

Description

This function takes a sequence and encodes it as a vector of numbers for visualisation via raster: :raster().
Encoding: A=1,C=2,G6=3,T/U=4.

Usage

convert_sequence_to_numbers(sequence, length = NA)

Arguments
sequence character. A DNA/RNA sequence (A/C/G/T/U) to be encoded numerically.
No other characters allowed. Only one sequence allowed.
length integer. How long the output numerical vector should be. If shorter than the
sequence, the vector will include the first n bases up to this length. If longer than
the sequence, the vector will be padded with Os at the end. If left blank/set to NA
(default), will output a vector the same length as the input sequence.
Value

integer vector. The numerical encoding of the input sequence, cut/padded to the desired length.

Examples

convert_sequence_to_numbers ("ATCGATCG")
convert_sequence_to_numbers("ATCGATCG", length = NA)

convert_sequence_to_numbers("ATCGATCG"”, length = 4)
convert_sequence_to_numbers("ATCGATCG", length = 10)
create_image_data Rasterise a vector of sequences into a numerical dataframe for ggplot-

ting (generic ggDNAvis helper)

Description

nn

Takes a character vector of sequences (which are allowed to be empty
and rasterises it into a dataframe that ggplot can read.

to act as a spacing line)

Usage

create_image_data(sequences)

debug_join_vector_num 11

Arguments
sequences character vector. A vector of sequences for plotting, e.g. c("ATCG", "",
"GGCGGC", ""). Each sequence will be plotted left-aligned on a new line.
Value

dataframe. Rasterised dataframe representation of the sequences, readable by ggplot2: :ggplot().

Examples

create_image_data(c("ATCG", "", "GGCGGC", ""))

debug_join_vector_num Print a numeric vector to console (ggDNAvis debug helper)

Description

Takes a numeric vector, and prints it to the console separated by ", ".

This allows the output to be copy-pasted into a vector within an R script. Used for taking vec-
tor outputs and then writing them as literals within a script.

E.g. when given input 1:5, prints 1, 2, 3, 4, 5, which can be directly copy-pasted within
c() to input that vector. Printing normally via print(1:5) instead prints [1] 1 2 3 4 5, which is
not valid vector input so can’t be copy-pasted directly.
See debug_join_vector_str() for the equivalent for character/string vectors.

Usage

debug_join_vector_num(vector)

Arguments
vector numeric vector. Usually generated by some other function. This function
allows copy-pasting the output to directly create a vector with this value.
Value

None (invisible NULL) - uses cat () to output directly to console.

Examples

debug_join_vector_num(1:5)

12 example_many_sequences

debug_join_vector_str Print a character/string vector to console (ggDNAvis debug helper)

Description

Takes a character/string vector, and prints it to the console separated by ", ".

This allows the output to be copy-pasted into a vector within an R script. Used for taking vec-
tor outputs and then writing them as literals within a script.

E.g. when given input strsplit("ABCD", split ="")[[1]], prints "A"”, "B", "C", "D", which

can be directly copy-pasted within c () to input that vector. Printing normally viaprint(strsplit(”ABCD",
split ="")L[1]1]) instead prints [1] "A" "B" "C" "D", which is not valid vector input so can’t

be copy-pasted directly.

See debug_join_vector_num() for the equivalent for numeric vectors.

Usage

debug_join_vector_str(vector)

Arguments
vector character vector. Usually generated by some other function. This function
allows copy-pasting the output to directly create a vector with this value.
Value

None (invisible NULL) - uses cat () to output directly to console.

Examples

debug_join_vector_str(c("A", "B", "C", "D"))

example_many_sequences
Example multiple sequences data

Description

A collection of made-up sequences in the style of long reads over a repeat region (e.g. NOTCH2NLC),
with meta-data describing the participant each read is from and the family each participant is from.
Can be used in visualise_many_sequences(), visualise_methylation(), and helper functions
to visualise these sequences.

Generation code is available at data-raw/example_many_sequences.R

extract_and_sort_sequences 13

Usage

example_many_sequences

Format

example_many_sequences:

A dataframe with 23 rows and 10 columns:

family Participant family

individual Participant ID

read Unique read ID

sequence DNA sequence of the read
sequence_length Length (nucleotides) of the read

quality FASTQ quality scores for the read. Each character represents a score from O to 40 - see
fastg_quality_scores.

These values are made up via pmin(pmax (round(rnorm(n, mean =20, sd=10)), 0), 40)
i.e. sampled from a normal distribution with mean 20 and standard deviation 10, then rounded
to integers between 0 and 40 (inclusive) - see example_many_sequences.R

methylation_locations Indices along the read (starting at 1) at which methylation probability
was assessed i.e. CpG sites. Stored as a single character value per read, condensed from a
numeric vector via vector_to_string().

methylation_probabilities Probability of methylation (8-bit integer i.e. 0-255) for each assessed
base. Stored as a single character value per read, condensed from a numeric vector via
vector_to_string().

These values are made up via round(runif(n, min = @, max = 255)) - see example_many_sequences.R

hydroxymethylation_locations Indices along the read (starting at 1) at which hydroxymethy-
lation probability was assessed i.e. CpG sites. Stored as a single character value per read,
condensed from a numeric vector via vector_to_string().

hydroxymethylation_probabilities Probability of hydroxymethylation (8-bit integer i.e. 0-255)
for each assessed base. Stored as a single character value per read, condensed from a numeric
vector via vector_to_string().

These values are made up via round(runif(n, min =@, max = 255 - this_base_methylation_probability))
such that the summed methylation and hydroxymethylation probability never exceeds 255
(100%) - see example_many_sequences.R

extract_and_sort_sequences
Extract, sort, and add spacers between sequences in a dataframe

14 extract_and_sort_sequences

Description

This function takes a dataframe that contains sequences and metadata, recursively splits it into mul-
tiple levels of groups defined by grouping_levels, and adds breaks between each level of group as
defined by grouping_levels. Within each lowest-level group, reads are sorted by sort_by, with
order determined by desc_sort.

Default values are set up to work with the included dataset example_many_sequences.
The returned sequences vector is ideal input for visualise_many_sequences().

Also called by extract_methylation_from_dataframe() to produce input for visualise_methylation().

Usage

extract_and_sort_sequences(
sequence_dataframe,
sequence_variable = "sequence”,
grouping_levels = c(family = 8, individual = 2),
sort_by = "sequence_length”,
desc_sort = TRUE

Arguments

sequence_dataframe
dataframe. A dataframe containing the sequence information and all required
meta-data. See example_many_sequences for an example of a compatible dataframe.

sequence_variable
character. The name of the column within the dataframe containing the se-
quence information to be output. Defaults to "sequence”.

grouping_levels
named character vector. What variables should be used to define the groups/chunks,
and how large a gap should be left between groups at that level. Set to NA to turn
off grouping.

Defaultsto c("family” = 8, "individual” = 2), meaning the highest-level groups
are defined by the family column, and there is a gap of 8 between each fam-
ily. Likewise the second-level groups (within each family) are defined by the
individual column, and there is a gap of 2 between each individual.

Any number of grouping variables and gaps can be given, as long as each
grouping variable is a column within the dataframe. It is recommended that
lower-level groups are more granular and subdivide higher-level groups (e.g.
first divide into families, then into individuals within families).

To change the order of groups within a level, make that column a factor with the
order specified e.g. example_many_sequences$family <- factor(example_many_sequences$family

extract_and_sort_sequences 15

levels = c("Family 2", "Family 3", "Family 1")) to change the order to Fam-
ily 2, Family 3, Family 1.

sort_by character. The name of the column within the dataframe that should be used to
sort/order the rows within each lowest-level group. Set to NA to turn off sorting
within groups.

Recommended to be the length of the sequence information, as is the case for the
default "sequence_length” which was generated via example_many_sequences$sequence_length
<- nchar(example_many_sequences$sequence).

desc_sort logical. Boolean specifying whether rows within groups should be sorted by
the sort_by variable descending (TRUE, default) or ascending (FALSE).

Value

character vector. The sequences ordered and grouped as specified, with blank sequences ("")
inserted as spacers as specified.

Examples

extract_and_sort_sequences(
example_many_sequences,

sequence_variable = "sequence”,
grouping_levels = c("family” = 8, "individual” = 2),
sort_by = "sequence_length”,

desc_sort = TRUE

extract_and_sort_sequences(
example_many_sequences,
sequence_variable = "sequence”,
grouping_levels = c("family” = 3),
sort_by = "sequence_length”,
desc_sort = FALSE

)

extract_and_sort_sequences(
example_many_sequences,
sequence_variable = "sequence",
grouping_levels = NA,
sort_by = "sequence_length”,
desc_sort = TRUE

)

extract_and_sort_sequences(
example_many_sequences,

sequence_variable = "sequence",
grouping_levels = c("family” = 8, "individual” = 2),
sort_by = NA

)

extract_and_sort_sequences(

16 extract_methylation_from_dataframe

example_many_sequences,
sequence_variable = "sequence”,
grouping_levels = NA,
sort_by = NA

)

extract_and_sort_sequences(
example_many_sequences,
sequence_variable = "quality”,
grouping_levels = c("individual” = 3),
sort_by = "quality”,
desc_sort = FALSE

extract_methylation_from_dataframe
Extract methylation information from dataframe for visualisation

Description

This function takes a dataframe that contains methylation information in the form of locations (in-
dices along the read signifying bases at which modification probability was assessed) and probabil-
ities (the probability of modification at each assessed location, as an integer from O to 255).

Each observation/row in the dataframe represents one sequence (e.g. a Nanopore read). In the
locations and probabilities column, each sequence (row) has many numbers associated. These are
stored as one string per observation e.g. "3,6,9,12", with the column representing a character
vector of such strings (e.g. ¢("3,6,9,12", "1,2,3,4™")).

This function calls extract_and_sort_sequences() on each of these three columns and returns a
list of vectors stored in $locations, $probabilities, and $1engths. These can then be used as
input for visualise_methylation().

Default arguments are set up to work with the included example_many_sequences data.

Usage

extract_methylation_from_dataframe(
modification_data,

locations_colname = "methylation_locations”,
probabilities_colname = "methylation_probabilities”,
lengths_colname = "sequence_length”,
grouping_levels = c(family = 8, individual = 2),
sort_by = "sequence_length”,

desc_sort = TRUE

extract_methylation_from_dataframe 17

Arguments

modification_data
dataframe. A dataframe that must contain columns for methylation locations,
methylation probabilities, and sequence length for each read. The former two
should be condensed strings as produced by vector_to_string() e.g. "1,2,3,4".
The latter should be integer.

See example_many_sequences for an example of a compatible dataframe.

locations_colname
character. The name of the column within the input dataframe that contains
methylation/modification location information. Defaults to "methylation_locations”.

Values within this column must be a comma-separated string representing a con-
densed numerical vector (e.g. "3,6,9, 12", produced via vector_to_string())
of the indices along the read at which modification was assessed. Indexing starts
at 1.
probabilities_colname
character. The name of the column within the input dataframe that contains
methylation/modification probability information. Defaults to "methylation_probabilities”.

Values within this column must be a comma-separated string representing a con-
densed numerical vector (e.g. "2,212,128,64", produced via vector_to_string())
of the probability of modification as an 8-bit (0-255) integer for each base where
modification was assessed.

lengths_colname
character. The name of the column within the input dataframe that contains
the length of each sequence. Defaults to "sequence_length"”.

Values within this column must be non-negative integers.
grouping_levels
named character vector. What variables should be used to define the groups/chunks,
and how large a gap should be left between groups at that level. Set to NA to turn
off grouping.

Defaultsto c("family"” = 8, "individual” = 2), meaning the highest-level groups
are defined by the family column, and there is a gap of 8 between each fam-
ily. Likewise the second-level groups (within each family) are defined by the
individual column, and there is a gap of 2 between each individual.

Any number of grouping variables and gaps can be given, as long as each
grouping variable is a column within the dataframe. It is recommended that
lower-level groups are more granular and subdivide higher-level groups (e.g.
first divide into families, then into individuals within families).

To change the order of groups within a level, make that column a factor with the

order specified e.g. example_many_sequences$family <- factor (example_many_sequences$family
levels = c("Family 2", "Family 3", "Family 1")) to change the order to Fam-

ily 2, Family 3, Family 1.

18 fastq_quality_scores

sort_by character. The name of the column within the dataframe that should be used to
sort/order the rows within each lowest-level group. Set to NA to turn off sorting
within groups.

Recommended to be the length of the sequence information, as is the case for the
default "sequence_length” which was generated via example_many_sequences$sequence_legnth
<- nchar (example_many_sequences$sequence).

desc_sort logical. Boolean specifying whether rows within groups should be sorted by
the sort_by variable descending (TRUE, default) or ascending (FALSE).

Value

list, containing $locations (character vector), $probabilities (character vector), and
$lengths (numeric vector).

Examples

See documentation for extract_and_sort_sequences()

for more examples of changing sorting/grouping

extract_methylation_from_dataframe(
example_many_sequences,

locations_colname = "methylation_locations”,
probabilities_colname = "methylation_probabilities”,
lengths_colname = "sequence_length”,
grouping_levels = c("family” = 8, "individual” = 2),
sort_by = "sequence_length”,

desc_sort = TRUE
)

extract_methylation_from_dataframe(
example_many_sequences,
locations_colname = "hydroxymethylation_locations”,
probabilities_colname = "hydroxymethylation_probabilities”,
lengths_colname = "sequence_length”,
grouping_levels = c("family” = 8, "individual” = 2),
sort_by = "sequence_length”,
desc_sort = TRUE

fastg_quality_scores Vector of the quality scores used by the FASTQ format

Description

A vector of the characters used to indicate quality scores from O to 40 in the FASTQ format. These
scores are related to the error probability p via Q@ = —10 log;(p), so a Q-score of 10 (represented
by "+") means the error probability is 0.1, a Q-score of 20 ("5") means the error probability is 0.01,
and a Q-score of 30 ("?") means the error probability is 0.001.

merge_fastq_with_metadata 19

The character representations store Q-scores in one byte each by using ASCII encodings, where
the Q-score for a character is its ASCII code minus 33 (e.g. A has an ASCII code of 65 and repre-
sents a Q-score of 32).

This vector contains the characters in order but starting with a score of 0, meaning the character
at index n represents a Q-score of n — 1 e.g. the first character ("!") represents a score of 0; the
eleventh character ("+") represents a score of 10.

The full set of possible score representations, in order and presented as a single string, is ! "#$%&' () *+,-. /0123456789 ;<=>

Generation code is available at data-raw/fastq_quality_scores.R

Usage

fastg_quality_scores

Format

fastg_quality_scores:

A character vector of length 41

fastq_quality_scores TheVeCtOrC(”!”’ IHI, H#H’ H$H, ”%H’ ”&H’ HI”’ H(H’ H)H, ”*H’ ”+H’
”’"’ ”_”, H'”’ H/H’ H@”, ”‘I"’ ”2”, H3”’ H4H’ H5”’ ”6"’ ”7”, l’8”’ 119"’ H:”’ ”;"’ ”<H,
II=II’ II>H, H?II’ H@H’ "A“, IIBII’ IICH, HDII’ HEH, HFH, IIGII’ IIHH, HII')

merge_fastg_with_metadata
Merge FASTQ data with metadata

Description

Merge a dataframe of sequence and quality data (as produced by read_fastq() from an unmodified
FASTQ file) with a dataframe of metadata, reverse-complementing sequences if required such that
all reads are now in the forward direction. merge_methylation_with_metadata() is the equiva-
lent function for working with FASTQs that contain DNA modification information.

FASTQ dataframe must contain columns of "read” (unique read ID), "sequence” (DNA sequence),
and "quality” (FASTQ quality score). Other columns are allowed but not required, and will be
preserved unaltered in the merged data.

Metadata dataframe must contain "read"” (unique read ID) and "direction” (read direction, either
"forward" or "reverse” for each read) columns, and can contain any other columns with arbitrary
information for each read. Columns that might be useful include participant ID and family desig-
nations so that each read can be associated with its participant and family.

Important: A key feature of this function is that it uses the direction column from the metadata
to identify which rows are reverse reads. These reverse reads will then be reversed-complemented

20 merge_fastq_with_metadata

and have quality scores reversed such that all reads are in the forward direction, ideal for consistent
analysis or visualisation. The output columns are "forward_sequence” and "forward_quality".
Calls reverse_sequence_if_needed() and reverse_quality_if_needed() to implement the
reversing - see documentation for these functions for more details.

Usage
merge_fastg_with_metadata(
fastg_data,
metadata,
reverse_complement_mode = "DNA"
)
Arguments
fastq_data dataframe. A dataframe contaning sequence and quality data, as produced by
read_fastq().
Must contain a read id column (must be called "read”), a sequence column
("sequence"), and a quality column ("quality”). Additional columns are fine
and will simply be included unaltered in the merged dataframe.
metadata dataframe. A dataframe containing metadata for each read in fastq_data.

Must contain a "read” column identical to the column of the same name in
fastq_data, containing unique read IDs (this is used to merge the dataframes).
Must also contain a "direction” column of "forward” and "reverse” (e.g.
c("forward”, "forward”, "reverse")) indicating the direction of each read.

Important: Reverse reads will have their sequence and quality scores reversed
such that every output read is now forward. These will be stored in columns
called "forward_sequence"” and "forward_quality"”.

See reverse_sequence_if_needed() and reverse_quality_if_needed() doc-
umentation for details of how the reversing is implemented.

reverse_complement_mode
character. Whether reverse-complemented sequences should be converted to
DNA (i.e. A complements to T) or RNA (i.e. A complements to U). Must be ei-
ther "DNA" or "RNA". Only affects reverse-complemented sequences. Sequences
that were forward to begin with are not altered.

Uses reverse_complement () via reverse_sequence_if_needed().

Value

dataframe. A merged dataframe containing all columns from the input dataframes, as well as
forward versions of sequences and qualities.

merge_methylation_with_metadata 21

Examples

Locate files
fastq_file <- system.file("extdata”,
"example_many_sequences_raw.fastq",
package = "ggDNAvis")
metadata_file <- system.file("extdata”,
"example_many_sequences_metadata.csv”,
package = "ggDNAvis")

Read files
fastq_data <- read_fastq(fastq_file)
metadata <- read.csv(metadata_file)

Merge data (including reversing if needed)
merge_fastq_with_metadata(fastq_data, metadata)

merge_methylation_with_metadata
Merge methylation with metadata

Description

Merge a dataframe of methylation/modification data (as produced by read_modified_fastq())
with a dataframe of metadata, reversing sequence and modification information if required such
that all information is now in the forward direction. merge_fastg_with_metadata() is the equiv-
alent function for working with unmodified FASTQs (sequence and quality only).

Methylation/modification dataframe must contain columns of "read” (unique read ID), "sequence”

(DNA sequence), "quality"” (FASTQ quality score), "sequence_length” (read length), "modification_types"
(a comma-separated string of SAMtools modification headers produced via vector_to_string()

e.g. "C+h?,C+m?"), and, for each modification type, a column of comma-separated strings of mod-

ification locations (e.g. "3,6,9,12") and a column of comma-separated strings of modification

probabilities (e.g. "255,0,64,128"). See read_modified_fastq() for more information on how

this dataframe is formatted and produced. Other columns are allowed but not required, and will be

preserved unaltered in the merged data.

Metadata dataframe must contain "read” (unique read ID) and "direction” (read direction, either
"forward"” or "reverse” for each read) columns, and can contain any other columns with arbitrary
information for each read. Columns that might be useful include participant ID and family desig-
nations so that each read can be associated with its participant and family.

Important: A key feature of this function is that it uses the direction column from the metadata to

identify which rows are reverse reads. These reverse reads will then be reversed-complemented and

have modification information reversed such that all reads are in the forward direction, ideal for con-

sistent analysis or visualisation. The output columns are "forward_sequence”, "forward_quality”,
"forward_<modification_type>_locations”, and "forward_<modification_type>_probabilities”.

22 merge_methylation_with_metadata

Calls reverse_sequence_if_needed(), reverse_quality_if_needed(), reverse_locations_if_needed(),
and reverse_probabilities_if_needed() to implement the reversing - see documentation for

these functions for more details. If wanting to write reversed sequences to FASTQ viawrite_modified_fastq(),
locations must be symmetric (e.g. CpG) and offset must be set to 1. Asymmetric locations are im-

possible to write to modified FASTQ once reversed because then e.g. cytosine methylation will

be assessed at guanines, which SAMtools can’t account for. Symmetrically reversing CpGs via
reversed_location_offset =1 is the only way to fix this.

Usage

merge_methylation_with_metadata(
methylation_data,

metadata,
reversed_location_offset = 0,
reverse_complement_mode = "DNA"
)
Arguments

methylation_data
dataframe. A dataframe contaning methylation/modification data, as produced
by read_modified_fastq().

Must contain a read id column (must be called "read”), a sequence column

("sequence"), aquality column ("quality"), a sequence length column ("sequence_length"),

a modification types column ("modification_types"), and, for each modifica-

tion type listed inmodification_types, a column of locations ("<modification_type>_locations")
and a column of probabilities ("<modification_type>_probabilities”). Ad-

ditional columns are fine and will simply be included unaltered in the merged

dataframe.

See read_modified_fastq() documentation for more details about the ex-
pected dataframe format.

metadata dataframe. A dataframe containing metadata for each read in methylation_data.

Must contain a "read” column identical to the column of the same name in
methylation_data, containing unique read IDs (this is used to merge the dataframes).
Must also contain a "direction” column of "forward” and "reverse” (e.g.
c("forward”, "forward”, "reverse”)) indicating the direction of each read.

Important: Reverse reads will have their sequence, quality scores, modification
locations, and modification probabilities reversed such that every output read
is now forward. These will be stored in columns called "forward_sequence”,
"forward_quality”, "forward_<modification_type>_locations”, and "forward_<modification_
If multiple modification types are present, multiple locations and probabilities

columns will be created.

See reverse_sequence_if_needed(), reverse_quality_if_needed(), reverse_locations_if_nee

merge_methylation_with_metadata 23

and reverse_probabilities_if_needed() documentation for details of how
the reversing is implemented.
reversed_location_offset

integer. How much modification locations should be shifted by. Defaults to
0. This is important because if a CpG is assessed for methylation at the C, then
reverse complementing it will give a methylation score at the G on the reverse-
complemented strand. This is the most biologically accurate, but for visualising
methylation it may be desired to shift the locations by 1 i.e. to correspond with
the C in the reverse-complemented CpG rather than the G, which allows for
consistent visualisation between forward and reverse strands. Setting (integer)
values other than 0 or 1 will work, but may be biologically misleading so it is
not recommended.

Highly recommended: if considering using this option, read the reverse_locations_if_needed()
documentation to fully understand how it works.
reverse_complement_mode
character. Whether reverse-complemented sequences should be converted to
DNA (i.e. A complements to T) or RNA (i.e. A complements to U). Must be ei-
ther "DNA" or "RNA". Only affects reverse-complemented sequences. Sequences
that were forward to begin with are not altered.

Uses reverse_complement () via reverse_sequence_if_needed().

Value

dataframe. A merged dataframe containing all columns from the input dataframes, as well as for-
ward versions of sequences, qualities, modification locations, and modification probabilities (with
separate locations and probabilities columns created for each modification type in the modification
data).

Examples

Locate files
modified_fastg_file <- system.file("extdata"”,
"example_many_sequences_raw_modified.fastq”,
package = "ggDNAvis")
metadata_file <- system.file("extdata",
"example_many_sequences_metadata.csv”,
package = "ggDNAvis")

Read files
methylation_data <- read_modified_fastq(modified_fastq_file)
metadata <- read.csv(metadata_file)

Merge data (including reversing if needed)
merge_methylation_with_metadata(methylation_data, metadata, reversed_location_offset = 0)

Merge data with offset = 1
merge_methylation_with_metadata(methylation_data, metadata, reversed_location_offset = 1)

24 read_fastq

read_fastq Read sequence and quality information from FASTQ

Description

This function simply reads a FASTQ file into a dataframe containing columns for read ID, sequence,
and quality scores. Optionally also contains a column of sequence lengths.

See fastg_quality_scores for an explanation of quality.

Resulting dataframe can be written back to FASTQ via write_fastq(). To read/write a mod-
ified FASTQ containing modification information (SAM/BAM MM and ML tags) in the header
lines, use read_modified_fastq() and write_modified_fastq().

Usage

read_fastq(filename = file.choose(), calculate_length = TRUE)

Arguments

filename character. The file to be read. Defaults to file.choose() to select a file
interactively.

calculate_length

logical. Whether or not sequence_length column should be calculated and
included.

Value

dataframe. A dataframe with read, sequence, quality, and optionally sequence_length columns.

Examples

Locate file

fastq_file <- system.file("extdata”,
"example_many_sequences_raw.fastq",
package = "ggDNAvis")

View file

for (i in 1:16) {
cat(readlLines(fastq_file)[i], "\n")

3

Read file to dataframe
read_fastq(fastq_file, calculate_length = FALSE)
read_fastq(fastq_file, calculate_length = TRUE)

read_modified_fastq 25

read_modified_fastq Read modification information from modified FASTQ

Description

This function reads a modified FASTQ file (e.g. created by samtools fastq -T MM,ML from a
BAM basecalled with a modification-capable model in Dorado or Guppy) to a dataframe.

By default, the dataframe contains columns for unique read id (read), sequence (sequence), se-
quence length (sequence_length), quality (quality), comma-separated (via vector_to_string())
modification types present in each read (modification_types), and for each modification type, a
column of comma-separated modification locations (<type>_locations) and a column of comma-
separated modification probabilities (<type>_probabilities).

Modification locations are the indices along the read at which modification was assessed e.g. a
3 indicates that the third base in the read was assessed for modifications of the given type. Modi-
fication probabilities are the probability that the given modification is present, given as an integer

from 0-255 where integer [N represents the probability space from 2]5\)76 to 1\27;61.

To extract the numbers from these columns as numeric vectors to analyse, use string_to_vector ()

e.g. list_of_locations <- lapply(test_01$ C+h?_locations™, string_to_vector). Be aware

that the SAM modification types often contain special characters, meaning the colname may need to

be enclosed in backticks as in this example. Alternatively, use extract_methylation_from_dataframe()
to create a list of locations, probabilities, and lengths ready for visualisation in visualise_methylation().
This works with any modification type extracted in this function, just provide the relevant colname

when calling extract_methylation_from_dataframe().

Optionally (by specifying debug = TRUE), the dataframe will also contain columns of the raw MM
and ML tags (<MM/ML>_raw) and of the same tags with the initial label trimmed out (<MM/ML>_tags).
This is not recommended in most situations but may help with debugging unexpected issues as it
contains the raw data exactly from the FASTQ.

Dataframes produced by this function can be written back to modified FASTQ viawrite_modified_fastq().

Usage

read_modified_fastq(filename = file.choose(), debug = FALSE)

Arguments
filename character. The file to be read. Defaults to file.choose() to select a file
interactively.
debug logical. Boolean value for whether the extra <MM/ML>_tags and <MM/ML>_raw

columns should be added to the dataframe. Defaults to FALSE as I can’t imagine
this is often helpful, but the option is provided to assist with debugging.

26 reverse_complement

Value

dataframe. Dataframe of modification information, as described above.

Sequences can be visualised with visualise_many_sequences() and modification information
can be visualised with visualise_methylation() (despite the name, any type of information can
be visualised as long as it has locations and probabilities columns).

Can be written back to FASTQ via write_modified_fastq().

Examples

Locate file

modified_fastg_file <- system.file("extdata"”,
"example_many_sequences_raw_modified.fastq”,
package = "ggDNAvis")

View file

for (i in 1:16) {
cat(readLines(modified_fastq_file)[i], "\n")

}

Read file to dataframe
read_modified_fastq(modified_fastq_file, debug = FALSE)
read_modified_fastq(modified_fastqg_file, debug = TRUE)

reverse_complement Reverse complement a DNA/RNA sequence (generic ggDNAvis helper)

Description

This function takes a string/character representing a DNA/RNA sequence and returns the reverse
complement. Either DNA (A/C/G/T) or RNA (A/C/G/U) input is accepted.

By default, output is DNA (so A is reverse-complemented to T), but it can be set to output RNA
(so A is reverse-complemented to U).

Usage
reverse_complement (sequence, output_mode = "DNA")
Arguments
sequence character. A DNA/RNA sequence (A/C/G/T/U) to be reverse-complemented.

No other characters allowed. Only one sequence allowed.

output_mode character. Either "DNA" (default) or "RNA", to determine whether A should be
reverse-complemented to T or to U.

reverse_locations_if _needed 27

Value

character. The reverse-complement of the input sequence.

Examples

reverse_complement ("ATGCTAG")

reverse_complement ("UUAUUAGC", output_mode = "RNA")
reverse_complement ("AcGtU"”, output_mode = "DNA")
reverse_complement (”aCgTU", output_mode = "RNA")

reverse_locations_if_needed

Reverse modification locations if needed
(merge_methylation_with_metadata() helper)

Description

This function takes a vector of condensed modification locations/indices (e.g. ¢("3,6,9,12",
"1,4,7,10")), a vector of directions (which must all be either "forward” or "reverse”, not case-
sensitive), and a vector of sequence lengths (integers).

Returns a vector of condensed locations where reads that were originally forward are unchanged,
and reads that were originally reverse are flipped to now be forward.

Optionally, a numerical offset can be set. If this is left at @ (the default value), then a CpG as-
sessed for methylation would be reverse-complemented to a CG with the modification information
ascribed to the G (as the G is at the location where the actual modified C was on the other strand).
However, setting the offset to 1 would shift all of the modification indices by 1 such that the mod-
ification is now ascribed to the C of the reverse-strand CG. This is beneficial for visualising the
modifications as it ensures consistency between originally-forward and originally-reverse strands
by making the modification score associated with each CpG site always be located at the C, but
may be misleading for quantitative analysis. Setting the offset to anything other than @ or 1 should
work but may be biologically misleading, so produces a warning.

Called by merge_methylation_with_metadata() to create a forward dataset, alongside reverse_sequence_if_needed()
reverse_quality_if_needed(), and reverse_probabilities_if_needed().

Example:

Forward sequence, with indices of Cs in CpGs numbered:

CCCAGGCGGCGGCGACCGA
7 10 13 17

28 reverse_locations_if needed

(length = 19, locations = "7,10,13,17", CpGs = 7-8, 10-11, 13-14, 17-18)

Reverse sequence, with indices of C in CpGs numbered:

TCGGTCGCCGCCGCCTGGG
2 6 9 12

(length = 19, locations = "2,6,9,12", CpGs = 2-3, 6-7, 9-10, 12-13)

As CG reverse-complements to itself, each CpG site has a 1:1 correspondence with a CpG site
in the reverse strand. Many methylation calling models assess C-methylation at the C of each
CpG. To map the locations from C to C, we take 19 - <index> such that "7,10,13,17" becomes
"12,9,6,2" and "2,6,9,12" becomes "17,13,10,7". The symmetry of CpGs means mapping
from C to C is also symmetric. This is achieved by setting of fset = 1, as mapping C to C involves
shifting position by 1.

Conversely, to map the locations from C to G (i.e. preserving the actual location of each modifica-
tion, which is required if assessed locations are non-symmetric/don’t reverse-complement to them-
selves like CpGs do), we take 20 - <index> such that "7,10,13,17" becomes "13,10,7,3" i.e.
the indices of the Gs in CpGs in the reverse sequence. Likewise "2,6,9,12" becomes "18,14,11,8"
i.e. the indices of the Gs in CpGs in the forward sequence. This is achieved by setting of fset = 0,
as mapping C to G preserves the actual original position at which each modification was assessed,
but changes the base to its complement.

In general, new locations are calculated as (<length> + 1 - <offset>) - <index>. Of course,
output locations are reversed before returning so that they all return in ascending order, as is stan-
dard for all location vectors/strings.

If wanting to write reversed sequences to FASTQ viawrite_modified_fastq(), locations must be
symmetric (e.g. CpG) and offset must be set to 1. Asymmetric locations are impossible to write to
modified FASTQ once reversed because then e.g. cytosine methylation will be assessed at guanines,
which SAMtools can’t account for. Symmetrically reversing CpGs via of fset = 1 is the only way
to fix this.

Usage

reverse_locations_if_needed(
locations_vector,
direction_vector,
length_vector,
offset = @

Arguments

locations_vector
character vector. The locations to be reversed for each sequence/read. Each
read should have one character value, representing a comma-separated list of

reverse_probabilities_if_needed 29

indices at which modification was assessed along the read e.g. "3,6,9,12" for
all the Cs in GGCGGCGGCGGC.

These comma-separated characters/strings can be produced from numeric vec-

tors via vector_to_string() and converted back to vectors via string_to_vector().
direction_vector

character vector. Whether each sequence is forward or reverse. Must contain

only "forward” and "reverse”, but is not case sensitive. Must be the same

length as locations_vector and length_vector.
length_vector integer vector. The length of each sequence. Needed for reversing loca-

tions as locations are stored relative to the start of the read i.e. relative to the

end of the reverse read. Must be the same length as locations_vector and

direction_vector.

offset integer. How much locations should be shifted by. Defaults to @. This
is important because if a CpG is assessed for methylation at the C, then re-
verse complementing it will give a methylation score at the G on the reverse-
complemented strand. This is the most biologically accurate, but for visualising
methylation it may be desired to shift the locations by 1 i.e. to correspond with
the C in the reverse-complemented CpG rather than the G, which allows for
consistent visualisation between forward and reverse strands. Setting (integer)
values other than @ or 1 will work, but may be biologically misleading so it is
not recommended.

Value
character vector. A vector of all forward versions of the input locations vector.

Examples

reverse_locations_if_needed(
locations_vector = ¢("7,10,13,17", "2,6,9,12"),

direction_vector = c("forward”, "reverse"),
length_vector = c(19, 19),
offset = @

)

reverse_locations_if_needed(
locations_vector = ¢("7,10,13,17", "2,6,9,12"),

direction_vector = c("forward”, "reverse"),
length_vector = c(19, 19),
offset = 1

reverse_probabilities_if_needed
Reverse modification probabilities if needed
(merge_methylation_with_metadata() helper)

30 reverse_quality_if needed

Description

This function takes a vector of condensed modification probabilities (e.g. c(”128,0,63,255", "3,78,1")
and a vector of directions (which must all be either "forward” or "reverse”, not case-sensitive),

and returns a vector of condensed modification probabilities where those that were originally for-

ward are unchanged, and those that were originally reverse are flipped to now be forward.

Called by merge_methylation_with_metadata() to create a forward dataset, alongside reverse_sequence_if_needed()
reverse_quality_if_needed(), and reverse_locations_if_needed().

Usage

reverse_probabilities_if_needed(probabilities_vector, direction_vector)

Arguments

probabilities_vector
character vector. The probabilities to be reversed for each sequence/read.
Each read should have one character value, representing a comma-separated
list of the modification probabilities for each assessed base along the read e.g.
"230,7,64,145". In most situations these will be 8-bit integers from O to 255,
but this function will work on any comma-separated values.

These comma-separated characters/strings can be produced from numeric vec-

tors via vector_to_string() and converted back to vectors via string_to_vector().
direction_vector

character vector. Whether each sequence is forward or reverse. Must contain

only "forward” and "reverse”, but is not case sensitive. Must be the same

length as probabilities_vector.

Value
character vector. A vector of all forward versions of the input probabilities vector.

Examples

reverse_probabilities_if_needed(
probabilities_vector = c("100,200,50", "100,200,50"),
direction_vector = c("forward”, "reverse")

reverse_quality_if_needed
Reverse qualities if needed (merge_methylation_with_metadata()
helper)

reverse_sequence_if_needed 31

Description

This function takes a vector of FASTQ qualities and a vector of directions (which must all be either
"forward” or "reverse”, not case-sensitive) and returns a vector of forward qualities.

Qualities of reads that were forward to begin with are unchanged, while qualities of reads that
were reverse are now flipped to give the corresponding forward quality scores.

Called by merge_methylation_with_metadata() to create a forward dataset, alongside reverse_sequence_if_needed()
reverse_locations_if_needed(), and reverse_probabilities_if_needed().

Usage

reverse_quality_if_needed(quality_vector, direction_vector)

Arguments

quality_vector character vector. The qualities to be reversed. See fastq_quality_scores
for an explanation of quality scores.

direction_vector
character vector. Whether each sequence is forward or reverse. Must contain
only "forward” and "reverse”, but is not case sensitive. Must be the same
length as sequence_vector.

Value

character vector. A vector of all forward versions of the input quality vector.

Examples

reverse_quality_if_needed(
quality_vector = c("#"$&$*x", "#"$&$*x"),
direction_vector = c("reverse”, "forward")

reverse_sequence_if_needed

Reverse sequences if needed (merge_methylation_with_metadata()
helper)

Description

This function takes a vector of DNA/RNA sequences and a vector of directions (which must all
be either "forward” or "reverse”, not case-sensitive) and returns a vector of forward DNA/RNA
sequences.

Sequences in the vector that were forward to begin with are unchanged, while sequences that were
reverse are reverse-complemented via reverse_complement () to produce the forward sequence.

32 reverse_sequence_if_needed

Called by merge_methylation_with_metadata() to create a forward dataset, alongside reverse_quality_if_needed(),
reverse_locations_if_needed() and reverse_probabilities_if_needed().

Usage

reverse_sequence_if_needed(
sequence_vector,
direction_vector,
output_mode = "DNA"

)

Arguments

sequence_vector
character vector. The DNA or RNA sequences to be reversed, e.g. c("ATCG",
"GGCGGC", "AUUAUA"). Accepts DNA, RNA, or mixed input.

direction_vector
character vector. Whether each sequence is forward or reverse. Must contain
only "forward” and "reverse”, but is not case sensitive. Must be the same
length as sequence_vector.

output_mode character. Whether reverse-complemented sequences should be converted to
DNA (i.e. A complements to T) or RNA (i.e. A complements to U). Must be ei-
ther "DNA" or "RNA". Only affects reverse-complemented sequences. Sequences
that were forward to begin with are not altered.

Value
character vector. A vector of all forward versions of the input sequence vector.

Examples

reverse_sequence_if_needed(
sequence_vector = c("TAAGGC", "TAAGGC"),
direction_vector = c("reverse”, "forward")

)

reverse_sequence_if_needed(
sequence_vector = c("UAAGGC", "UAAGGC"),
direction_vector = c("reverse”, "forward"),
output_mode = "RNA"

sequence_colour_palettes 33

sequence_colour_palettes
Colour palettes for sequence visualisations

Description

A collection of colour palettes for use with visualise_single_sequence() and visualise_many_sequences().
Each is a character vector of 4 colours, corresponding to A, C, G, and T/U in that order.
To use inside the visualisation functions, set sequence_colours = sequence_colour_palettes$<palette_name>

Generation code is available at data-raw/sequence_colour_palettes.R

Usage

sequence_colour_palettes

Format
sequence_colour_palettes:
A list of 5 length-4 character vectors
ggplot_style The shades of red, green, blue, and purple that ggplot2: : ggplot () uses by default

for a 4-way discrete colour scheme.

Values: c("#F8766D", "#7CAEQQ", "#0Q0BFC4", "#C77CFF")
bright_pale Bright yellow, green, blue, and red in lighter pastel-like tones.

Values: c("#FFDD0Q", "#40C000", "#0QAQFF", "#FF4E4E")

bright_pale2 Bright yellow, green, blue, and red in lighter pastel-like tones. The green (for C) is
slightly ligther than bright_pale.

Values: c("#FFDD0Q", "#30EC00", "#0OAQFF", "#FF4E4E")

bright_deep Bright orange, green, blue, and red in darker, richer tones.

Values: c("#FFAAQQ", "#00BC00Q", "#0000DC", "#FF1E1E")

sanger Green, blue, black, and red similar to a traditional Sanger sequencing readout.

Values: c("#00B200", "#0000FF" , "#000000" , "#FF0000")

34 string_to_vector

string_to_vector Split a ", "-joined string back to a vector (generic ggDNAvis helper)

Description

Takes a string (character) produced by vector_to_string() and recreates the vector.

Note that if a vector of multiple strings is input (e.g. c("1,2,3", "9,8,7")) the output will be
a single concatenated vector (e.g. c(1, 2, 3, 9, 8, 7)).

If the desired output is a list of vectors, try lapply() e.g. lapply(c(”1,2,3", "9,8,7"), string_to_vector)
returns list(c(1, 2, 3), c(9, 8, 7)).

Usage
string_to_vector(string, type = "numeric”, sep = ",")
Arguments
string character. A comma-separated string (e.g. "1,2,3") to convert back to a
vector.
type character. The type of the vector to be returned i.e. "numeric” (default),
"character”, or "logical”.
sep character. The character used to separate values in the string. Defaults to ", ".
Do not set to anything that might occur within one of the values.
Value

<type> vector. The resulting vector (e.g. c(1, 2, 3)).

Examples

String to numeric vector (default)
string_to_vector("”1,2,3,4")
string_to_vector("1,2,3,4", type = "numeric")

n,n

string_to_vector(”1;2;3;4", sep = ";")

String to character vector
string_to_vector("A,B,C,D", type = "character")

String to logical vector
string_to_vector("TRUE FALSE TRUE", type = "logical”, sep =" ")

By default, vector inputs are concatenated
string_to_vector(c("1,2,3", "4,5,6"))

To create a list of vector outputs, use lapply()
lapply(c("1,2,3", "4,5,6"), string_to_vector)

vector_to_string 35

vector_to_string Join a vector into a comma-separated string (generic ggDNAvis
helper)
Description
Takes a vector and condenses it into a single string by joining items with ","”. Reversed by

string_to_vector().

Usage
vector_to_string(vector, sep = ",")
Arguments
vector vector. A vector (e.g. c(1,2,3)) to convert to a string.
sep character. The character used to separate values in the string. Defaults to ", ".
Do not set to anything that might occur within one of the values.
Value

character. The same vector but as a comma-separated string (e.g. "1,2,3").

Examples

vector_to_string(c(1, 2, 3, 4))
vector_to_string(c("These”, "are", "some", "words"))

n.n

vector_to_string(3:5, sep = ";

visualise_many_sequences
Visualise many DNA/RNA sequences

Description

This function takes a vector of DNA/RNA sequences (each sequence can be any length and they can
be different lengths), and plots each sequence as base-coloured squares along a single line. Setting
filename allows direct export of a png image with the correct dimensions to make every base a
perfect square. Empty strings (") within the vector can be utilised as blank spacing lines. Colours
and pixels per square when exported are configurable.

36 visualise_many_sequences
Usage
visualise_many_sequences(
sequences_vector,
sequence_colours = sequence_colour_palettes$ggplot_style,
background_colour = "white"”,
margin
sequence_text_colour = "black”,
sequence_text_size = 16,
outline_colour = "black”,
outline_linewidth = 3,
outline_join = "mitre”,
return TRUE,
filename = NA,
render_device = ragg::agg_png,
pixels_per_base = 100
)
Arguments

sequences_vector

character vector. The sequences to visualise, often created from a dataframe
via extract_and_sort_sequences(). E.g. ¢("GGCGGC", "", "AGCTAGCTA").

sequence_colours

character vector, length 4. A vector indicating which colours should be used
for each base. In order: c(A_colour, C_colour, G_colour, T/U_colour).

Defaults to red, green, blue, purple in the default shades produced by ggplot
with 4 colours, i.e. c("#F8766D", "#7CAEQQ", "#0Q0OBFC4", "#C77CFF"), ac-
cessed via sequence_colour_palettes$ggplot_style.

background_colour

margin

character. The colour of the background. Defaults to white.

numeric. The size of the margin relative to the size of each base square. De-
faults to 0.5 (half the side length of each base square).

Very small margins (<0.25) may cause thick outlines to be cut off at the edges of
the plot. Recommended to either use a wider margin or a smaller outline_linewidth.

sequence_text_colour

character. The colour of the text within the bases (e.g. colour of "A" letter
within boxes representing adenosine bases). Defaults to black.

sequence_text_size

numeric. The size of the text within the bases (e.g. size of "A" letter within
boxes representing adenosine bases). Defaults to 16. Set to @ to hide sequence
text (show box colours only).

outline_colour character. The colour of the box outlines. Defaults to black.
outline_linewidth

numeric. The linewidth of the box outlines. Defaults to 3. Set to @ to disable
box outlines.

visualise_many_sequences 37

outline_join character. One of "mitre”, "round”, or "bevel” specifying how outlines
should be joined at the corners of boxes. Defaults to "mitre”. It would be
unusual to need to change this.

return logical. Boolean specifying whether this function should return the ggplot
object, otherwise it will return invisible (NULL). Defaults to TRUE.

filename character. Filename to which output should be saved. If set to NA (default), no
file will be saved. Recommended to end with ".png", but can change if render
device is changed.

render_device function/character. Device to use when rendering. See ggplot2: :ggsave()
documentation for options. Defaults to ragg: :agg_png. Can be set to NULL to
infer from file extension, but results may vary between systems.

pixels_per_base
integer. How large each box should be in pixels, if file output is turned on via
setting filename. Corresponds to dpi of the exported image.

If text is shown (i.e. sequence_text_size is not 0), needs to be fairly large
otherwise text is blurry. Defaults to 100.

Value

A ggplot object containing the full visualisation, or invisible (NULL) if return = FALSE. Itis often
more useful to use filename = "myfilename.png”, because then the visualisation is exported at the
correct aspect ratio.

Examples

Create sequences vector
sequences <- extract_and_sort_sequences(example_many_sequences)

Visualise example_many_sequences with all defaults
This looks ugly because it isn't at the right scale/aspect ratio
visualise_many_sequences(sequences)

Export with all defaults rather than returning
visualise_many_sequences(

sequences,

filename = "example_vms_01.png",

return = FALSE
)
View exported image
image <- png::readPNG("example_vms_01.png")
unlink("example_vms_01.png")
grid::grid.newpage()
grid::grid.raster(image)

Export while customising appearance
visualise_many_sequences(
sequences,
filename = "example_vms_02.png",
return = FALSE,

38

visualise_methylation
sequence_colours = sequence_colour_palettes$bright_pale,
sequence_text_colour = "white”,
background_colour = "lightgrey",
outline_linewidth = 0,
margin = @
)

View exported image

image <- png::readPNG("example_vms_02.png")
unlink("example_vms_02.png")
grid::grid.newpage()
grid::grid.raster(image)

visualise_methylation Visualise methylation probabilities for many DNA sequences

Description

This function takes vectors of modifications locations, modification probabilities, and sequence
lengths (e.g. created by extract_methylation_from_dataframe()) and visualises the probabil-
ity of methylation (or other modification) across each read.

Assumes that the three main input vectors are of equal length n and represent n sequences (e.g.
Nanopore reads), where locations are the indices along each read at which modification was as-
sessed, probabilities are the probability of modification at each assessed site, and lengths are
the lengths of each sequence.

For each sequence, renders non-assessed (e.g. non-CpG) bases as other_bases_colour, renders
background (including after the end of the sequence) as background_colour, and renders assessed
bases on a linear scale from low_colour to high_colour.

Clamping means that the endpoints of the colour gradient can be set some distance into the prob-
ability space e.g. with Nanopore > SAM probability values from 0-255, the default is to render O
as fully blue (#0000FF), 255 as fully red (#FF@00@0), and values in between linearly interpolated.
However, clamping with low_clamp = 100 and high_clamp = 200 would set all probabilities up to
100 as fully blue, all probabilities 200 and above as fully red, and linearly interpolate only over the
100-200 range.

A separate scalebar plot showing the colours corresponding to each probability, with any/no clamp-
ing values, can be produced via visualise_methylation_colour_scale().

Usage

visualise_methylation(
modification_locations,
modification_probabilities,
sequence_lengths,

visualise_methylation 39

low_colour = "blue”,
high_colour = "red”,
low_clamp = 0,

high_clamp = 255,
background_colour = "white"”,
other_bases_colour = "grey”,
outline_colour = "black”,
outline_linewidth = 3,
outline_join = "mitre”,

modified_bases_outline_colour = NA,
modified_bases_outline_linewidth = NA,
modified_bases_outline_join = NA,
other_bases_outline_colour = NA,
other_bases_outline_linewidth = NA,
other_bases_outline_join = NA,
margin = 0.5,

return = TRUE,

filename = NA,

render_device = ragg::agg_png,
pixels_per_base = 20

Arguments

modification_locations
character vector. One character value for each sequence, storing a condensed
string (e.g. "3,6,9,12", produced via vector_to_string()) of the indices
along the read at which modification was assessed. Indexing starts at 1.
modification_probabilities
character vector. One character value for each sequence, storing a condensed
string (e.g. "0,128,255,15", produced via vector_to_string()) of the prob-
ability of methylation/modification at each assessed base.

Assumed to be Nanopore > SAM style modification stored as an 8-bit integer
from O to 255, but changing other arguments could make this work on other

scales.
sequence_lengths

numeric vector. The length of each sequence.

low_colour character. The colour that should be used to represent minimum probability
of methylation/modification (defaults to blue).

high_colour character. The colour that should be used to represent maximum probability
of methylation/modification (defaults to red).

low_clamp numeric. The minimum probability below which all values are coloured 1low_colour.
Defaults to @ (i.e. no clamping). To specify a proportion probability in 8-bit
form, multiply by 255 e.g. to low-clamp at 30% probability, set this to 0. 3%255.

high_clamp numeric. The maximum probability above which all values are coloured high_colour.
Defaults to 255 (i.e. no clamping, assuming Nanopore > SAM style modifica-
tion calling where probabilities are 8-bit integers from O to 255).

40

visualise_methylation

background_colour
character. The colour the background should be drawn (defaults to white).

other_bases_colour
character. The colour non-assessed (e.g. non-CpG) bases should be drawn
(defaults to grey).

outline_colour character. The colour of the box outlines. Defaults to black.
outline_linewidth
numeric. The linewidth of the box outlines. Defaults to 3. Set to @ to disable
box outlines.

outline_join character. One of "mitre”, "round”, or "bevel” specifying how outlines
should be joined at the corners of boxes. Defaults to "mitre”. It would be
unusual to need to change this.

modified_bases_outline_colour
character. If NA (default), inherits from outline_colour. If not NA, overrides
outline_colour for modification-assessed bases only.

modified_bases_outline_linewidth
numeric. If NA (default), inherits from outline_linewidth. If not NA, overrides
outline_linewidth for modification-assessed bases only.

modified_bases_outline_join
character. If NA (default), inherits from outline_join. If not NA, overrides
outline_join for modification-assessed bases only.

other_bases_outline_colour
character. If NA (default), inherits from outline_colour. If not NA, overrides
outline_colour for non-modification-assessed bases only.

other_bases_outline_linewidth
numeric. If NA (default), inherits from outline_linewidth. If not NA, overrides
outline_linewidth for non-modification-assessed bases only.

other_bases_outline_join
character. If NA (default), inherits from outline_join. If not NA, overrides
outline_join for non-modification-assessed bases only.

margin numeric. The size of the margin relative to the size of each base square. Defaults
to 0.5 (half the side length of each base square).

return logical. Boolean specifying whether this function should return the ggplot
object, otherwise it will return invisible (NULL). Defaults to TRUE.

filename character. Filename to which output should be saved. If set to NA (default), no
file will be saved. Recommended to end with ".png”, but can change if render
device is changed.

render_device function/character. Device to use when rendering. See ggplot2: :ggsave()
documentation for options. Defaults to ragg: :agg_png. Can be set to NULL to
infer from file extension, but results may vary between systems.

pixels_per_base
integer. How large each box should be in pixels, if file output is turned on via
setting filename. Corresponds to dpi of the exported image. Defaults to 20.
Low values acceptable as currently this function does not write any text.

visualise_methylation

Value

41

A ggplot object containing the full visualisation, or invisible (NULL) if return = FALSE. It is often
more useful to use filename = "myfilename.png”, because then the visualisation is exported at the
correct aspect ratio.

Examples

Extract info from dataframe

methylation_info <- extract_methylation_from_dataframe(example_many_sequences)

Visualise example_many_sequences with all defaults
This looks ugly because it isn't at the right scale/aspect ratio

visualise_methylation(

)

Export with all defaults rather than returning

methylation_info$locations,
methylation_info$probabilities,
methylation_info$lengths

visualise_methylation(

)

methylation_info$locations,
methylation_info$probabilities,
methylation_info$lengths,
filename = "example_vm_01.png",
return = FALSE

View exported image

image <- png::readPNG("example_vm_01.png")
unlink("example_vm_01.png")
grid::grid.newpage()
grid::grid.raster(image)

Export with customisation
visualise_methylation(

)

methylation_info$locations,
methylation_info$probabilities,
methylation_info$lengths,

filename = "example_vm_02.png",
return = FALSE,
low_colour = "white”,

high_colour = "black”,

low_clamp = @.3%255,

high_clamp = 0.7%255,

other_bases_colour = "lightbluel”,
other_bases_outline_linewidth = 1,
other_bases_outline_colour = "grey”,
modified_bases_outline_linewidth = 3,
modified_bases_outline_colour = "black",
margin = 0.3

View exported image
image <- png::readPNG("example_vm_02.png")

42 visualise_methylation_colour_scale

unlink("example_vm_02.png")
grid::grid.newpage()
grid::grid.raster(image)

visualise_methylation_colour_scale
Visualise methylation colour scalebar

Description

This function creates a scalebar showing the colouring scheme based on methylation probability
that is used in visualise_methylation(). Showing this is particularly important when the colour
range is clamped via low_clamp and high_clamp (e.g. setting that all values below 100 are fully
blue (#0000FF), all values above 200 are fully red (#FF@000), and colour interpolation occurs only
in the range 100-200, rather than across the whole range 0-255). If clamping is off (default), then O
is fully blue, 255 is fully read, and all values are linearly interpolated. NB: colours are configurable
but default to blue = low modification probability and red = high modification probability.

Usage

visualise_methylation_colour_scale(
low_colour = "blue”,

high_colour = "red”,
low_clamp = 0,
high_clamp = 255,

full_range = c(@, 255),
precision = 103,
background_colour = "white"”,
x_axis_title = NULL,
do_x_ticks = TRUE,
do_side_scale = FALSE,
side_scale_title = NULL,
outline_colour = "black”,
outline_linewidth = 1

Arguments

low_colour character. The colour that should be used to represent minimum probability
of methylation/modification (defaults to blue).

high_colour character. The colour that should be used to represent maximum probability
of methylation/modification (defaults to red).

low_clamp numeric. The minimum probability below which all values are coloured 1low_colour.
Defaults to @ (i.e. no clamping).

visualise_methylation_colour_scale 43

high_clamp numeric. The maximum probability above which all values are coloured high_colour.
Defaults to 255 (i.e. no clamping, assuming Nanopore > SAM style modifica-
tion calling where probabilities are 8-bit integers from O to 255).
full_range numeric vector, length 2. The total range of possible probabilities. Defaults to
c(@, 255), which is appropriate for Nanopore > SAM style modification calling
where probabilities are 8-bit integers from 0 to 255.

May need to be set to c(@, 1) if probabilites are instead stored as decimals.
Setting any other value is advanced use and should be done for a good reason.

precision integer. How many different shades should be rendered. Larger values give a
smoother gradient. Defaults to 10%3 i.e. 1000, which looks smooth to my eyes
and isn’t too intensive to calculate.

background_colour
character. The colour the background should be drawn (defaults to white).

Xx_axis_title character. The desired x-axis title. Defaults to NULL.

do_x_ticks logical. Boolean specifying whether x axis ticks should be enabled (TRUE,
default) or disabled (FALSE).

do_side_scale logical. Boolean specifying whether a smaller scalebar should be rendered on
the right. Defaults to FALSE.

I think it is unlikely anyone would want to use this, but the option is here. One
potential usecase is that this scalebar shows the raw probability values (e.g. 0 to
255), whereas the x-axis is normalised to 0-1.

side_scale_title
character. The desired title for the right-hand scalebar, if turned on. Defaults
to NULL.

outline_colour character. The colour of the scalebar outline. Defaults to black.
outline_linewidth
numeric. The linewidth of the scalebar outline. Defaults to 1. Set to @ to disable
scalebar outline.

Value
ggplot of the scalebar.
Unlike the other visualise_<> functions in this package, does not directly export a png. This
is because there are no squares that need to be rendered at a precise aspect ratio in this function. It

can just be saved normally with ggplot2: :ggsave() with any sensible combination of height and
width.

Examples

Defaults match defaults of visualise_methylation()
visualise_methylation_colour_scale()

Use clamping and change colours
visualise_methylation_colour_scale(

44 visualise_single_sequence

low_colour = "white”,

high_colour = "black”,

low_clamp = 0.3%255,

high_clamp = 0@.7%255,

full_range = c(@, 255),

background_colour = "lightbluel”,

x_axis_title = "Methylation probability”
)

Lower precision = colour banding
visualise_methylation_colour_scale(
precision = 10,
do_x_ticks = FALSE

visualise_single_sequence
Visualise a single DNA/RNA sequence

Description

This function takes a DNA/RNA sequence and returns a ggplot visualising it, with the option to
directly export a png image with appropriate dimensions. Colours, line wrapping, index annotation
interval, and pixels per square when exported are configurable.

Usage
visualise_single_sequence(
sequence,
sequence_colours = sequence_colour_palettes$ggplot_style,
background_colour = "white"”,

line_wrapping = 75,
spacing = 1,
margin = 0.5,

sequence_text_colour = "black”,
sequence_text_size = 16,
index_annotation_colour = "darkred",

index_annotation_size = 12.5,
index_annotation_interval = 15,
index_annotations_above = TRUE,
index_annotation_vertical_position = 1/3,

outline_colour = "black”,
outline_linewidth = 3,
outline_join = "mitre”,

return = TRUE,
filename = NA,
render_device = ragg::agg_png,

visualise_single_sequence 45

pixels_per_base = 100

)

Arguments

sequence

character. A DNA or RNA sequence to visualise e.g. "AAATGCTGC".

sequence_colours

character vector, length 4. A vector indicating which colours should be used
for each base. In order: c(A_colour, C_colour, G_colour, T/U_colour).

Defaults to red, green, blue, purple in the default shades produced by ggplot
with 4 colours, i.e. c("#F8766D", "#7CAEQQ", "#Q0BFC4", "#C77CFF"), ac-
cessed via sequence_colour_palettes$ggplot_style.

background_colour

line_wrapping

spacing

margin

character. The colour of the background. Defaults to white.

integer. The number of bases that should be on each line before wrapping.
Defaults to 75. Recommended to make this a multiple of the repeat unit size
(e.g. 3n for a trinucleotide repeat) if visualising a repeat sequence.

integer. The number of blank lines between each line of sequence. Defaults to
1.

Be careful when setting to @ as this means annotations have no space so might
render strangely. Recommended to set index_annotation_interval =0 if do-
ing so to disable annotations entirely.

numeric. The size of the margin relative to the size of each base square. De-
faults to 0.5 (half the side length of each base square).

Note that if index annotations are on (i.e. index_annotation_interval is not
), the top/bottom margin (depending on index_annotations_above) will al-
ways be at least 1 to leave space for them.

Likewise, very small margins (<0.25) may cause thick outlines to be cut off
at the edges of the plot. Recommended to either use a wider margin or a smaller
outline_linewidth.

sequence_text_colour

character. The colour of the text within the bases (e.g. colour of "A" letter
within boxes representing adenosine bases). Defaults to black.

sequence_text_size

numeric. The size of the text within the bases (e.g. size of "A" letter within
boxes representing adenosine bases). Defaults to 16. Set to @ to hide sequence
text (show box colours only).

index_annotation_colour

character. The colour of the little numbers underneath indicating base index
(e.g. colour "15" label under the 15th base). Defaults to dark red.

index_annotation_size

numeric. The size of the little number underneath indicating base index (e.g.
size of "15" label under the 15th base). Defaults to 12.5.

46

visualise_single_sequence

Can sometimes be set to @ to turn off annotations, but it is better/more reliable
to do this via index_annotation_interval = 0.

index_annotation_interval

integer. The frequency at which numbers should be placed underneath indi-
cating base index, starting counting from the leftmost base in each row. Defaults
to 15 (every 15 bases along each row).

Recommended to make this a factor/divisor of the line wrapping length (mean-
ing the final base in each line is annotated), otherwise the numbering interval
resetting at the beginning of each row will result in uneven intervals at each line
break.

Set to @ to turn off annotations (preferable over using index_annotation_size
=0).

index_annotations_above

logical. Whether index annotations should go above (TRUE, default) or below
(FALSE) each line of sequence.

index_annotation_vertical_position

outline_colour

numeric. How far annotation numbers should be rendered above (if index_annotations_above
= TRUE) or below (if index_annotations_above = FALSE) each base. Defaults
to 1/3.

Not recommended to change at all. Strongly discouraged to set below O or
above 1.

character. The colour of the box outlines. Defaults to black.

outline_linewidth

outline_join

return

filename

render_device

pixels_per_base

numeric. The linewidth of the box outlines. Defaults to 3. Set to @ to disable
box outlines.

character. One of "mitre”, "round”, or "bevel” specifying how outlines
should be joined at the corners of boxes. Defaults to "mitre”. It would be
unusual to need to change this.

logical. Boolean specifying whether this function should return the ggplot
object, otherwise it will return invisible (NULL). Defaults to TRUE.

character. Filename to which output should be saved. If set to NA (default), no
file will be saved. Recommended to end with ".png”, but can change if render
device is changed.

function/character. Device to use when rendering. See ggplot2::ggsave()
documentation for options. Defaults to ragg: :agg_png. Can be set to NULL to
infer from file extension, but results may vary between systems.

integer. How large each box should be in pixels, if file output is turned on via
setting filename. Corresponds to dpi of the exported image. Large values rec-
ommended because text needs to be legible when rendered significantly smaller
than a box. Defaults to 100.

write_fastq 47

Value

A ggplot object containing the full visualisation, or invisible (NULL) if return = FALSE. It is often
more useful to use filename = "myfilename.png"”, because then the visualisation is exported at the
correct aspect ratio.

Examples

Create sequence to visualise
sequence <- paste(c(rep("GGC", 72), rep("GGAGGAGGCGGC", 15)), collapse = "")

Visualise with all defaults
This looks ugly because it isn't at the right scale/aspect ratio
visualise_single_sequence(sequence)

Export with all defaults rather than returning
visualise_single_sequence(

sequence,

filename = "example_vss_01.png",

return = FALSE
)
View exported image
image <- png::readPNG("example_vss_01.png")
unlink("example_vss_01.png")
grid::grid.newpage()
grid::grid.raster(image)

Export while customising appearance
visualise_single_sequence(
sequence,
filename = "example_vss_02.png",
return = FALSE,
sequence_colours = sequence_colour_palettes$bright_pale,
sequence_text_colour = "white”,
background_colour = "lightgrey”,
line_wrapping = 60,
spacing = 2,
outline_linewidth = 0,
index_annotations_above = FALSE,
margin = 0
)
View exported image
image <- png::readPNG("example_vss_02.png")
unlink("example_vss_02.png")
grid::grid.newpage()
grid::grid.raster(image)

write_fastq Write sequence and quality information to FASTQ

48 write_fastq

Description
This function simply writes a FASTQ file from a dataframe containing columns for read ID, se-
quence, and quality scores.

See fastq_quality_scores for an explanation of quality.

Said dataframe can be produced from FASTQ via read_fastq(). To read/write a modified FASTQ
containing modification information (SAM/BAM MM and ML tags) in the header lines, use read_modified_fastq()
and write_modified_fastq().

Usage
write_fastq(
dataframe,
filename = NA,
read_id_colname = "read”,
sequence_colname = "sequence”,

quality_colname = "quality”,
return = FALSE

)
Arguments
dataframe dataframe. Dataframe containing modification information to write back to
modified FASTQ. Must have columns for unique read ID and DNA sequence.
Should also have a column for quality, unless wanting to fill in qualities with
HBII.
filename character. File to write the FASTQ to. Recommended to end with .fastq

(warns but works if not). If set to NA (default), no file will be output, which may
be useful for testing/debugging.

read_id_colname
character. The name of the column within the dataframe that contains the
unique ID for each read. Defaults to "read”.

sequence_colname
character. The name of the column within the dataframe that contains the
DNA sequence for each read. Defaults to "sequence”.

The values within this column must be DNA sequences e.g. "GGCGGC".
quality_colname

character. The name of the column within the dataframe that contains the

FASTQ quality scores for each read. Defaults to "quality”. If scores are not

known, can be set to NA to fill in quality with "B".

If not NA, must correspond to a column where the values are the FASTQ quality
scores e.g. "$12\">/2C;4:9F8:816E,6C3*," - see fastg_quality_scores.

return logical. Boolean specifying whether this function should return the FASTQ (as
a character vector of each line in the FASTQ), otherwise it will return invisible (NULL).
Defaults to FALSE.

write_modified_fastq 49

Value

character vector. The resulting FASTQ file as a character vector of its constituent lines (or
invisible(NULL) if return is FALSE). This is probably mostly useful for debugging, as setting
filename within this function directly writes to FASTQ via writelLines(). Therefore, defaults to
returning invisible (NULL).

Examples

Write to FASTQ (using filename = NA, return = FALSE
to view as char vector rather than writing to file)
write_fastq(

example_many_sequences,

filename = NA,

read_id_colname = "read”,

sequence_colname = "sequence”,

quality_colname = "quality",

return = TRUE
)

quality_colname = NA fills in quality with "B”
write_fastq(

example_many_sequences,

filename = NA,

read_id_colname = "read”,

sequence_colname = "sequence”,

quality_colname = NA,

return = TRUE

write_modified_fastq Write modification information stored in dataframe back to modified
FASTQ

Description

This function takes a dataframe containing DNA modification information (e.g. produced by read_modified_fastq())
and writes it back to modified FASTQ, equivalent to what would be produced via samtools fastq -T MM, ML.

Arguments give the names of columns within the dataframe from which to read.

If multiple types of modification have been assessed (e.g. both methylation and hydroxymethyla-
tion), then multiple colnames must be provided for locations and probabilites, and multiple prefixes
(e.g. "C+h?") must be provided. IMPORTANT: These three vectors must all be the same length,
and the modification types must be in a consistent order (e.g. if writing hydroxymethylation and
methylation in that order, must do H then M in all three vectors and never vice versa).

If quality isn’t known (e.g. there was a FASTA step at some point in the pipeline), the quality

50 write_modified_fastq
argument can be set to NA to fill in quality scores with "B". This is the same behaviour as SAMtools
v1.21 when converting FASTA to SAM/BAM then FASTQ. I don’t really know why SAMtools
decided the default quality should be "B" but there was probably a reason so I have stuck with that.
Default arguments are set up to work with the included example_many_sequences data.

Usage
write_modified_fastq(

dataframe,

filename = NA,

read_id_colname = "read”,

sequence_colname = "sequence”,

quality_colname = "quality”,

locations_colnames = c("hydroxymethylation_locations”, "methylation_locations"),

probabilities_colnames = c("hydroxymethylation_probabilities”,
"methylation_probabilities”),

modification_prefixes = c("C+h?", "C+m?"),

include_blank_tags = TRUE,

return = FALSE

)

Arguments

dataframe dataframe. Dataframe containing modification information to write back to
modified FASTQ. Must have columns for unique read ID, DNA sequence, and
at least one set of locations and probabilities for a particular modification type
(e.g. 5C methylation).

filename character. File to write the modified FASTQ to. Recommended to end with

.fastq (warns but works if not). If set to NA (default), no file will be output,
which may be useful for testing/debugging.

read_id_colname
character. The name of the column within the dataframe that contains the
unique ID for each read. Defaults to "read”.

sequence_colname
character. The name of the column within the dataframe that contains the
DNA sequence for each read. Defaults to "sequence”.

The values within this column must be DNA sequences e.g. "GGCGGC".
quality_colname

character. The name of the column within the dataframe that contains the

FASTQ quality scores for each read. Defaults to "quality”. If scores are not

known, can be set to NA to fill in quality with "B".

If not NA, must correspond to a column where the values are the FASTQ quality

scores e.g. "$12\">/2C;4:9F8:816E,6C3*," - see fastg_quality_scores.
locations_colnames

character vector. Vector of the names of all columns within the dataframe

that contain modification locations. Defaults to c ("hydroxymethylation_locations”

write_modified_fastq 51

"methylation_locations”).

The values within these columns must be comma-separated strings of indices
at which modification was assessed, as produced by vector_to_string(), e.g.
"3,6,9,12".

Will fail if these locations are not instances of the target base (e.g. "C" for

"C+m?"), as the SAMtools tag system does not work otherwise. One conse-

quence of this is that if sequences have been reversed viamerge_methylation_with_metadata()

or helpers, they cannot be written to FASTQ unless modification locations are

symmetric e.g. CpG and offset was set to 1 when reversing (see reverse_locations_if_needed()).
probabilities_colnames

character vector. Vector of the names of all columns within the dataframe

that contain modification probabilities. Defaults to c("hydroxymethylation_probabilities”,

"methylation_probabilities"”).

The values within the columns must be comma-separated strings of modification

probabilities, as produced by vector_to_string(), e.g. "0,255,128,78".
modification_prefixes

character vector. Vector of the prefixes to be used for the MM tags specify-

ing modification type. These are usually generated by Dorado/Guppy based on

the original modified basecalling settings, and more details can be found in the

SAM optional tag specifications. Defaults to c("C+h?", "C+m?").

locations_colnames, probabilities_colnames, and modification_prefixes

must all have the same length e.g. 2 if there were 2 modification types assessed.
include_blank_tags

logical. Boolean specifying what to do if a particular read has no assessed

locations for a given modification type from modification_prefixes.

If TRUE (default), blank tags will be written e.g. "C+h?;" (whereas a normal,
non-blank tag looks like "C+h?,0,0,0,0;"). If FALSE, tags with no assessed
locations in that read will not be written at all.

return logical. Boolean specifying whether this function should return the FASTQ (as
a character vector of each line in the FASTQ), otherwise it will return invisible (NULL).
Defaults to FALSE.

Value

character vector. The resulting modified FASTQ file as a character vector of its constituent lines
(or invisible(NULL) if returnis FALSE). This is probably mostly useful for debugging, as setting
filename within this function directly writes to FASTQ via writelLines(). Therefore, defaults to
returning invisible (NULL).

Examples

Write to FASTQ (using filename = NA, return = FALSE
to view as char vector rather than writing to file)
write_modified_fastq(

write_modified_fastq

example_many_sequences,

filename = NA,

read_id_colname = "read”,

sequence_colname = "sequence”,

quality_colname = "quality”,

locations_colnames = c("hydroxymethylation_locations”,
"methylation_locations”),

probabilities_colnames = c("hydroxymethylation_probabilities”,

"methylation_probabilities”),
modification_prefixes = c("C+h?", "C+m?"),
return = TRUE

Write methylation only, and fill in qualities with "B"
write_modified_fastq(
example_many_sequences,
filename = NA,
read_id_colname = "read”,
sequence_colname = "sequence”,
quality_colname = NA,
locations_colnames = c(”"methylation_locations"”),
probabilities_colnames = c("methylation_probabilities"”),
modification_prefixes = c("C+m?"),
return = TRUE

Index

+ datasets
example_many_sequences, 12
fastq_quality_scores, 18
sequence_colour_palettes, 33

cat(), 11, 12
convert_base_to_number, 2
convert_input_seq_to_sequence_list, 3
convert_input_seq_to_sequence_list(),
8,9
convert_locations_to_MM_vector, 4
convert_locations_to_MM_vector(), 6
convert_MM_vector_to_locations, 5
convert_MM_vector_to_locations(), 4
convert_modification_to_number_vector,
7
convert_sequence_to_numbers, 10
convert_sequences_to_annotations, 8
create_image_data, 10

debug_join_vector_num, 11
debug_join_vector_num(), 12
debug_join_vector_str, 12
debug_join_vector_str(), 11

example_many_sequences, 12, 14, 16, 17, 50

extract_and_sort_sequences, 13

extract_and_sort_sequences(), 16, 36

extract_methylation_from_dataframe, 16

extract_methylation_from_dataframe(),
14,25, 38

fastg_quality_scores, 13, 18, 24, 31,48, 50
file.choose(), 24, 25

ggplot2::ggplot(), 11, 33
ggplot2: :ggsave(), 37, 40, 43, 46

lapply(), 34

merge_fastq_with_metadata, 19

53

merge_fastq_with_metadata(), 2/

merge_methylation_with_metadata, 21

merge_methylation_with_metadata(), /19,
27,29-32,51

ragg: :agg_png, 37,40, 46
raster::raster(), 2, 10
read_fastq, 24
read_fastq(), 19, 20, 48
read_modified_fastq, 25
read_modified_fastq(), 5, 21, 22, 24, 48, 49
reverse_complement, 26
reverse_complement(), 20, 23, 31
reverse_locations_if_needed, 27
reverse_locations_if_needed(), 22, 23,
30-32,51
reverse_probabilities_if_needed, 29
reverse_probabilities_if_needed(), 22
23,27,31, 32
reverse_quality_if_needed, 30
reverse_quality_if_needed(), 20, 22, 27,
30, 32
reverse_sequence_if_needed, 31
reverse_sequence_if_needed(), 20, 22, 23,
27,30, 31

sequence_colour_palettes, 33, 36, 45
string_to_vector, 34
string_to_vector(), 25, 29, 30, 35

vector_to_string, 35
vector_to_string(), 7,8, 13,17, 21, 25, 29,
30, 34, 39, 51
visualise_many_sequences, 35
visualise_many_sequences(), 12, 14, 26,
33
visualise_methylation, 38
visualise_methylation(), 7, 8, 12, 14, 16,
25, 26,42
visualise_methylation_colour_scale, 42

54

visualise_methylation_colour_scale(),
38

visualise_single_sequence, 44

visualise_single_sequence(), 3, 8, 33

write_fastq, 47

write_fastq(), 24
write_modified_fastq, 49
write_modified_fastq(), 4, 24-26, 48
writeLines(), 49, 51

INDEX

	convert_base_to_number
	convert_input_seq_to_sequence_list
	convert_locations_to_MM_vector
	convert_MM_vector_to_locations
	convert_modification_to_number_vector
	convert_sequences_to_annotations
	convert_sequence_to_numbers
	create_image_data
	debug_join_vector_num
	debug_join_vector_str
	example_many_sequences
	extract_and_sort_sequences
	extract_methylation_from_dataframe
	fastq_quality_scores
	merge_fastq_with_metadata
	merge_methylation_with_metadata
	read_fastq
	read_modified_fastq
	reverse_complement
	reverse_locations_if_needed
	reverse_probabilities_if_needed
	reverse_quality_if_needed
	reverse_sequence_if_needed
	sequence_colour_palettes
	string_to_vector
	vector_to_string
	visualise_many_sequences
	visualise_methylation
	visualise_methylation_colour_scale
	visualise_single_sequence
	write_fastq
	write_modified_fastq
	Index

