fntl: Numerical Tools for Rcpp and
Lambda Functions

Andrew M. Raim

R programmers can combine R and C++ to effectively navigate a variety of comput-
ing tasks: R excels as a language for interactive tasks such as data wrangling, analysis,
and plotting; on the other hand, C+-+ can be used to efficiently carry out intensive
computations. Repp and related tools have greatly simplified interoperability between
the two languages. However, numerical computing tasks that involve functions as argu-
ments, such as integration, root-finding, and optimization, which are routinely carried
out in R, are not as straightforward in C++ within the Recpp framework. The fntl
package seeks to improve this by providing a straightforward API for numerical tools
where functional arguments are specified as C++ lambda functions. Like functions in
R, lambda functions can be defined in the course of a C++ program, “capturing” vari-
ables in the surrounding environment if desired, and be passed as arguments to other
functions. This enables the development of R-like programs in C++, which may be
appealing to Rcpp users compared to existing alternatives in the extended Rcpp family
of packages. Because the overhead to evaluate a lambda function is low compared to
that of evaluating an R function from C++, good performance is also possible in this
paradigm.

Table of contents

Disclaimer and Acknowledgments
1 Introduction

2 Overview
2.1 A First Example
2.2 Arguments. L
2.3 Results. e
2.4 Status Codes
2.5 Function Typedefs

w

© 0w

9

Document was compiled 2024-11-12 12:55:12 EST and corresponds to fntl version 0.1.2. Contact: andrew.raim@
gmail.com, Center for Statistical Research & Methodology, U.S. Census Bureau, Washington, DC, 20233, U.S.A.

mailto:andrew.raim@gmail.com
mailto:andrew.raim@gmail.com

2.6 Constants

2.7 Error Actions
2.8 Inferring Return Types!
2.9 R Functions as Lambdas
2.10 R Interface e
2.11 Performance Illustration
2.12 Pass by Value and Reference o oo
Integration
Differentiation
4.1 Finite Differences
4.2 Richardson Extrapolated Finite Differences
4.3 Gradient
4.4 Jacobian
4.5 Hessian e e e e
Root-Finding
5.1 Bisection e e e e
5.2 Brent’s Algorithm
Univariate Optimization
6.1 Golden Section Search
6.2 Brent’s Algorithm
Multivariate Optimization
7.1 Nelder-Mead
7.2 BFGS . . e
7.3 L-BFGS-B
7.4 Conjugate Gradient
7.5 Newton-Type Algorithm for Nonlinear Optimization
Matrix Operations
81 Apply . . .
8.2 Outero
8.3 Matrix-Free Linear Solve
8.4 Which
Truncated Distributions
9.1 Density e
9.2 CDF e
9.3 Quantile
9.4 Variate Generation
References

15

18
18
22
27
29
32

34
36
37

39
41
42

44
44
47
51
55
99

65
65
67
70
72

74
75
7
78
80

81

tImportant

Users should read Section 2.8 carefully. It describes a seemingly innocuous way of coding
lambdas that can lead to crashing R. This can be difficult to troubleshoot but is easily avoided
once we are aware.

Disclaimer and Acknowledgments

This document is released to inform interested parties of ongoing research and to encourage discus-
sion of work in progress. Any views expressed are those of the author and not those of the U.S.
Census Bureau.

Thanks to Drs. Joseph Kang and Tommy Wright (U.S. Census Bureau) for reviewing a draft of
this document.

Although there are no guarantees of correctness of the fntl package, reasonable efforts will be made
to address shortcomings. Comments, questions, corrections, and possible improvements can be
communicated through the project’s Github repository (https://github.com/andrewraim/fntl).

1 Introduction

Users of R (R Core Team 2024a) can implement intensive computations in compiled C++ and
engage in interactive computation through the interpreted R language. The Repp package (Eddel-
buettel et al. 2024) simplifies the process by automating interoperation between the two languages
and providing an intuitive API in C++. However, numerical tools such as integration, root-finding,
and optimization, which are routinely used in R, are not as readily available or easy to use when
carrying out lower-level programming in C++. Numerical tools in R may be invoked from C++,
but this incurs an overhead which can offset gains in performance which motivate the use of C4++.
The purpose of the fntl package is to facilitate access to such numerical tools in C++ using lambda
functions. Here, R-like code can be achieved in C++ where functions are defined on the fly and

passed as arguments to other routines. The name “fntl” is a portmanteau of “functions”, “numerical
tools”, and “lambdas”.

Thaka and Gentleman (1996) describe programming with functions as one of the main motivations
in developing R. Namely, functions may be defined dynamically in the course of a program and can
make use of variables from the surrounding environment. As an example, consider the following R
snippet to compute the maximum likelihood estimate (MLE) of X, ..., X,, ~ N(pu,1).

mu_true = 0

x = rnorm(n = 200, mean = mu_true, sd = 1)

loglik = function(mu) { sum(dnorm(x, mu, 1, log = TRUE)) }
optimize(loglik, lower = -100, upper = 100, maximum = TRUE)

https://github.com/andrewraim/fntl

$maximum
[1] -0.05775928

$objective
[1] -287.4428

Here the generated sample x is “baked in” to the definition of 1loglik so that loglik can be regarded
as a univariate function of mu to be used with optimize. The ability to construct functions such
as loglik in the course of a program and pass them to other functions, as any other variable, can
be tremendously convenient. Wickham (2019) discusses some design patterns which are possible
using functions in R. However, such conveniences come at a cost, as performance can be inefficient
in both speed and memory management.

Performance limitations in R can sometimes be worked around; for example, loops and apply
statements are typically slow because they are executed by an interpreter, but matrix operations
are typically fast because they make use of calls to BLAS, LAPACK, and other compiled matrix
libraries. Refactoring loops into matrix operations can yield a significant performance improvement
when it is feasible. Compiled languages such as FORTRAN and C/C++ are often used for high
performance implementation of numerical methods; however, they are not well-suited for interactive
usages such as data wrangling, data analysis, and graphics like R, MATLAB, or Python. Julia
(Bezanson et al. 2017) has emerged over the past decade as a language for scientific computing
which is both suitable to be used interactively and compiles into efficient executable code.

R supports integration with FORTRAN and C/C++ so that high performance code can be used
interactively from the R interpreter; therefore, it remains a viable alternative to languages like
Julia. The Rcpp package largely automates integration with C/C++ code so that users can focus
their efforts on solving the problem at hand. For a function call from R to C++, this automation
includes unpacking the arguments from SEXP objects into C++ objects and later packing the result
into an SEXP object to be returned. Overhead from repeated packing and unpacking can hinder
performance; on the other hand, performance while submerged in C++ is free of this overhead.
The Repp API provides general C++ classes for vectors, matrices, lists, and other routinely used
objects from R. Additional Rcpp extension packages have been developed to provide APIs with
more application-specific classes; for example, ReppArmadillo (Eddelbuettel and Sanderson 2014)
exposes the API from Armadillo for numerical matrix operations.

A performance penalty is also suffered when defining a function in R and using it from C++ with
Repp. Calling the function from C++ requires going back through the R runtime environment in
addition to packing arguments into SEXP objects and unpacking return values from SEXP objects.
Doing so repeatedly accumulates the penalty, and can negate performance benefits of using C++-.
Instead, we will consider utilizing lambda functions in C++4, which were introduced in the C++11
specification. There are alternative methods of defining and passing functions as objects - such as
through function pointers and functor classes - but lambda functions seem best aligned with the
R style discussed by Thaka and Gentleman (1996). Traditional functions and classes used in the
function pointer and functor approaches, respectively, are declared in their own blocks prior to use.
Another major difference lies in auxiliary data - such as sample data in a loglikelihood function
- which are not considered to be primary arguments. With function pointers, auxiliary data are

passed as additional arguments that each caller must furnish. Functors are classes which expose
the function of interest and encapsulate auxiliary data using member variables.

To demonstrate lambdas, consider the following C++ code snippet.
auto f = [](double x, double y) -> double { return x*y; I};

The function £ may be invoked as usual with an expression such as f(x, y). Here, £ is a lambda
with double arguments x and y which returns the product x*y as another double. The auto
keyword instructs the compiler to infer the type of £ from the return type of the right-hand side of
the equality operator. In the previous example, the return type of the lambda can also be inferred,
and we may rewrite it as follows.

auto f = [](double x, double y) { return xxy; };

Like an R function, variables in scope of the lambda may be “baked in” to it. Here is an example
from our MLE setting.

Rcpp: :NumericVector x = Rcpp: :rnorm(200) ;

auto loglik = [&] (double mu) {
double out = Rcpp::sum(Rcpp: :dnorm(x, mu, 1, true));
return out;

+;

The function loglik takes a double argument mu and returns a double. The randomly generated
data x is included in the function definition; C++ documentation refers to x as a capture of the
lambda loglik. The bracketed expression [&] specifies that captures of loglik should be by
reference; alternatively, [=] would specify that captures should be done by value so that copies of
the original variable are used. It is also possible to specify by-reference or by-value for each captured
variable.

To be able to pass a lambda with captures as an argument to other functions, we wrap it in a
Standard Template Library (STL) function as follows.

std: :function<double(double)> loglik = [&] (double mu) {
double out = Rcpp::sum(Rcpp: :dnorm(x, mu, 1, true));
return out;

+;

Note that the template argument of std: :function<double(double)> describes the domain and
range of the function: the double in parentheses is the argument and the double outside indicates
the return type.

Lambda functions can be used directly with the Repp API in some cases. For example, an Rcpp
Gallery post demonstrates the use of the STL transform function to apply a lambda to each element
of a vector. The fntl package avoids duplicating this existing functionality.

https://www.cppreference.com/Cpp_STL_ReferenceManual.pdf
https://gallery.rcpp.org/articles/simple-lambda-func-c++11

Numerical tools implemented in fntl are covered in other Rcpp-related packages to some extent.
The RcppNumerical package (Qiu et al. 2023) implements numerical integration - both univari-
ate and multivariate - and optimization using a limited memory Broyden, Fletcher, Goldfarb and
Shanno method. This is accomplished by providing an Rcpp interface to several open source li-
braries. The roptim package (Pan 2022) provides an Repp interface to the R API to call individual
optimization methods underlying the optim function. Function arguments in both RcppNumerical
and roptim are specified via C++ functors. This vignette of roptim provides a discussion on
calling the R API which was helpful in the development of fntl. A number of numerical utilities
in the GSL (Galassi et al. 2009) and Boost libraries are provided by the RcppGSL (Eddelbuettel
and Francois 2024) and BH (Eddelbuettel, Emerson, and Kane 2024) packages, respectively. The
RcppGSL package requires installation of the underlying GSL library to build the source package.
The author of the present document finds the interfaces of both GSL and Boost to be somewhat
daunting, which has motivated a search for alternatives.

The fntl package is guided by several design principles. The interface is intended to be simple and
familiar to R users. External dependencies beyond the R platform itself and the Repp package are
avoided; this is to support use in locked-down computing environments where adding or upgrading
system libraries may be nontrivial. For numerical methods, we first prefer to make use of functions
exposed as entry points in the R API (R Core Team 2024b, sec. 6). In cases where a desired R
method is not exposed in the API, we roll our own implementation. Such methods in fntl may
not be exactly the same as those in R, but are intended to be comparable.

Section 2 presents an overview of the fntl API. Subsequent sections present the API in detail
by topic: numerical integration in Section 3, numerical differentiation in Section 4, root-finding in
Section 5, univariate optimization in Section 6, multivariate optimization in Section 7, and matrix
operations in Section 8. The C+4 examples in each section can be obtained as standalone files in
the vignettes/examples folder of the fntl source repository.

2 Overview

2.1 A First Example

We will first consider a brief example to illustrate use of the fntl package. If attempting to follow
along, ensure that you have successfully installed the fntl package on your system. The following
C++ code, given in the file examples/first.cpp, computes the integral B(a,b) = fol @11 —
z)btdx.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List first_ex(double a, double b)
{

fntl::integrate_args args;

https://www.boost.org
https://github.com/andrewraim/fntl/tree/main/vignettes/examples

b

args.subdivisions = 200L;

fntl::dfd £ = [&] (double x) {
return std::pow(x, a - 1) * std::pow(l - x, b - 1);
+;
fntl::integrate_result out = fntl::integrate(f, 0, 1, args);

Rprintf ("value: %g\n", out.value);
Rprintf ("status: %d\n", to_underlying(out.status));

return Rcpp: :wrap(out) ;

There are a number of points to note in this example.

1.

The first two lines - the depends attribute and the include of fntl.h - are needed to access
the fntl library from C++.

Functions and other objects in fntl are accessed through the fntl namespace (e.g.,
fntl::integrate).

The call to integrate follows a similar pattern as many functions in fntl. Primary arguments
include the function £ and the bounds of the integral, while optional arguments such as
the number of subdivisions are passed in a struct of type integrate_args. The result of
integrate is an integrate_result struct containing the integral approximation value, a
return code status, and several other outputs from the operation.

The integrate_args struct uses default values for any unspecified arguments. Users often
will not want to specify values such as tolerances or verbosities. Similar argument names and
default values as the corresponding R function are used when possible.

The integrand f is defined as a dfd; this is a typedef in fntl which is a shorthand for
std: :function<double(double)>.

The last line shows the integrate_result being wrapped into an Rcpp List so that it
becomes an R list when returned to R.

The status code is a value from the integrate_status enum class. Here it is converted to
an integer using the function to_underlying.

An R function first_ex is generated by specifying an Rcpp: :export annotation. This is
done for most functions in this document to facilitate demonstrations.

Let us invoke the first_ex function through R.

Rcpp: :sourceCpp("examples/first.cpp")
out = first ex(2, 3)

value: 0.0833333
status: O

print (out$value)

[1] 0.08333333

2.2 Arguments

There are a number of args structs which represent optional arguments to functions.
integrate_args is one example; other args types have a prefix matching their correspond-
ing function. Each of these may be instantiated from an Rcpp List or exported to an Repp List
using the as and wrap mechanisms, respectively.

// Create args and export to a List
fntl::integrate_args argsO;
Rcpp: :List x = Rcpp: :wrap(args0);

// Instantiate a second args struct from the list x
x["stop_on_error"] = false;
fntl::integrate_args argsl = Rcpp::as<fntl::integrate_args>(x);

When instantiating an args struct from a List, we throw an error if the list contains any elements
with names which are not expected by the struct; this is to protect against mistakes which could
occur when a field is named incorrectly where the effects may be subtle and difficult to track down.

// This will cause an exception

x["abcdefg"] = 0;

fntl::integrate_args argsl = Rcpp::as<fntl::integrate_args>(x);
In most cases, a function that takes optional args has an alternative form where the args may be
omitted; this form assumes all default values for the args. For example, our call to integrate in

Section 2.1 could omit the args as follows.

fntl::integrate_result out = fntl::integrate(f, 0, 1);

2.3 Results

Similar to args, there are a number of result structs that represent the output of a function.
integrate_result is an example; other result types have a prefix matching their corresponding

!Details on implementing these mechanisms may be found in the Repp Extending vignette.

https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-extending.pdf

function. A result may be exported to an Rcpp List using the wrap mechanism. This was seen
in Section 2.1.

fntl::integrate_result out = fntl::integrate(f, 0, 1, args);
Rcpp::List x = Rcpp: :wrap(out);

2.4 Status Codes

Error conditions may result in an exception so that no return value is produced. Some conditions
- such as failure to converge within a given number of iterations - may not result in an exception.
Here, a status code is returned with the result to indicate a possible issue that may warrant further
investigation. The example in Section 2.1 illustrates integrate_status returned by integrate;
other status types have a prefix matching their corresponding function. Each status type is an
enum class derived from either int or unsigned int: an enumeration that can be constructed from
an integer or converted to an integer using the included function to_underlying.?

fntl::integrate_status status = fntl::integrate_status::0K; // Define a status
int err = to_underlying(status); // status to int
statusl = fntl::integrate_status(err); // int to status

2.5 Function Typedefs

fntl defines shorthands for several commonly used function types, given as follows, which are used
throughout the present document.

typedef function<double(double)> dfd;

typedef function<double(const NumericVector&)> dfv;

typedef function<double(const NumericVector&, const NumericVector&)> dfvv;
typedef function<NumericVector(const NumericVector&)> vfv;

typedef function<NumericMatrix(const NumericVector&)> mfv;

Type names are intended to convey argument and return types as briefly as possible. Symbols to
the right of f represent arguments while those to the left represent the return type; in particular,
d is double, v is numeric vector, and m is numeric matrix. For example, a dfvv takes two vectors
and returns a double.

The namespace std for function and Rcpp for NumericVector and NumericMatrix have been
omitted in the display so that statements each fit on a single line.

2This function is based on a post from StackOverflow.

https://stackoverflow.com/questions/8357240/how-to-automatically-convert-strongly-typed-enum-into-int

2.6 Constants

The following constants are defined in fntl and utilized in the API.

double mach_eps = std::numeric_limits<double>::epsilon();

double mach_eps_2r = sqrt(mach_eps);

double mach_eps_4r = std::pow(mach_eps, 0.25);

unsigned int uint_max = std::numeric_limits<unsigned int>::max();

These correspond to machine epsilon €, €'/2, €!/4, and the maximum value of an unsigned integer.

2.7 Error Actions

Several functions in fntl take an error_action as an input to determine how to react in an error
state. Here is the definition of error_action.

enum class error_action : unsigned int {
STOP = 3L,
WARNING = 2L,
MESSAGE = 1L,
NONE = OL

® OO

};

(1 Throw an exception.

(2 Emit a warning and proceed.

(3 Print a message and proceed.

@ Do not take any of the above actions and proceed.

Functions making use of an error_action typically also return a status code as in Section 2.4,
which can be inspected by the caller if an exception is not thrown.

2.8 Inferring Return Types'!

Section 1 mentioned that the return type of a lambda does not necessarily need to be specified in
its interface. However, we must be vigilant when allowing the type to be inferred, especially when
working with Rcpp objects which are converted seamlessly behind the scenes.

The following example appears harmless but is likely to crash R.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List crash_ex(Rcpp: :NumericVector x0)

10

fntl::dfv £ = [](Rcpp::NumericVector x) { return Rcpp::sum(x*x); };
auto out = fntl::gradient(f, x0);
return Rcpp: :wrap(out);

b

The issue appears to be that Rcpp: : sum does not necessarily return a double - the expected result
of a fntl::dfv - but something else that normally produces a double behind the scenes when
needed. Some contextual information may be missing so that the conversion does not occur.

One way to address this is to specify that double is the return type of the lambda.
fntl::dfv £ = [](Rcpp::NumericVector x) -> double { return Rcpp::sum(x*x); I};
A second way to address the issue is to explicitly convert the result to a double before returning.

fntl::dfv £ = [](Rcpp::NumericVector x) {
double out = Rcpp::sum(x*x) ;
return out;

};

2.9 R Functions as Lambdas

Although not a primary intended use of the fntl package, it is possible to use R functions as
inputs. This is accomplished by wrapping an Rcpp: :Function in a lambda. This will incur the
usual overhead of calling R code from C++, but may be useful for testing or in situations where
the overhead is a small proportion of the run time.

Here is an example based on the first example in Section 2.1.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List callr_ex(Rcpp: :Function f)

{
fntl::dfd ff = [&] (double x) {
Rcpp: :NumericVector out = f(x);
return out(0);
¥
fntl::integrate_result out = fntl::integrate(ff, 0, 1);
return Rcpp: :wrap(out) ;
}

11

We create function f in R and pass it as an argument to callr_ex. The lambda ff calls the function
f, implicitly converting the input x into an Rcpp: :NumericVector, and converts the output from
an Rcpp: :NumericVector to a double. Let us demonstrate a call to the function callr_ex from
R.

Rcpp: :sourceCpp("examples/callr.cpp")

a=2

b =23

f = function(x) { x(a - 1) * (1 - x)"(b - 1) }
out = callr_ex(f)

print (out$value)

[1] 0.08333333

2.10 R Interface

The fntl package includes an R interface which may be used to invoke much of the underlying
C++ API. This is intended for demonstration and testing purposes only; performance will generally
suffer here because of the overhead in moving between C++ and R. In real applications, R code
should make use of mainstream R functions rather than this R interface.

For example, the integrateO R function is included to call the underlying integrate C++ func-
tion shown in Section 2.1. (The suffix “0” is added to avoid a naming clash with R’s integrate
function). The R function integrate_args can be used to construct a list which is suitable to pass
to integrateO.

args = integrate_args()

print (args)

$subdivisions
[1] 100

$rel tol
[1] 0.0001220703

$abs_tol
[1] 0.0001220703

$stop_on_error

[1] TRUE
a=2; b=3
f = function(x) { x~(a-1) * (1-x) " (b-1) }

12

out integrateO(f, 0, 1, args)
print (out$value)

[1] 0.08333333

2.11 Performance Illustration

To illustrate performance characteristics, let us consider a brief simulation of the relationship be-
tween mean-squared error (MSE) and sample size in a logistic regression, suppose Y; ~ Ber(p;)
are independent with p, = 1ogit_1(ﬂ0 + Bx;). Data-generating values of the coefficients are taken
to be B, = 0 and 3; = 1, respectively. We take R draws of (yi,...,y,) and compute the MLE
BA(T) = (BA(()T), AY)) for the rth draw using the L-BFGS-B optimization method. The MSE associated
with sample size n is computed as MSE,, = & ZleH Br) — B||2; this is computed for sample sizes
n € {100,200, 500, 1000, 10000}. We describe four versions of the code; to see the implementations,
refer to the corresponding source files in the examples folder.

source ("examples/timingl.R")

Rcpp: :sourceCpp("examples/timing?2.
Rcpp: :sourceCpp("examples/timing3.
Rcpp: :sourceCpp("examples/timing4.
n_levels c(100, 200, 500, 1000,

Cppn)
Cpp")
cpp")
10000)

The first version of the program timingl ex is written in pure R. This version uses a naively coded
version of the loglikelihood based on a loop over ¥y, ..., y,,. Experienced R users will recognize that
vectorization will dramatically improve the performance. However, we will proceed with the slow
loglikelihood for illustration. A particular run of this code took 1.31 minutes.

set.seed(1234)

start = Sys.time()

timingl ex(R = 200, n_levels)
print(Sys.time() - start)

The second version timing2_ex ports timingl ex from R to C++, where loops generally need not
be avoided to achieve good performance. Here we define the loglikelihood as a lambda function and
use the 1bfgsb function described in Section 7.3 to carry out optimization. A run of this code took
22.17 seconds.

set.seed(1234)

start = Sys.time()

timing2 ex(R = 200, n_levels)
print(Sys.time() - start)

A third version of the code timing3_ex demonstrates that overhead of calling an R function from
C++ does not necessarily result in poor performance. Here we make a vectorized call to dbinom

13

for each evaluation of the loglikelihood. In this case, the overhead does not contribute significantly
to the run time: a run took 25.94 seconds.

set.seed(1234)

start = Sys.time()
timing3_ex(R = 200, n_levels)
print(Sys.time() - start)

Finally, a fourth version of the code timing4 ex demonstrates a case where the overhead of repeat-
edly calling an R function from C++ results in abysmal performance. Here we revert back to the
loop in timing2_ex, but call the plogis function in R rather than use one provided in Rcpp. A
run of this code took 9.89 minutes.

set.seed(1234)

start = Sys.time()

timing4 ex(R = 200, n_levels)
print(Sys.time() - start)

2.12 Pass by Value and Reference

References and const references can be used in C++ code to avoid making unnecessary copies of
variables which waste time and memory. This additional level of control (and responsibility) is
typically not considered in R programming, where pass-by-value is the standard. Consider the
following function, which adds one to each element of a matrix and returns the sum of the result.

| double sumlp(Rcpp: :NumericMatrix x) { return Rcpp::sum(x + 1); }

Here a copy of the matrix x is passed to sumlp. This pass-by-value can be changed to pass-by-
reference which avoids copying x.

| double sumlp_1(Rcpp::NumericMatrix& x) { return Rcpp::sum(x + 1); }

The body of sumlp_1 does not alter x, but there are no safeguards in place to enforce that it does
not. This might raise anxiety for a user of sumip_1 about whether their x has been modified. To
alleviate their anxiety, we can provide a safeguard using a const reference.

| double sumlp_2(const Rcpp::NumericMatrix& x) { return Rcpp::sum(x + 1); }

The compiler will emit an error if sumlp_2 attempts to modify x.

Examples given in this document tend to use pass-by-value to avoid extra visual clutter of const
references. However, the fntl package makes frequent use of const references in both the API
and internal implementation. It is recommended that users consider consider which of the three
- by-value, by-reference, or by-const-reference - is most appropriate for their application in actual
usage.

14

3 Integration

Compute the integral

/a ' fa)da,

where limit @ may be finite or —oo and limit b may be finite or co. Directly uses the C functions
Rdqags and Rdqgagi underlying the R function integrate. These functions are based on two respective
QUADPACK routines: dqags for the case when both limits are finite and dqagi for the case when
one or both limits are infinite (Piessens et al. 1983).

Function

Source code is in the file inst/include/integrate.h.

integrate_result integrate(
const dfd& f, @
double lower, ®
double upper, ®
const integrate_args& args ®
)
integrate_result integrate(
const dfd& £,
double lower,
double upper
)
(1 Function to use as the integrand.
(2 Lower limit a of integral; may be R_NegInf.
® Upper limit b of integral; may be R_PosInf.
(@ Additional arguments.
Optional Arguments
struct integrate_args {
unsigned int subdivisions = 100L; @
double rel_tol = mach_eps_4r; ®
double abs_tol = mach_eps_4r; ®
bool stop_on_error = true; ®
s

(1 The maximum number of subintervals.

(2 Relative accuracy requested.

3 Absolute accuracy requested.

@ If true, errors in integrate raise exceptions.

15

https://github.com/r-devel/r-svn/blob/b3133c253e72c7ae069e0d46964c9458a7219eaa/src/include/R_ext/Applic.h#L52
https://github.com/r-devel/r-svn/blob/b3133c253e72c7ae069e0d46964c9458a7219eaa/src/include/R_ext/Applic.h#L57
https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/integrate.R
https://www.netlib.org/quadpack/dqags.f
https://www.netlib.org/quadpack/dqagi.f
https://github.com/andrewraim/fntl/blob/main/inst/include/integrate.h

Result

struct integrate_result {
double value;
double abs_error;
int subdivisions;
integrate_status status;
int n_eval;
std::string message;

Q OO

operator SEXP() const;
};

(@ The final approximation of the integral.

(2 Estimate of the modulus of the absolute error.

® The number of subintervals produced in the subdivision process.
(@ A code describing the status of the operation.

(® Number of function evaluations.

(® A message describing the status of the operation.

() Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of integrate_result as an
Rcpp: :List. The fields here directly correspond to those in integrate_result.

Name Type Description
value Rcpp: :NumericVector Length 1
abs_error Rcpp: :NumericVector Length 1
subdivisions Rcpp::IntegerVector Length 1
status Rcpp: :IntegerVector Length 1
n_eval Rcpp: :IntegerVector Length 1
message Rcpp: :StringVector Length 1

Status Codes

enum class integrate_status : int {
0K = OL,
MAX_SUBDIVISIONS = 1L,
ROUNDOFF_ERROR = 2L,
BAD_INTEGRAND_BEHAVIOR = 3L,
ROUNDOFF_ERROR_EXTRAPOLATION_TABLE = 4L,
PROBABLY_DIVERGENT_INTEGRAL = 5L,
INVALID_INPUT = 6L

QPO®O©O®HE

® OK.

16

(2 maximum number of subdivisions reached.

® roundoff error was detected.

(@ extremely bad integrand behaviour.

(® roundoff error is detected in the extrapolation table.
(6) the integral is probably divergent.

(» the input is invalid.

Example

Compute the integral j(;oo e **/2dz. A C++ function with Rcpp interface is defined in the file
examples/integrate.cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List integrate_ex(double lower, double upper)

{
fntl::dfd £ = [](double x) { return exp(-pow(x, 2) / 2); };
auto out = fntl::integrate(f, lower, upper);
return Rcpp::wrap(out);

}

Call the function from R.

Rcpp: :sourceCpp("examples/integrate.cpp")
out = integrate_ex(0 , Inf)
print (out)

$value
[1] 1.253314

$subdivisions
[1] 3

$n_eval
[1] 75

$abs_error
[1] 0.0001173243

$status
[1] O

$message
[1] "OK"

17

4 Differentiation

This section presents methods for numerical differentiation. First we present simple finite differences,
then Richardson extrapolation to automatically select a step size, then the functions to compute
the gradient, Jacobian, and Hessian. The latter three make use of Richardson extrapolation.

4.1 Finite Differences

Compute the first and second derivatives of f : R” — R numerically at point . Denote e; as the
1th column of an n x n identity matrix. First derivatives in the ith coordinate are computed as

of (z) "y f(z + he;) — f(z — he;)

~

ox, 2h ’
0f(x) [flz+he)— fz)

ox; h ’
0f(x) flx) = flz —he;)

ox; h ’

for given h > 0 using symmetric, forward, or backward differences respectively. Second derivatives
in the ith and jth coordinate, with 4,j € {1...,n}, are computed as

Owyz; Ah;h; ’
Oflx) _ flo+hie;+2he;) — f(x + he;) — fla+ hej) + f(x)

O, - hih; ’

02 f(z) - f(@) = flx—hse;) — fla—hye;) + f(x — hie; — hye)

Ox;x; hih; ’

for given h; > 0 and h, > 0 using symmetric, forward, or backward differences respectively. The
accuracy of these derivatives depends on the nature of the function f at x and the choice of h. See
Section 5.7 of Press et al. (2007) for discussion.

Function

Primary location of source code is the file inst/include/fd-deriv.h.

double fd deriv(
const dfv& £,
const Rcpp: :NumericVector& x,
unsigned int i,
double h,
const fd_types& fd_type = fd_types::SYMMETRIC

QOO

)

double fd_deriv2(

18

https://github.com/andrewraim/fntl/blob/main/inst/include/fd-deriv.h

const dfv& £,

const Rcpp: :NumericVector& x,

unsigned int i,

unsigned int j,

double h_i,

double h_j,

const fd_types& fd_type = fd_types::SYMMETRIC

QEPO®O®OEO

@ Function d to differentiate.

(@ Point z at which derivative is taken.
® First coordinate to differentiate.

(@ Second coordinate to differentiate.
(3 Step size in the first coordinate.

(6) Step size in the second coordinate
(@ Type of finite difference.

The functions fd_deriv and fd_deriv2 compute first and second derivatives, respectively. The
options for £d_type are given in the following enumeration class.

enum class fd_types : unsigned int {
SYMMETRIC = OL,
FORWARD = 1L,
BACKWARD = 2L

I

Example

Compute the first and second derivatives of f(z) = sin(b'z) at 4 = (1/2,...,1/2) where b =

(1,...,m). The gradient and Hessian are given in closed-form by
8@—? = bcos(b'x),
0 f(x) Twin(hT
DT —bb " sin(b' z).

Let us first prepare the problem in R.

n=3

b = seq_len(n)

x0 = rep(0.5, n)

eps = 0.001 ## Fixz a step stze for finite differences
g = function(x) { b * cos(sum(b * x)) }

h = function(x) { -tcrossprod(b) * sin(sum(b * x)) }

To demonstrate the numerical first derivative, a C+4 function with Rcpp interface is defined in the
file examples/fd-deriv.cpp.

19

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
double fd_deriv_ex(Rcpp: :NumericVector x0, unsigned int i, double h,

unsigned int type)

{
fntl::dfv £ = [] (Rcpp::NumericVector x) {
double ss = 0;
for (unsigned int i = 0; i < x.length(); i++) { ss += (i+1) * x(i); 7
return std::sin(ss);
+;
return fntl::fd deriv(f, x0, i, h, fntl::fd_types(type));
}

Call the function from R.

Rcpp: :sourceCpp("examples/fd-deriv.cpp")
out3 = out2 = outl = numeric(n)
for (i in 1:n) {

out1[i] = fd_deriv_ex(x0, i-1, eps, type = 0) ## Symmetric
out2[i] = fd_deriv_ex(x0, i-1, eps, type = 1) ## Forward
out3[i] = fd_deriv_ex(x0, i-1, eps, type = 2) ## Backward
}
print (outl)

[1] -0.9899923 -1.9799837 -2.9699730
| print (out2)

[1] -0.9900629 -1.9802659 -2.9706081
| print (out3)

[1] -0.9899218 -1.9797014 -2.9693380
| print (g(x0))

[1] -0.9899925 -1.9799850 -2.9699775

To demonstrate the numerical second derivative, a C++ function with Rcpp interface is defined in
the file examples/fd-deriv2. cpp.

20

{

}

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
double fd_deriv2_ex(Rcpp: :NumericVector x0, unsigned int i, unsigned int j,

double h_i, double h_j, unsigned int type)

fntl::dfv £ = [] (Rcpp::NumericVector x) {
double ss = 0;
for (unsigned int i = 0; i < x.length(); i++) { ss += (i+1) * x(i); 7
return std::sin(ss);

+;

return fntl::fd deriv2(f, x0, i, j, h_i, h_j, fntl::fd_types(type));

Call the function from R.

Rcpp: :sourceCpp("examples/fd-deriv2.cpp")
out3 = out2 = outl = matrix(NA, n, n)
for (i in 1:n) {

for (j in 1:n) {

outl[i,j] = fd_deriv2_ex(x0, i-1, j-1, eps, eps, type = 0) ## Symmetric
out2[i,j] = fd_deriv2_ex(x0, i-1, j-1, eps, eps, type = 1) ## Forward
out3[i,j] = fd_deriv2_ex(x0, i-1, j-1, eps, eps, type = 2) ## Backward
}
}
print (outl)
[,1] [,2] [,3]

[1,] -0.1411200 -0.2822398 -0.4233593
[2,] -0.2822398 -0.5644793 -0.8467182
[3,] -0.4233593 -0.8467182 -1.2700763

print (out2)

[,1] [,2] [,3]

[1,] -0.1401299 -0.2792697 -0.4174191
[2,] -0.2792697 -0.5565588 -0.8318671
[3,] -0.4174191 -0.8318671 -1.2433437

print (out3)

21

[,1] [,2] [,3]
[1,] -0.1421099 -0.2852096 -0.4292989
[2,] -0.2852096 -0.5723986 -0.8615668
[3,] -0.4292989 -0.8615668 -1.2968031

h(x0)

[,1] [,2] [,3]
[1,] -0.14112 -0.28224 -0.42336
[2,] -0.28224 -0.56448 -0.84672
[3,] -0.42336 -0.84672 -1.27008

4.2 Richardson Extrapolated Finite Differences

Compute the first and second derivatives of f : R™ — R numerically at point = using Richardson
extrapolation. This is typically more accurate than the simple finite differences in 1 and does
not require an informed choice of the step size h; however, it requires more evaluations of f. A
general discussion of Richardson extrapolation is given in Section 9.6 of Quarteroni, Sacco, and
Saleri (2007).

Taking the function g(h) to be one of finite difference approximations in (??)—(??), h > 0 to be an
initial step size, and § € (0, 1) to be a reduction factor, the method computes a table of values

A =

mq

A o 5qu—1,q—1

1— 649 ’
given a predetermined n. Note that n + 1 evaluations of f are required. The result is taken to be
the A,,, such that

m,q—1

g(6™h), form=0,...,nand ¢ =0,
form=0,...,nand g=1,...,m,

emq = maX{|Amq — Am,q—1|’ |Amq - Am—l,q—1|}

is the smallest, with the corresponding e = e, reported as the achieved tolerance. Furthermore,
because numerical error may begin to worsen as the table is iteratively computed, the method halts
if it encounters the condition

|Amq - Am—l,q—1| > Te€,
with e as the smallest e, computed so far and 7 > 1 is a given multiplier. These criteria for
convergence and stopping early due to reduced numerical precision are suggested in Section 5.7 of

Press et al. (2007); similar considerations for halting criteria are considered in the Julia package
Richardson.jl.

Taking n = 0 produces finite differences described in 1 using the initial step size h as the perturba-
tion. Here the achieved tolerance is reported as infinite.

Function

Primary location of source code are the files inst/include/deriv.h, inst/include/deriv2.h, and
inst /include/richardson.h.

22

https://github.com/JuliaMath/Richardson.jl
https://github.com/andrewraim/fntl/blob/main/inst/include/deriv.h
https://github.com/andrewraim/fntl/blob/main/inst/include/deriv2.h
https://github.com/andrewraim/fntl/blob/main/inst/include/richardson.h

richardson result deriv(
const dfv& f,
const Rcpp::NumericVector& x,
unsigned int i,
const richardson_args& args,
const fd_types& fd_type = fd_types::SYMMETRIC

@O

richardson_result deriv(
const dfv& £,
const Rcpp::NumericVector& x,
unsigned int i,
const fd_types& fd_type = fd_types::SYMMETRIC

@®©OO

richardson result deriv2(
const dfv& f,
const Rcpp::NumericVector& x,
unsigned int i,
unsigned int j,
const richardson_args& args,
const fd_types& fd_type = fd_types::SYMMETRIC

@OEOO

richardson result deriv2(
const dfv& f,
const Rcpp::NumericVector& x,
unsigned int i,
unsigned int j,
const fd_types& fd_type = fd_types::SYMMETRIC

@E O

(@ Function d to differentiate.

(@ Point x at which derivative is taken.
3 Optional arguments.

(@ First coordinate to differentiate.

(3 Second coordinate to differentiate.
(® Type of finite difference.

The functions deriv and deriv2 compute first and second derivatives, respectively. The enum class
fd_type is described in 1.

Optional Arguments

23

struct richardson_args
{
double delta = 0.5;
unsigned int maxiter = 10;
double h = 1;
double tol = mach_eps_4r;
double accuracy_factor = R_PosInf;

richardson_args() { };
richardson_args(SEXP obj);
operator SEXP() const;

@@ OO

+;

@ The factor ¢ used to reduce h.

(2 Maximum number of iterations.

® The initial value of h.

(@ Tolerance for convergence.

(®) The factor 7 used to check for loss of precision. The infinite default value disables the check.
(6) Default constructor.

(@ Constructor from an Rcpp: :List.

Conversion operator to Rcpp: :List.

Result

struct richardson _result

{
double value; ©
double err; @
unsigned int iter; ®
richardson_status status; ®
operator SEXP() const; ®

I

(@ The final approximation of the derivative.

(2 An estimate of the error in approximation.

® Number of iterations m used to produce the approximation.
(@ A code describing the status of the operation.

(5 Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of fd_deriv_result as an
Rcpp::List.

Name Type Description
value Rcpp: :NumericVector A scalar based on field value.
err Rcpp: :NumericVector A scalar based on field err.

24

Name Type Description

iter Rcpp: : IntegerVector A scalar based on field iter.
status Rcpp: : IntegerVector A scalar based on field status.

Status Codes

enum class richardson_status : unsigned int {

0K = OL, ©
NOT_CONVERGED = 1L, @
NUMERICAL_PRECISION = 2L ®
};
@ OK.

@ Not converged within maxiter iterations.
(3 Early termination due to numerical precision.

Example

Compute first and second derivatives of f(z) = sin(b'x) at 5 = (1/2,...,1/2) with b = (1,...,n).
This is a continuation of the example in 1. Let us again define the point .

n=23
x0 = rep(0.5, n)

To demonstrate the numerical first derivative, a C++ function with Rcpp interface is defined in the
file examples/deriv.cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List deriv_ex(Rcpp: :NumericVector x0, unsigned int i, unsigned int type)
{
fntl::dfv £ = [](Rcpp: :NumericVector x) {
double ss = O;
for (unsigned int i = 0; i < x.length(); i++) { ss += (i+1) * x(i); }
return std::sin(ss);

+s

auto out = fntl::deriv(f, x0, i, fntl::fd_types(type));
return Rcpp::wrap(out);

}

Call the function from R.

25

Rcpp: :sourceCpp("examples/deriv.cpp")
out3 = out2 = outl = numeric(n)
for (i in 1:n) {

outl[i] = deriv_ex(x0, i-1, type = 0)$value ## Symmetric
out2[i] = deriv_ex(x0, i-1, type = 1)$value ## Forward
out3[i] = deriv_ex(x0, i-1, type = 2)$value ## Backward
}
print (outl)

[1] -0.9899772 -1.9799546 -2.9699519

| print (out2)

[1] -0.9900957 -1.9987848 -2.9704411
| print (out3)

[1] -0.9898889 -1.9797778 -2.9695107

To demonstrate the numerical second derivative, a C++ function with Rcpp interface is defined in
the file examples/deriv2. cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List deriv2_ex(Rcpp: :NumericVector x0, unsigned int i, unsigned int j,

unsigned int type)

{
fntl::dfv £ = [](Rcpp: :NumericVector x) {
double ss = O;
for (unsigned int i = 0; i < x.length(); i++) { ss += (i+1) * x(i); }
return std::sin(ss);
i
auto out = fntl::deriv2(f, x0, i, j, fntl::fd_types(type));
return Rcpp::wrap(out);
}

Call the function from R.

26

Rcpp: : sourceCpp ("examples/deriv2.cpp")

out3 = out2 = ou
for (i in 1:n) {
for (j in 1:n) {

tl =

matrix(NA, n, n)

outl[i,j] = deriv2_ex(x0, i-1, j-1, type
out2[i,j] = deriv2_ex(x0, i-1, j-1, type
out3[i,j] = deriv2_ex(x0, i-1, j-1, type
}
}
print (outl)
[,1] [,2] (,3]
[1,] -0.1411024 -0.2822182 -0.4233438
[2,] -0.2822182 -0.5644627 -0.8467095
[3,] -0.4233438 -0.8467095 -1.2700582
print (out2)
(,1] [,2] [,3]
[1,] -0.1403947 -0.2800641 -0.4190080
[2,] -0.2800641 -0.5586774 -0.8358399
[3,] -0.4190080 -0.8358399 -1.2504954
print (out3)
(,1] [,2] [,3]
[1,] -0.1418452 -0.2844157 -0.4277113
[2,] -0.2844157 -0.5702817 -0.8575980
[3,] -0.4277113 -0.8575980 -1.2896600
4.3 Gradient
The gradient of f: R™ — R:

Of(x) _ [9f(x)

0)$value
1)$value
2)$value

0f(x)

ox

= y e
0x,

Each coordinate is computed via deriv in Section 4.2.

Function

, :
oz,

Primary location of source code is the file inst/include/gradient.h.

27

Symmetric
Forward
Backward

https://github.com/andrewraim/fntl/blob/main/inst/include/gradient.h

gradient_result gradient(
const dfv& £,
const Rcpp::NumericVector& x,
const richardson_args& args,
const fd_types& fd_type = fd_types::SYMMETRIC

® OO

gradient_result gradient(
const dfv& £,
const Rcpp: :NumericVector& x,
const fd_types& fd_type = fd_types::SYMMETRIC

(@ Function to take the gradient of.

(2 Point at which to compute the gradient.

® Optional arguments.

(@ Type of finite difference to use. See the definition of fd_types in

The arguments in args are applied to each coordinate of the gradient.

Result

struct gradient_result {
std: :vector<double> value;
std: :vector<double> err;
std::vector<unsigned int> iter;

® @O

operator SEXP() const;

+;

(@ The final approximation of the gradient.

(2 The respective approximation errors from deriv for each coordinate.
® The respective iterations taken in deriv for each coordinate.

(@ Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of gradient result as an
Rcpp: :List. The fields here directly correspond to those in gradient result.

Name Type Description
value Rcpp: :NumericVector Length n
err Rcpp: :NumericVector Length n
iter Rcpp: :IntegerVector Length n
Example

28

Compute the gradient of f(z) = z'x. A C++ function with Repp interface is defined in the file
examples/gradient.cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List gradient_ex(Rcpp: :NumericVector x0)

{
const fntl::dfv& f = [](Rcpp::NumericVector x) -> double {
return Rcpp: :sum(Rcpp: :pow(x, 2));
I
auto out = fntl::gradient(f, x0);
return Rcpp: :wrap(out);
}

Call the function from R.

Rcpp: :sourceCpp("examples/gradient.cpp")
gradient_ex(x0 = 1:4)

$value
[1] 2 46 8

$err
[1] 00 0O

$iter
1] 1111

Compare to grad from the numDeriv package (Gilbert and Varadhan 2019).

f = function(x) { sum(x~2) }
numDeriv: :grad(f, x = 1:4)

(1] 2468

4.4 Jacobian

The Jacobian of f: R™ — R™:

of1(z) .. Of1(z)
of(x) _ | o= T om
Oz Of (@) . Ofple)
o, ox,,

29

Each coordinate is computed via deriv in Section 4.2.
Function

Source code is in the file inst/include/jacobian.h.

jacobian_result jacobian(
const vfv& £, @
const Rcpp::NumericVector& x, ®
const richardson_args& args ®
const fd_types& fd_type = fd_types::SYMMETRIC ®
)
jacobian_result jacobian(
const viv& £,
const Rcpp::NumericVector& x,
const fd_types& fd_type = fd_types::SYMMETRIC
)
(@ Function to obtain the Jacobian of
(2 Point at which to take the Jacobian.
® Optional arguments.
(@ Type of finite difference to use. See the definition of fd_types in
Result
struct jacobian_result
{
std: :vector<double> value; @
std: :vector<double> err; @)
std::vector<unsigned int> iter; ®
double rows; @
double cols; ®
operator SEXP() const; ®
I

@ The final approximation of the Jacobian stored as a vector in row-major format.
(2 The respective approximation errors from deriv for each coordinate of value.
® The respective iterations taken in deriv for each coordinate of value.

(@ The row dimension m of the Jacobian.

(® The column dimension n of the Jacobian.

(6) Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of jacobian_result as an
Rcpp: :List.

30

https://github.com/andrewraim/fntl/blob/main/inst/include/jacobian.h

Name Type Description

value Rcpp: :NumericMatrix An m X n matrix based on field value.
err Rcpp: :NumericMatrix An m x n matrix based on field err.
iter Rcpp: : IntegerMatrix An m x n matrix based on field iter.
Example

Compute the Jacobian of f(x) = [fi(z),..

S fs(@)], fix) = 2321 sin(z;), at the point z =

(1,2,3,4,5). To obtain the resulting value as an m xn matrix, we apply the List conversion operator
to the result. A C++ function with Repp interface is defined in the file examples/jacobian. cpp.

{

}s

}

names (out)

fntl::vfv £

Rcpp: :NumericVector out = Rcpp::cumsum(Rcpp: :sin(x));
return out;

[1] "value" "err"

print (out$value)

[,1]
1,

3

b

// [[Rcpp: :export]]
Rcpp::List jacobian_ex(Rcpp: :NumericVector x0)

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

= [] (Rcpp: :NumericVector x) {

Call the function from R.

n 1terll

[,2]

[1,] 0.5402685 0.0000000
[2,] 0.5402685 -0.4161208
[3,] 0.5402685 -0.4161208 -0.9899772
[4,] 0.5402685 -0.4161208 -0.9899772

[,3]
0.0000000
0.0000000

auto out = fntl::jacobian(f, x0);
return Rcpp: :wrap(out);

Rcpp: :sourceCpp("examples/jacobian.cpp")
out = jacobian_ex(x0 = 1:4)

[,4]
0.0000000
0.0000000
0.0000000

-0.6536335

Compare to jacobian from the numDeriv package (Gilbert and Varadhan 2019).

31

f = function(x) { cumsum(sin(x)) 7}

numDeriv: :jacobian(f, x = 1:4)
[,1] [,2] [,3] [,4]
[1,] 0.5403023 0.0000000 0.0000000 0.0000000
[2,] 0.5403023 -0.4161468 0.0000000 0.0000000
[3,] 0.5403023 -0.4161468 -0.9899925 0.0000000
[4,] 0.5403023 -0.4161468 -0.9899925 -0.6536436

4.5 Hessian

Compute the Hessian of f : R™ — R numerically at point x:

8 f(x) 9% f(x)
82f(l’> Ox,0x, Oz, 0x,,
0xdx" | o) %)

oz, 0x oz, 0x,

Each coordinate is computed via deriv2 in Section 4.2.

Note that there is a C function fdhess within R which is based on Algorithm A5.6.2 of Dennis and
Schnabel (1983). However, it is not included in the API for external use (R Core Team 2024b, sec.
6).

Function

Primary location of source code is the file inst/include/hessian.h.

hessian_result hessian(
const dfv& £,
const Rcpp::NumericVector& x,
const richardson_args& args,
const fd_types& fd_type = fd_types::SYMMETRIC

® OO O

hessian _result hessian(
const dfv& f,
const Rcpp::NumericVector& x,
const fd_types& fd_type = fd_types::SYMMETRIC

@ Function f for which Hessian is to be computed.

(2 Point z at which Hessian is taken.

® Optional arguments.

(@ Type of finite difference to use. See the definition of fd_types in

32

https://github.com/r-devel/r-svn/blob/5c0e367225ec0ed9e1a95864302a6311708533ee/src/include/R_ext/Applic.h#L131
https://github.com/andrewraim/fntl/blob/main/inst/include/hessian.h

Result

The result is an n x n Hessian matrix.

struct hessian result

{
std: :vector<double> value; @
std::vector<double> err; @
std::vector<unsigned int> iter; ®
double dim; ®@
operator SEXP() const; ®

I

(@ The value of the Hessian: a vector containing the lower-triangular in column-major order.
@ The respective approximation errors from deriv2 for each coordinate.

® The respective iterations taken in deriv2 for each coordinate.

@ The row and column dimension.

(® Conversion operator to Rcpp: :List.

Example

Compute the Hessian of f(z) = 2?21 sin(x;) at * = (1,2). To obtain the resulting value as an
n X n matrix, we apply the List conversion operator to the result. A C++ function with Repp
interface is defined in the file examples/hessian.cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List hessian_ex(Rcpp: :NumericVector x0)

{
fntl::dfv £ = [] (Rcpp: :NumericVector x) -> double {
return Rcpp: :sum(Rcpp::sin(x));
¥
auto out = fntl::hessian(f, x0);
return Rcpp: :wrap(out);
}

Call the function from R.

Rcpp: :sourceCpp("examples/hessian.cpp")
out = hessian ex(x0 = c(1,2))
print (out)

$value

33

[,1] [,2]
[1,] -8.414450e-01 2.577303e-16
[2,] 2.577303e-16 -9.092693e-01

$err

[,1] [,2]
[1,] 7.918737e-05 2.854859e-16
[2,] 2.854859e-16 8.557024e-05

$iter

[,1]1 [,2]
[1,] 6 1
[2,] 1 6

Compare to hessian from the numDeriv package (Gilbert and Varadhan 2019).

f = function(x) { sum(sin(x)) }
numDeriv: :hessian(f, x = c(1,2))

[,1] [,2]
[1,] -8.414710e-01 5.137422e-13
[2,] 5.137422e-13 -9.092974e-01

5 Root-Finding

Find a root of f : R — R, if present, on the interval [a, b]; i.e., find x € [a, b] such that f(z) ~ 0.
The R function uniroot has its implementation in an underlying C function zeroin2 which appears
not to be readily exported for external use. We therefore provide several alternatives in C++.

There are currently two implementations. The bisection method (e.g., Press et al. 2007, sec. 9.1)
is simpler while Brent’s method is faster and is used in uniroot. This implementation of Brent’s
method is based on the ALGOL code in Section 4.6 of Brent (1973). The two functions use a
common arguments struct, results struct, and status codes, which are given below.

Optional Arguments

struct findroot_args {
double tol = mach_eps_4r;
unsigned int maxiter = 1000;
error_action action = error_action::STOP;

findroot_args() { };
findroot_args(SEXP obj);
operator SEXP() const;

@eO®E OO

34

https://github.com/r-devel/r-svn/blob/685baa84532ee09727f04725d5128f39d564bea5/src/library/stats/R/nlm.R#L55
https://github.com/r-devel/r-svn/blob/685baa84532ee09727f04725d5128f39d564bea5/src/library/stats/src/stats.h#L61C8-L61C17

-

@ Tolerance for convergence.

(2 Maximum number of iterations.

(® Action to take if operation returns a status code other than 0K.
(@ Default constructor.

(5 Constructor from an Rcpp: :List.

(6) Conversion operator to Rcpp: :List.

Result

struct findroot_result {
double root;
double f _root;
unsigned int iter;
double tol;
findroot status status;
std::string message;

Q QO®OOOO

operator SEXP() const;
s

(@ The final approximation for the root.

2 The value of f at the root.

® The number of iterations.

(@ An estimate of the error in approximation.

(® A code describing the status of the operation.

(® A message describing the status of the operation.
(@ Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of findroot result as an
Repp: :List. The fields here directly correspond to those in findroot_result.

Name Type Description
root Rcpp: :NumericVector Length 1
f_root Rcpp: :NumericVector Length 1
iter Rcpp: : IntegerVector Length 1
tol Rcpp: :NumericVector Length 1
status Rcpp: :IntegerVector Length 1
message Rcpp: :StringVector Length 1

Status Codes

enum class findroot_status : unsigned int {
0K = OL, ®

35

NUMERICAL_OVERFLOW = 1L,
NOT_CONVERGED = 2L

©@ ®

};

@ OK.
(2 Numerical overflow: tol may be too small.
3 Not converged within maxiter iterations.

5.1 Bisection

This algorithm successively shrinks the starting interval and terminates when the absolute difference
is smaller than a tolerance e.

Function

Primary location of source code is the file inst/include/findroot-bisect.h.

findroot_result findroot_bisect(
const dfd& £,
double lower,
double upper,
const findroot_args& args

®OEO

findroot_result findroot bisect(
const dfd& f,
double lower,
double upper

(@ Function f for which a root is desired.

(@ Lower limit a of search interval. Must be finite.
® Upper limit b of search interval. Must be finite.
(® Additional arguments.

Example

Find the root of the function f(z) = % — 1 on [0,10]. A C++ function with Repp interface is
defined in the file examples/findroot-bisect.cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List findroot_bisect_ex(double lower, double upper)
{

36

https://github.com/andrewraim/fntl/blob/main/inst/include/findroot-bisect.h

fntl::dfd £ = [](double x) {
return pow(x, 2) - 1;
+;
auto out = fntl::findroot_bisect(f, lower, upper);
return Rcpp: :wrap(out);

3

Call the function from R.

Rcpp: :sourceCpp("examples/findroot-bisect.cpp")
out = findroot bisect_ex(0, 10)
print (out)

$root
[1] 1.000023

$f root
[1] 4.577689e-05

$iter
(1] 17

$tol
[1] 0.0001220703

$status
(1] 0

$message
[1] "oK"

5.2 Brent’s Algorithm

The algorithm successively shrinks the starting interval and terminates when the absolute difference
is smaller than a tolerance e.

Function

Primary location of source code is the file inst/include/findroot-brent.h.

findroot_result findroot_brent (
const dfd& £,
double lower,
double upper,
const findroot_args& args

®OOO

37

https://github.com/andrewraim/fntl/blob/main/inst/include/findroot-brent.h

findroot_result findroot_brent(
const dfd& f,
double lower,
double upper

OXOXC,

@ Function f for which a root is desired.
(2 Lower limit a of search space.

® Upper limit b of search space.

(@ Additional arguments.

Example

Find the root of the function f(z) = 2% —1 on [0,10]. A C++ function with Repp interface is
defined in the file examples/findroot-brent.cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List findroot_brent_ex(double lower, double upper)

{
fntl::dfd f = [](double x) { return pow(x, 2) - 1; };
auto out = fntl::findroot_brent(f, lower, upper);
return Rcpp: :wrap(out) ;

+

Call the function from R.

Rcpp: :sourceCpp("examples/findroot-brent.cpp")
out = findroot brent_ex(0, 10)
print (out)

$root
[1] 1.000025

$f root
[1] 4.93727e-05

$iter
[1] 10

$tol
[1] -6.103516e-05

38

$status
[1] 0

$message
[1] uOKu

6 Univariate Optimization

Minimize the function f: R — R on a given interval [a,b]. The R optimize function is based on an
underlying Brent_ fmin C implementation of Brent’s algorithm (Brent 1973, sec. 5). However, this
function appears not to be exported from R for external use.

We provide several alternatives in C++: The golden section search method (e.g., Press et al. 2007,
sec. 10.2) is simple, guaranteed to converge, and does not require information about derivatives.
Brent’s algorithm is more involved but converges faster. The implementation of Brent’s algorithm
in C++ based is on the ALGOL code in Section 5.8 of Brent (1973). The golden section and Brent
functions use a common arguments struct, results struct, and status codes, which are given below.

Optional Arguments

struct optimize_args
{
bool fnscale = 1;
double tol = mach_eps_2r;
unsigned int maxiter = 1000;
unsigned int report_period = uint_max;
error_action action = error_action::STOP;

optimize_args() { };
optimize_args (SEXP obj);
operator SEXP() const;

@@ OO

+;

(® Scaling factor to be applied to the value of f(z) during optimization. Use -1 to implement
maximization rather than minimization.

2 Tolerance € for convergence.

® The maximum number of iterations.

(@ The frequency of reports.

(® Action to take if operation returns a status code other than 0K.

(6 Default constructor.

(» Constructor from an Rcpp: :List.

Conversion operator to Rcpp: :List.

Result

39

https://github.com/r-devel/r-svn/blob/5521fa62273d38f50e7e963337d74ec2f223c532/src/library/stats/R/nlm.R#L35
https://github.com/r-devel/r-svn/blob/5521fa62273d38f50e7e963337d74ec2f223c532/src/library/stats/src/optimize.c#L94

struct optimize result

{
double par;
double value;
unsigned int iter;
double tol;
optimize_status status;
std::string message;

Q OGO

operator SEXP() const;
};

@ The final value of the optimization variable.

@ The value of the function corresponding to par.
® The number of iterations taken.

(@ The achieved tolerance 0.

(5 Status code from the optimizer.

(6 A message describing the status of the operation.
(m) Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of optimize result as an
Repp: :List. The fields here directly correspond to those in optimize_result.

Name Type Description
par Rcpp: :NumericVector Length 1
value Rcpp: :NumericVector Length 1
iter Rcpp: : IntegerVector Length 1
tol Rcpp: :NumericVector Length 1
status Rcpp: :IntegerVector Length 1
message Rcpp: :StringVector Length 1

Status Codes

enum class optimize_status : unsigned int {

0K = OL, ©)
NUMERICAL OVERFLOW = 1L, @
NOT_CONVERGED = 2L ®
+;
@ OK.

2 Numerical overflow: tol may be too small.
(® iteration limit had been reached.

40

6.1 Golden Section Search

The algorithm successively shrinks the starting interval and terminates when § = b — a is smaller
than a given tolerance e.

Function

Primary location of source code is the file inst/include/goldensection.h.

optimize_result goldensection(
const dfd& £,
double lower,
double upper,
const optimize_args& args

®EEO

optimize result goldensection(
const dfd& £,
double lower,
double upper

(1 Function f to minimize.

@ Lower limit a of search space.
® Upper limit b of search space.
(@ Additional arguments.

Example
Maximize the function f(z) = exp(—=x) on [0,1]. A C++ function with Repp interface is defined

in the file examples/goldensection. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List goldensection_ex(double lower, double upper)

{
fntl::optimize_args args;
args.fnscale = -1;
fntl::dfd £ = [](double x) { return exp(-x); };
auto out = fntl::goldensection(f, lower, upper, args);
return Rcpp::wrap(out);
}

Call the function from R.

41

https://github.com/andrewraim/fntl/blob/main/inst/include/goldensection.h

Rcpp: :sourceCpp("examples/goldensection.cpp")
out = goldensection_ex(0, 1)
print (out)

$par
[1] 5.720575e-09

$value

(1] 1

$iter
[1] 38

$tol
[1] 1.144115e-08

$status
(1] O

$message
[1] "oK"

6.2 Brent’s Algorithm

This algorithm successively shrinks the starting interval and terminates when § = |z —m| is smaller
than a tolerance €, where m = (a 4 b)/2 is the midpoint of the current [a, b].

Function

Primary location of source code is the file inst/include/optimize-brent.h.

optimize result optimize brent(
const dfd& f,
double lower,
double upper,
const optimize_args& args

®©OO

optimize_result optimize_brent (
const dfd& £,
double lower,
double upper

(1 Function f to minimize.

42

https://github.com/andrewraim/fntl/blob/main/inst/include/optimize-brent.h

2 Lower limit a of search space.
® Upper limit b of search space.
(® Additional arguments.

Example

Maximize the function f(z) = exp(—=x) on [0,1]. A C++ function with Repp interface is defined
in the file examples/optimize-brent. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List optimize_brent_ex(double lower, double upper)

{
fntl::optimize_args args;
args.fnscale = -1;
fntl::dfd £ = [](double x) { return exp(-x); };
auto out = fntl::optimize_brent(f, lower, upper, args);
return Rcpp::wrap(out);
+

Call the function from R.

Rcpp: :sourceCpp("examples/optimize-brent.cpp")
out = optimize brent ex(0, 1)
print (out)

$par
[1] 1.505216e-08

$value

(1] 1

$iter
[1] 37

$tol
[1] 7.549828e-11

$status
[1] O

$message
[1] "OK"

43

7 Multivariate Optimization

This section presents methods to minimize a function f: R™ — R from a given starting value .

7.1 Nelder-Mead

Relies only on evaluation of f and does not use the gradient or Hessian (Nelder and Mead 1965).
This function directly calls nmmin, the C function that gets invoked when using the optim R
function with method = "Nelder-Mead".

Function

Primary location of source code is the file inst/include/neldermead.h.

neldermead result neldermead(
const Rcpp::NumericVector& init, @®
const dfv& f, ®
const neldermead_args& args ®
)
neldermead_result neldermead(
const Rcpp::NumericVector& init, @®
const dfv& £ ®
)
@ Initial value for optimization variable.
(@ Function f to minimize.
@ Additional arguments.
Optional Arguments
struct neldermead_args
{
double alpha = 1.0; ®
double beta = 0.5; @
double gamma = 2.0; ®
unsigned int trace = 0; ®
double abstol = R_Neglnf; ®
double reltol = mach_eps_2r; ®
unsigned int maxit = 500; @)
double fnscale = 1.0;
neldermead_args() { }; ®
neldermead_args (SEXP obj);
operator SEXP() const; (1)
I

44

https://github.com/r-devel/r-svn/blob/62dd8b09461d5d1313f4722d9d63abb463a9e42d/src/include/R_ext/Applic.h#L71
https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/optim.R
https://github.com/andrewraim/fntl/blob/main/inst/include/neldermead.h

@ Reflection factor.

(@ Contraction and reduction factor.
® Extension factor.

(@ If positive, print progress info.

(3 Absolute tolerance.

(6) User-initialized conversion tolerance.
(m Maximum number of iterations.

Scaling factor to be applied to the value of f(z) during optimization.

maximization rather than minimization.
(® Default constructor.
Constructor from an Rcpp: :List.
@ Conversion operator to Rcpp: :List.

Result

struct neldermead result {
std: :vector<double> par;
double value;
neldermead_status status;
int fncount;

operator SEXP() const;

+;

(@ The final approximation of the optimizer.

(@ The value of f at the optimizer.

® A code describing the status of the operation.
(@ The number of function evaluations.

(® Conversion operator to Rcpp: :List.

Use -1 to implement

@ OO

The SEXP conversion operator produces the following representation of neldermead result as an
Rcpp: :List. The fields here directly correspond to those in neldermead_result.

Name Type Description
par Rcpp: :NumericVector Length n
value Rcpp: :NumericVector Length 1
status Rcpp: :IntegerVector Length 1
fncount Rcpp: :IntegerVector Length 1

Status Codes

enum class neldermead_status : unsigned int {
0K = OL,
NOT_CONVERGED = 1L,
SIMLEX_DEGENERACY = 10L

45

OXOXO,

};

@ OK.
2 Not converged within maxiter iterations.
® Degeneracy of the Nelder-Mead simplex.

Example

Minimize the function f(z) = 22:1 x? — 1 for n = 2. Take 7, = (1,—1) as the initial value.

C++ function with Repp interface is defined in the file examples/neldermead. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List neldermead_ex(Rcpp: :NumericVector x0)

{
fntl::dfv £ = [] (Rcpp::NumericVector x) -> double {
return Rcpp::sum(Rcpp::pow(x, 2)) - 1;
I
auto out = fntl::neldermead(x0, f);
return Rcpp: :wrap(out) ;
}

Call the function from R.

Rcpp: :sourceCpp("examples/neldermead.cpp")
out = neldermead_ex(x0 = c(1, -1))
print (out)

$par
[1] -0.0001503306 0.0001134426

$value
[1] -1

$fncount
[1] 55

$status
[1] O

46

7.2 BFGS

Minimization using the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (Nash 1990). Relies

on evaluation of f and its gradient g(z) = %gf) but not the Hessian. This function directly
calls vmmin, the C function that gets invoked when using the optim R function with method =

"BFGS".
Function

Primary location of source code is the file inst/include/bfgs.h.

bfgs _result bfgs(
const Rcpp::NumericVector& init, @
const dfv& f, ®
const viv& g, ®
const bfgs_args& args ®
)
bfgs _result bfgs(
const Rcpp::NumericVector& init,
const dfv& f,
const bfgs args& args
)
bfgs_result bfgs(
const Rcpp::NumericVector& init, @®
const dfv& £, @
const viv& g ®
)
bfgs_result bfgs(
const Rcpp::NumericVector& init, ®
const dfv& £ ®
)

(@ Initial value for optimization variable.
(@ Function f to minimize.
: : _ 9f(=)
® Gradient function g(z) = =5~
(@ Additional arguments.

Forms with the g argument omitted compute the gradient using finite differences, via the gradient
method in Section 4.3.

Optional Arguments

struct bfgs_args {
richardson_args deriv_args; ®

47

https://github.com/r-devel/r-svn/blob/62dd8b09461d5d1313f4722d9d63abb463a9e42d/src/include/R_ext/Applic.h#L67
https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/optim.R
https://github.com/andrewraim/fntl/blob/main/inst/include/bfgs.h

double parscale = 1;

int trace = 0;

double fnscale = 1;

int maxit = 100;

int report = 10;

double abstol = R_Neglnf;
double reltol = mach_eps_2r;

@Q@O®®E

bfgs_args() { };
bfgs_args (SEXP obj);
operator SEXP() const;

B

+;

@ Arguments for Richardson extrapolated numerical derivatives to compute the gradient if g is
omitted in the call to bfgs. See Section 4.2.

@ A vector of scaling values for the parameters. (Currently not used).

® If positive, tracing information on the progress of the optimization is produced. There are six
levels which give progressively more detail.

(@ Scaling factor applied to the value of £ and g during optimization.

(3 The maximum number of iterations.

(® The frequency of reports.

(» Absolute tolerance.

Relative tolerance.

(® Default constructor.

Constructor from an Rcpp: :List.

(:) Conversion operator to Rcpp: :List.

Result

struct bfgs_result {
std: :vector<double> par;
double value;
bfgs_status status;
int fncount;
int grcount;

@ ©OOOOOO

operator SEXP() const;
J;

@ The final value of the optimization variable.

2 The value of the function corresponding to par.

(® Status code from the optimizer.

(@ Number of times the objective function was called.
(® Number of times the gradient function was called.
(6) Conversion operator to Rcpp: :List.

48

The SEXP conversion operator produces the following representation of bfgs_result as an
Rcpp: :List. The fields here directly correspond to those in bfgs_result.

Name Type Description
par Rcpp: :NumericVector Length n
value Rcpp: :NumericVector Length 1
status Rcpp: : IntegerVector Length 1
fncount Rcpp: :IntegerVector Length 1
grcount Rcpp: :IntegerVector Length 1

Status Codes

enum class bfgs_status : unsigned int {
0K = OL,
NOT_CONVERGED = 1L

® O

+;

® OK.

(2) iteration limit maxit had been reached.

Example

Maximize the function f(z) = exp(—x'x). First use the default numerical gradient, then use an

explicitly coded the gradient function g(x) = —2z exp(—x ' z). A C++ function with Repp interface
is defined in the file examples/bfgs. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List bfgs_ex(Rcpp: :NumericVector x0)
{
fntl::dfv £ = [](const Rcpp::NumericVector& x) {
Rcpp: :NumericVector xx = Rcpp::pow(x, 2);
double ss = Rcpp::sum(xx);
return std::exp(-ss);

}s

fntl::vfv g = [](const Rcpp::NumericVector& x) {
Rcpp: :NumericVector xx = Rcpp::pow(x, 2);
double ss = Rcpp::sum(xx);
return -2 * std::exp(-ss) * x;

+s

fntl::bfgs_args args;

49

args.fnscale = -1;

auto outl
auto out2

fntl::bfgs(x0, f, args); // with default numerical gradient
fntl::bfgs(x0, f, g, args); // with explicitly coded gradient

return Rcpp::List: :create(
Rcpp: :Named ("numerical") = Rcpp: :wrap(outl),
Rcpp: :Named("analytical") = Rcpp::wrap(out2)
¥

Call the function from R.

Rcpp: :sourceCpp("examples/bfgs.cpp")
out = bfgs_ex(x0 = rep(1, 4))
print (out$numerical)

$par
[1] -1.168106e-07 -1.168106e-07 -1.168106e-07 -1.168106e-07

$value
(1] 1

$fncount
[1] 15

$grcount
[1] 11

$status
[1] 0

print (out$analytical)

$par
[1] -2.217083e-09 -2.217083e-09 -2.217083e-09 -2.217083e-09

$value

(1] 1

$fncount
[1] 18

50

$grcount
[1] 11

$status
(11 O

7.3 L-BFGS-B

Minimization using the L-BFGS-B (Limited memory Broyden-Fletcher-Goldfarb-Shanno) algorithm
(Byrd et al. 1995). Relies on evaluation of f and its gradient g(z) = 61(;—(;3) but not the Hessian. This
function directly calls Ibfgsb, the C function that gets invoked when using the optim R function
with method = "L-BFGS-B".

Function

Primary location of source code is the file inst/include/Ibfgsb.h.

lbfgsb_result lbfgsb(
const Rcpp::NumericVector& init, @®
const dfv& f, ®
const viv& g, ®
const 1lbfgsb_args& args @
)
1bfgsb_result lbfgsb(
const Rcpp: :NumericVector& init,
const dfv& £,
const lbfgsb_args& args
)
lbfgsb_result lbfgsb(
const Rcpp::NumericVector& init, ©)
const dfv& £, @
const viv& g ®
)
lbfgsb_result 1bfgsb(
const Rcpp: :NumericVector& init, @®
const dfv& £ ®
)

(@ Initial value for optimization variable.
(2 Function f to minimize.
: ; _ 9f(=)
® Gradient function g(x) = =5~
(® Additional arguments.

51

https://github.com/r-devel/r-svn/blob/62dd8b09461d5d1313f4722d9d63abb463a9e42d/src/include/R_ext/Applic.h#L79
https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/optim.R
https://github.com/andrewraim/fntl/blob/main/inst/include/lbfgsb.h

Forms with the g argument omitted compute the gradient using finite differences, via the gradient
method in Section 4.3.

Optional Arguments

struct lbfgsb_args {
std: :vector<double> lower;
std: :vector<double> upper;
richardson_args deriv_args;
double parscale = 1;
int trace = 0;
double fnscale = 1;
int 1mm = 5;
int maxit = 100;
int report = 10;
double factr 1e7;
double pgtol = O;

lbfgsb_args() { };
1bfgsb_args (SEXP obj);
operator SEXP() const;

R GOPeEANEE®O®E O

+;

(@ A vector of lower bounds. If left unspecified, will be taken to be a vector of —Inf values.

@ A vector of upper bounds. If left unspecified, will be taken to be a vector of Inf values.

@ Arguments for Richardson extrapolated numerical derivatives to compute the gradient if g is
omitted in the call to 1bfgsb. See Section 4.2.

@ A vector of scaling values for the parameters. (Currently not used).

(® If positive, tracing information on the progress of the optimization is produced. There are six
levels which give progressively more detail.

(8 Scaling factor applied to the value of f and g during optimization.

(» Number of BFGS updates retained.

The maximum number of iterations.

® The frequency of reports.

Convergence occurs when the reduction in the objective is within this factor of the machine
tolerance.

@ A tolerance on the projected gradient in the current search direction. The check is suppressed
when the value is zero.

Default constructor.
Constructor from an Rcpp: :List.
Conversion operator to Rcpp: :List.

Result

struct 1lbfgsb_result {
std::vector<double> par; ®

22

double value;
lbfgsb_status status;
int fncount;

int grcount;
std::string msg;

Q ©O®®E

operator SEXP() const;
s

(@ The final value of the optimization variable.

2 The value of the function corresponding to par.

(® Status code from the optimizer.

(@ Number of times the objective function was called.

(® Number of times the gradient function was called.

(6 String with additional information from the optimizer.
(™ Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of 1lbfgsb_result as an
Repp: :List. The fields here directly correspond to those in 1bfgsb_result.

Name Type Description
par Rcpp: :NumericVector Length n
value Rcpp: :NumericVector Length 1
status Rcpp: :IntegerVector Length 1
fncount Rcpp: : IntegerVector Length 1
grcount Rcpp: :IntegerVector Length 1
message Rcpp: :StringVector Length 1

Status Codes

enum class lbfgsb_status : unsigned int {

0K = OL, @
NOT _CONVERGED = 1L, @
WARN = 51L, ©)
ERROR = 52L, @
};
@ OK.

(2 iteration limit maxit had been reached.
(3 algorithm reported a warning.
(@ algorithm reported an error.

Example

23

T

Maximize the function f(z) = exp(—z ' z). First use the default numerical gradient, then use
explicitly coded gradient function g(z) = —2z exp(—z'x). A C++ function with Repp interface is
defined in the file examples/1bfgsb.cpp.

{

b

$par

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List 1lbfgsb_ex(Rcpp: :NumericVector x0)

fntl::dfv £ = [](Rcpp: :NumericVector x) {
double ss = Rcpp::sum(Rcpp: :pow(x, 2));
return std::exp(-ss);

+;

fntl::vfv g = [] (Rcpp: :NumericVector x) {
double ss = Rcpp::sum(Rcpp: :pow(x, 2));
Rcpp: :NumericVector out = -2 * std::exp(-ss) * x;
return out;

+;

fntl::1bfgsb_args args;
args.fnscale = -1;

auto outl = fntl::1lbfgsb(x0, f, args); // with default numerical gradient
auto out2 = fntl::1lbfgsb(x0, f, g, args); // with explicitly coded gradient

return Rcpp::List::create(
Rcpp: :Named ("numerical") = Rcpp: :wrap(outl),
Rcpp: :Named("analytical") = Rcpp::wrap(out2)
0

Call the function from R.

Rcpp: :sourceCpp("examples/1bfgsb.cpp")
out

= 1bfgsb_ex(x0 = rep(1l, 4))

print (out$numerical)

[1] 2.182178e-06 2.182178e-06 2.182178e-06 2.182178e-06

$value

[1] 1

o4

$fncount
[1] 10

$grcount
[1] 10

$status
[1] 0

$message
[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR*EPSMCH"

print (out$analytical)

$par
[1] -9.686732e-10 -9.686732e-10 -9.686732e-10 -9.686732e-10

$value
[1] 1

$fncount
[1] 10

$grcount
(1] 10

$status
(1] 0

$message
[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR*EPSMCH"

7.4 Conjugate Gradient

Minimization using the conjugate gradient algorithm (Fletcher and Reeves 1964; Nash 1990). Relies

on evaluation of f and its gradient g(x) = Q%%Q but not the Hessian. This function directly calls

cgmin, the C function that gets invoked when using the optim R function with method = "CG".
Function

Primary location of source code is the file inst/include/cg.h.

cg_result bfgs(
const Rcpp::NumericVector& init, @®

95

https://github.com/r-devel/r-svn/blob/62dd8b09461d5d1313f4722d9d63abb463a9e42d/src/include/R_ext/Applic.h#L75
https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/optim.R
https://github.com/andrewraim/fntl/blob/main/inst/include/cg.h

const dfv& f, @
const vivk g, ®
const cg_args& args @
)
cg_result cg(
const Rcpp::NumericVector& init, @
const dfv& f, @
const cg_args& args @
)
cg_result cg(
const Rcpp::NumericVector& init, @
const dfv& f, ®
const viv& g ®
)
cg_result cg(
const Rcpp::NumericVector& init, ®
const dfv& f @
)

(» Initial value for optimization variable.
@ Function f to minimize.
: ; _ 9f(=@)
® Gradient function g(x) = =5~
(@ Additional arguments.

Forms with the g argument omitted compute the gradient using finite differences, via the gradient
method in Section 4.3.

Optional Arguments

struct cg_args

{
richardson_args deriv_args;
double parscale = 1;
double fnscale = 1;
double abstol = R_NeglInf;
double reltol = mach_eps_2r;
int type = 1;
int trace = 0;
int maxit 100;

@RQPEO®®OE

cg_args() { };
cg_args (SEXP obj);

®®

56

operator SEXP() const;)
3

@ Arguments for Richardson extrapolated numerical derivatives to compute the gradient if g is
omitted in the call to cg. See Section 4.2.

@ A vector of scaling values for the parameters. (Currently not used).

® Scaling factor applied to the value of £ and g during optimization.

(@ Absolute tolerance.

(®) Relative tolerance.

(® Type of update: 1 for Fletcher-Reeves, 2 for Polak-Ribiere, and 3 for Beale-Sorenson.

(» If positive, tracing information on the progress of the optimization is produced. There are six
levels which give progressively more detail.

The maximum number of iterations.

(® Default constructor.

(100 Constructor from an Rcpp: :List.

Conversion operator to Rcpp: :List.

Result

struct cg_result {
std: :vector<double> par;
double value;
cg_status status;
int fncount;
int grcount;

@®@ ©O®OOOOO

operator SEXP() const;
Jis

(@ The final value of the optimization variable.

2 The value of the function corresponding to par.

(® Status code from the optimizer.

@ Number of times the objective function was called.
(® Number of times the gradient function was called.
(6 Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of cg_result as an Rcpp: :List.
The fields here directly correspond to those in cg_result.

Name Type Description
par Rcpp: :NumericVector Length n
value Rcpp: :NumericVector Length 1
status Rcpp: :IntegerVector Length 1
fncount Rcpp: : IntegerVector Length 1
grcount Rcpp: :IntegerVector Length 1

57

Status Codes

enum class cg_status : unsigned int {
0K = OL,
NOT_CONVERGED = 1L

® ©

};

@ OK.

(2 iteration limit maxit had been reached.

Example

Maximize the function f(z) = exp(—x'x). First use the default numerical gradient, then use an

explicitly coded the gradient function g(z) = —2z exp(—xz'z). A C++ function with Repp interface
is defined in the file examples/cg. cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"
// [[Rcpp: :export]]
Rcpp: :List cg_ex(Rcpp: :NumericVector x0)
{
fntl::dfv £ = [](const Rcpp::NumericVector& x) {
Rcpp: :NumericVector xx = Rcpp::pow(x, 2);
double ss = Rcpp::sum(xx);
return std::exp(-ss);
i
fntl::vfv g = [](const Rcpp::NumericVector& x) {
Rcpp: :NumericVector xx = Rcpp::pow(x, 2);
double ss = Rcpp::sum(xx);
return -2 * std::exp(-ss) * x;
it
fntl::cg _args args;
args.fnscale = -1;
auto outl = fntl::cg(x0, f, args); // with default numerical gradient
auto out2 = fntl::cg(x0, f, g, args); // with explicitly coded gradient
return Rcpp::List::create(
Rcpp: :Named ("numerical") = Rcpp: :wrap(outl),
Rcpp: :Named("analytical") = Rcpp::wrap(out2)
)
}

Call the function from R.

58

Rcpp: :sourceCpp("examples/cg.cpp")
out = cg_ex(x0 = rep(1, 4))
print (out$numerical)

$par
[1] 7.027703e-07 7.027703e-07 7.027703e-07 7.027703e-07

$value

(1] 1

$fncount
[1] 22

$grcount
[1] 11

$status
(1] O

print (out$analytical)
$par
[1] -1.600782e-07 -1.600782e-07 -1.600782e-07 -1.600782e-07

$value
(1] 1

$fncount
[1] 25

$grcount
[1] 12

$status
[1] 0

7.5 Newton-Type Algorithm for Nonlinear Optimization

Minimization using the Newton-type algorithm underlying the nlm R function. The amounts to
calling the C function optif9 within the R API. The implementation of optif9 is based on Dennis
and Schnabel (1983).

59

https://github.com/r-devel/r-svn/blob/main/src/library/stats/R/nlm.R
https://github.com/r-devel/r-svn/blob/62dd8b09461d5d1313f4722d9d63abb463a9e42d/src/include/R_ext/Applic.h#L136

The gradient g(z) = 8’(;55) and Hessian h(z) = gig(}) may be provided explicitly if available. When

the gradient and/or Hessian are not specified, numerical approximations are used by optif9.

Function

Primary location of source code is the file inst/include/nlm.h.

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f,
const vivk g,
const mfv& h,
const nlm_args& args

@® OO

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f,
const viv& g,
const nlm_args& args

©©OO

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f,
const nlm_args& args

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f,
const vivk g,
const mfv& h

®EEO

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f,
const viv& g

nlm result nlm(
const Rcpp::NumericVector& init,
const dfv& f

® ©

60

https://github.com/andrewraim/fntl/blob/main/inst/include/nlm.h

(@ Initial value for optimization variable.
@ Function f to minimize.

® Gradient of f.

(@ Hessian of f.

(® Additional arguments.

Optional Arguments

struct nlm_args
{
std::vector<double> typsize;
unsigned int print_level = O;
double fscale = 1;
double fnscale = 1;
unsigned int ndigit = 12;
double gradtol le-6;
double stepmax = R_PosInf;
double steptol = le-6;
int iterlim = 100;
unsigned int method
double trust_radius

1;
1.0;

nlm_args() { };
nlm_args (SEXP obj);
operator SEXP() const;

O GOPeeANEPOP®®E O

+;

(1 An estimate of the size of each parameter at the minimum.
(2 Verbosity of messages during optimization:
® An estimate of the size of f at the minimum.
(@ Scaling factor applied to the value of f, g, and h during optimization. Taking this to be -1
changes the optimization to maximization.
(® Number of significant digits in the function f.
(6) Tolerance to terminate algorithm based on the distance of gradient to zero.
(M Maximum allowable scaled step length
Tolerance to terminate algorithm based on relative step size of successive iterates.
® The maximum number of iterations.
Algorithm used in optimization:
Radius of trust region.
Default constructor.
(13) Constructor from an Rcpp: :List.
Conversion operator to Rcpp: :List.

Arguments correspond to those in nlm with the following exceptions.

e The arguments method and trust_radius are provided from within optif9 but not exposed
from nlm.

61

o An argument hessianis provided in nlm to compute the value of the Hessian via finite differ-
ences using the final value of the optimization variable. That is not provided here, but may
be requested using the Hessian function in Section 4.5.

e The nlm function provides an check.analyticals argument to check the correctness of pro-
vided expressions for the gradient and Hessian. This argument is not provided here, but a
similar check can be done using the numerical gradient and Hessian functions in Section 4.3
and Section 4.5, respectively.

See the n1lm manual page for additional details about other arguments.

If typsize is given as the default empty value, it is transformed internally to a vector of n ones to
match the default in nlm. Similarly, if stepmax is given as the default infinity value, it is transformed
internally to match the default value in nlm.

Result

struct nlm_result

{
std: :vector<double> par; ®
std::vector<double> grad; @
double estimate; ®
int iterations; @
nlm_status status; ®
operator SEXP() const; ®

I

@ The final value of the optimization variable.

(2 The final value of the gradient.

® The value of the function corresponding to par.
(@ Number of iterations carried out.

(5 Status code from the optimizer.

(6) Conversion operator to Rcpp: :List.

The SEXP conversion operator produces the following representation of nlm result as an
Rcpp: :List. The fields here directly correspond to those in nlm_result.

Name Type Description
par Rcpp: :NumericVector Length n
grad Rcpp: :NumericVector Length n
estimate Rcpp: :NumericVector Length 1
iterations Rcpp: :IntegerVector Length 1
status Rcpp: :IntegerVector Length 1
hessian Rcpp: : IntegerVector Length n?

Status Codes

62

enum class nlm_status : unsigned int {
OK = OL, ®
GRADIENT WITHIN TOL = 1L, ©)
ITERATES WITH TOL = 2L, ®
NO_LOWER_STEP = 3L, ®
ITERATION MAX = 4L, ®
STEP_SIZE_EXCEEDED = 5L ®
Jis
@ OK.
(2 Relative gradient is within given tolerance.
® Relative step size of successive iterates is within given tolerance.
(@ Last global step failed to locate a point lower than estimate.
(® Reached maximum number of iterations.
(6 Maximum step size stepmax exceeded five consecutive times.
See the manual page for nlm for more detail about these statuses.
Example
Maximize the function f(r) = exp(—x'x). The associated gradient and Hessian functions are
g(z) = —2f(x)x and h(x) = (4ox’ — 2I)f(z), respectively. Consider three calls: first with a

numerical gradient and Hessian, then with explicitly coded gradient, and finally with both ex-
plicitly coded gradient and Hessian. A C++ function with Rcpp interface is defined in the file
examples/nlm. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp::List nlm_ex(Rcpp: :NumericVector x0)
{
fntl::dfv £ = [](const Rcpp::NumericVector& x) {
Rcpp: :NumericVector xx = Rcpp::pow(x, 2);
double ss = Rcpp::sum(xx);
return std::exp(-ss);

+s

fntl::vfv g = [&] (const Rcpp::NumericVector& x) {
double fx = f(x);
Rcpp: :NumericVector out = -2 * fx * Xx;
return out;

+s

fntl::mfv h = [&] (const Rcpp::NumericVector& x) {
unsigned int n = x.size();

63

Rcpp: :NumericMatrix out(n,n);
double fx = f(x);

for (unsigned int j = 0; j < n; j++) {
for (unsigned int i = 0; i < mn; i++) {
out(i,j) = fx * (4xx(i)*x(j) - 2*x(1 == j));
}

return out;

}s

fntl::nlm_args args;
args.fnscale = -1;

// 1. Use default numerical gradient and hessian.

// 2. Use explicitly coded gradient and numerical hessian.
// 3. Use explicitly coded gradient and numerical hessian.
auto outl = fntl::nlm(x0, f, args);

auto out2 = fntl::nlm(x0, f, g, args);

auto out3 = fntl::nlm(x0, f, g, h, args);

return Rcpp::List::create(
Rcpp: :Named("res1") = Rcpp::wrap(outl),
Rcpp: :Named("res2") = Rcpp::wrap(out2),
Rcpp: :Named("res3") = Rcpp: :wrap(out3)
¥
}

Call the function from R.

Rcpp: :sourceCpp("examples/nlm.cpp")
out = nlm_ex(x0 = rep(1, 4))

nn = c("par", "grad")

print (out$resi[nn])

$par
[1] -4.999612e-07 -4.999612e-07 -4.999612e-07 -4.999612e-07

$grad
[1] 1.110223e-10 1.110223e-10 1.110223e-10 1.110223e-10

print (out$res2[nn])

64

$par
[1] -7.416746e-13 -7.416746e-13 -7.416746e-13 -7.416746e-13

$grad
[1] -1.483349e-12 -1.483349e-12 -1.483349e-12 -1.483349e-12

print (out$res3[nn])

$par
[1] -8.879037e-12 -8.879003e-12 -8.878964e-12 -8.879003e-12

$grad
[1] -1.775807e-11 -1.775801e-11 -1.775793e-11 -1.775801e-11

8 Matrix Operations

This section presents several matrix operations based on a lambda function.

8.1 Apply

Apply a function to the elements, rows, or columns of an m X n matrix. Suppose X € R™*" is a

matrix with rows z,, ..., 2,,, and columns z,, ..., Z,,,.

The function mat_apply is an elementwise application of f : R — R which computes
f(zyy) - f(l’ln)]

The function row_apply is a rowwise application of g : R” — R which computes

mat_apply(X, f) = !

rOW_apply(X, 9) = (g(mlo)v 7g(xmo))'

The function col_apply is a columnwise application of A : R”™ — R which computes

col_apply(X,h) = <h'($ol)v SR h(xm)).

The above replicate the behavior of following R calls, respectively.

apply (X, c(1,2), £)
apply (X, 1, f)
apply (X, 2, f)

Functions

Primary location of source code is the file inst/include/apply.h.

65

https://github.com/andrewraim/fntl/blob/main/inst/include/apply.h

template <typename T, int RTYPE>
Rcpp: :Vector<RTYPE> row_apply(
const Rcpp::Matrix<RTYPE>& X,
const std::function<T(const Rcpp::Vector<RTYPE>&)>& f

® ©

template <typename T, int RTYPE>
Rcpp: :Vector<RTYPE> col_apply(
const Rcpp::Matrix<RTYPE>& X,
const std::function<T(const Rcpp::Vector<RTYPE>&)>& f

® ©

template <typemname T, int RTYPE>

Rcpp: :Matrix<RTYPE> mat_apply(
const Rcpp::Matrix<RTYPE>& X,
const std::function<T(T)>& f

® ©

)

@ An Repp matrix object.
@ Function f to apply.

The functions mat_apply, row_apply, and col_apply correspond to elementwise, rowwise, and
columnwise apply.

Rcpp matrix objects may be of type NumericMatrix, IntegerMatrix, or one of the others defined
in the Repp API. The template argument RTYPE represents the type of data stored in in the
matrix, taking on value REALSXP for NumericMatrix, INTSXP for IntegerMatrix, etc. The template
argument T represents an underlying C++ variable type such as double, int, etc.

The domain and range of function f should match the class of x and type of apply operation. As
an example, suppose X is an object of type NumericMatrix.

o The domain of row_apply should be of type const NumericVector& and the range should
be of type double.

e The domain of col_apply should be of type const NumericVector& and the range should
be of type double.

e The domain and range of mat_apply should be of type double.

Example

Compute the square of each element of a matrix, then its rowwise sums, then its columnwise sums.
A CH+ function with Repp interface is defined in the file examples/apply. cpp.

// [[Rcpp: :depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List apply_ex(Rcpp: :NumericMatrix X)

66

https://dirk.eddelbuettel.com/code/rcpp/html/instantiation_8h.html

fntl::dfd f [] (double x) { return std::pow(x, 2); };
fntl::dfv g = [](Rcpp: :NumericVector x) -> double {
return Rcpp::sum(x);

}s

return Rcpp::List::create(
Rcpp: :Named ("pows") = fntl::mat_apply(X, f),
Rcpp: :Named ("rowsums") = fntl::row_apply(X, g),
Rcpp: :Named("colsums") = fntl::col_apply(X, g)
¥
}

Call the function from R.

Rcpp: :sourceCpp("examples/apply.cpp")
X = matrix(1:12, 4, 3)

out = apply_ex(X)

print (out)

$pows

(1] [,2]1 [,3]
[1,] 1 25 81
[2,] 4 36 100
[3,] 9 49 121
[4,] 16 64 144

$rowsums
[1] 15 18 21 24

$colsums
[1] 10 26 42

8.2 Outer

Construct a matrix from a real-valued function of two arguments. Or carry out a matrix multipli-
cation without explicitly constructing the matrix.

Suppose f(z,2’) : R x R?* — R and X € R™9 is a matrix with rows y,...,2,. Also let a =
[a; - a,]" be a fixed vector. The outer operation computes the n x n symmetric matrix

f($1.7) f(331.7 T,)

outer(X, f) = : . :
f<$n,$1) f(xn’xn>

67

and the outer_matvec operation computes the n-dimensional vector

f(xl‘axl) f(xl'axn) a‘l

outer matvec(X, f,a) =

f(x'rwxl) f(x'rwxn) ap,
Now suppose f(z,y) : R4 x R%2 — R, X € R™*% is a matrix with rows z,,...,7,,, ¥ € R is
a matrix with rows yi, ..., v, and a = [ay ---a,]" is a fixed vector. The outer operation computes

the m X n matrix

f(xla yl) f(xl'v yn)
f@myn) o f(Em)

and the outer matvec operation computes the m-dimensional vector

outer(X,Y, f) =

fl@yy) o fl2,0,)] [
outer_matvec(X,Y, f,a) = : . : :

f(xmvyl) f(xm7 yn) Ay,
The outer functions above replicate the behavior of the outer function in R.
Functions

Primary location of source code is the file inst/include/outer.h.

Rcpp: :NumericMatrix outer(
const Rcpp::NumericMatrix& X, ©
const dfvv& f ®
)
Rcpp: :NumericMatrix outer(
const Rcpp::NumericMatrix& X, @
const Rcpp::NumericMatrix& Y,)
const dfvv& £ ®
)
Rcpp: :NumericVector outer_matvec(
const Rcpp::NumericMatrix& X,
const dfvv& £,
const Rcpp::NumericVector& a
)
Rcpp: :NumericVector outer_matvec(
const Rcpp: :NumericMatrix& X, @
const Rcpp::NumericMatrix& Y, ©)
const dfvv& f, ®
const Rcpp: :NumericVector& a ®
)

68

https://github.com/andrewraim/fntl/blob/main/inst/include/outer.h

@ An Repp matrix object of dimension m X d.
@ An Repp matrix object of dimension n X d.
® Function f to apply.

@ An Rcepp vector object of dimension n.

Example

Compute the distance between pairs of rows of X, then compute the distance between each pairs
of rows taken from X and Y. Then multiply the respective matrices by a = [1,...,1]. A C++
function with Repp interface is defined in the file examples/outer. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List outer_ex(Rcpp: :NumericMatrix X, Rcpp::NumericMatrix Y,
Rcpp: :NumericVector a, Rcpp::NumericVector b)

{
fntl::dfvv £ =
[] (Rcpp: :NumericVector x, Rcpp::NumericVector y) {
double norm2 = Rcpp::sum(Rcpp::pow(x - y, 2));
return std::sqrt(norm2);
s
return Rcpp::List::create(
Rcpp: :Named("outl") = fntl::outer(X, f),
Rcpp: :Named("out2") = fntl::outer(X, Y, f),
Rcpp: :Named("out3") = fntl::outer_matvec(X, f, a),
Rcpp: :Named ("out4") = fntl::outer matvec(X, Y, f, b)
)
}

Call the function from R.

Rcpp: :sourceCpp("examples/outer.cpp")
m=5; n=3; d=2

X = matrix(rnorm(10), m, d)

Y = matrix(rnorm(6), n, d)
a
b

= rep(1, m)
= rep(1, n)
out = outer_ex(X, Y, a, b)
print (out)
$out1
[,1] [,2] [,3] [,4] [,5]

69

[1,] 0.0000000 1.1024866 0.4622356 0.7590347 1.882926
[2,] 1.1024866 0.0000000 0.8913073 1.8098040 2.981883
[3,] 0.4622356 0.8913073 0.0000000 1.1963281 2.230383
[4,] 0.7590347 1.8098040 1.1963281 0.0000000 1.211293
[6,] 1.8829261 2.9818827 2.2303831 1.2112927 0.000000
$out?2

[,1] [,2] [,3]
[1,] 2.3684959 1.4722509 1.0635563
[2,] 3.4607857 2.5105686 1.6286383
[3,] 2.7293683 1.6365318 1.4789857
[4,] 1.6639318 1.1887846 0.8832083
[5,] 0.5039864 0.9974981 1.9383965
$out3

[1] 4.206683 6.785481 4.780254 4.976459 8.306485

$outd
[1] 4.904303 7.599993 5.844886 3.735925 3.439881

8.3 Matrix-Free Linear Solve

Solve a linear system Ax = b for symmetric positive definite A € R™*™ (Nocedal and Wright 2006).
Here the operation Az is specified through a function ¢(x) = Az. This can be used to avoid explicit
storage of large matrices when A is sparse. The solution z* is found by minimizing the quadratic

function .
flz) = §mT£(.r) —b'x,

so that f'(z*) =0 <= Az* = b. Minimization is carried out using the conjugate gradient method
in Section 7.4.

Functions

Primary location of source code is the file inst/include/solve cg.h.

cg_result solve_cg(
const viv& 1,
const Rcpp: :NumericVector& b,
const Rcpp::NumericVector& init,
const cg_args& args

® OO

cg_result solve_cg(
const vfv& 1,
const Rcpp: :NumericVector& b,

70

https://github.com/andrewraim/fntl/blob/main/inst/include/solve_cg.h

const Rcpp::NumericVector& init ®

cg_result solve_cg(
const viv& 1,
const Rcpp::NumericVector& b

® ©

@ The function ¢ : R™ — R™.

@ The vector b € R™.

® Initial value for x.

(@ Optional arguments to CG method.

The routine checks that 1 (init) is an n-dimensional vector, but there is no check that the operation
¢ represents a symmetric positive definite matrix.

See Section 7.4 for details on cg_args and cg_result.
Example

Solve the equation Ax = b with n x n matrix A having value 2 on the main diagonal and value 1 on
the upper and lower diagonals; let b = [1, ..., 1]. The initial value for the solution is taken to be the
default x = 0. A C++ function with Repp interface is defined in the file examples/solve-cg. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :List solve_cg_ex(Rcpp: :NumericVector b)

{
fntl::vfv 1 = [](Rcpp: :NumericVector x) {
unsigned int n = x.size();
Rcpp: :NumericVector out(n);
for (unsigned int i = 1; i < n-1; i++) {
out(i) = x(i-1) + 2*x(i) + x(i+1);
}
out (0) = 2*x(0) + x(1);
out(n-1) = x(n-2) + 2*x(n-1);
return out;
I
auto out = fntl::solve_cg(l, Db);
return Rcpp::wrap(out);
}

71

Call the function from R.

Rcpp: : sourceCpp("examples/solve-cg.cpp")
b = rep(1, 10)

out = solve_cg_ex(b)

print (out)

$par
[1] 0.45454542 0.09090782 0.36363901 0.18181637 0.27272775 0.27272775
[7] 0.18181637 0.36363901 0.09090782 0.45454542

$value
[1] -1.363636

$fncount
[1] 71

$grcount
[1] 31

$status
[1] O

Compare the above to solving dense the system as follows.

A = matrix(0, 10, 10)
diag(A) = 2
Alcbind(1:9, 2:10)]
Alcbind(2:10, 1:9)]
solve(A, b)

I
=

[1] 0.45454545 0.09090909 0.36363636 0.18181818 0.27272727 0.27272727
[7] 0.18181818 0.36363636 0.09090909 0.45454545

8.4 Which

Identify the indices of a matrix which satisfy a given indicator function. Specifically, let X € S™*"
be a matrix whose elements are in the domain S which may be doubles, integers, or another Rcpp
Matrix type. Let f:S — {0,1} be an indicator function and suppose k of the mn elements in X
satisfy the indicator. The which operation produces a k x 2 matrix

i Jh
which(X, f) = [5 3}.

e Jk

72

where each pair (i,,j,) are coordinates of an element in X that satisfies f. Indices i, and j,
represent the row and column index, respectively. Indices are zero-based by default as they are
primarily intended to be used in C++4 code.

An equivalent R operation is the following. Note that indices in R are one-based.
which(f(X), arr.ind = TRUE)

Functions

Primary location of source code is the file inst/include/which.h.

template <typename T, int RTYPE>
Rcpp: : IntegerMatrix which(
const Rcpp::Matrix<RTYPE>& X,
const std::function<bool(T)>& f),
bool one based = false

OXOXO

@ An Repp matrix object.

@ Function f to apply.

(® If one_based = false, zero-based indices are produced which are suitable for use with C+-+
code. If true, one-based indices are produced.

Example

Construct a matrix and identify the elements between 0 and 0.5. A C++ function with Repp
interface is defined in the file examples/which.cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]

Rcpp: :IntegerMatrix which_ex(Rcpp: :NumericMatrix X)

{
std: :function<bool(double)> f = [](double x) { return x > 0 && x < 0.5; };
return fntl::which(X, f);

}

Call the function from R.

Rcpp: :sourceCpp("examples/which.cpp")
x = runif (10, -1, 1)

X = matrix(x, 2, 5)

out = which_ex(X)

print (X)

73

https://github.com/andrewraim/fntl/blob/main/inst/include/which.h

[,1] [,2] (,3] [,4] [,5]
[1,] -0.1206053 -0.4555856 -0.2394214 0.4710019 0.6293048
[2,] 0.8606477 0.3180581 0.8707816 0.1801809 0.7648177

print (out)
row col

[1,] 1 1

Here is the result in R for comparison.

f = function(x) { x> 0 & x < 0.5 }
which(f(X), arr.ind = TRUE) - 1

row col
(1,17 1 1
[2,] 0 3
(3,] 1 3

9 Truncated Distributions

Functions to support a univariate distribution truncated to the interval (a,b]. Operations include
variate generation, the density function, the quantile function, and the cumulative distribution
function (CDF). Suppose f, F, and F~ are the density, CDF, and quantile function, respectively,
of an untruncated distribution.

The density g of the truncated distribution is

f(z)

= — 27 1 < b).
g(x) Fb) — Fla) (a <x<D)
The CDF G of the truncated distribution is
F(x) — F(a)
= — 7 1 < b).
G(z) F(b)— Fla) (a <z <b)

The quantile function G~ of the truncated distribution is
G () = F~({F(b) = Fla)}6 + F(a)).

Draws are generated from the truncated distribution via the inverse CDF method as X = G~ (U)
where U ~ Uniform(0,1). Some precautions are taken computationally to avoid loss of precision.

74

Computations are kept on the log-scale internally accommodate very small probabilities. Probabil-
ities based on the CDF are considered using both the form P(X < z) and its complement to aid
with small probabilities far into the tails.

Special attention is needed for lower limits with a discrete distribution. For example, consider the
Poisson(\) distribution truncated to [1,10]. Taking (a,b] with a = 1 and b = 10 excludes the lower
limit 1, which is not desired. Instead, the correct truncation is achieved with a = ay — €, where q
is the lower limit of interest (e.g., 1) and € is a small positive number (e.g., 107°).

This functions in this section were originally adapted from the rtruncated function in the
LearnBayes package (Albert 2018).

Typedefs
The following typedefs are utilized specifically in this section.
typedef std::function<double(double,bool)> density;

typedef std::function<double(double,bool,bool)> cdf;
typedef std::function<double(double,bool,bool)> quantile;

OXOXO,

(@ A density whose arguments are: (1) the argument x for which to evaluate the density and (2) a
boolean log that determines whether the value is returned on the log-scale.

@ A CDF whose arguments are: (1) the argument x for which to evaluate the CDF, (2) a boolean
lower that determines whether lower-tail probability P(X < z) is to be computed, and (3) a
boolean log that determines whether the value is returned on the log-scale.

® A quantile function whose arguments are: (1) the argument p for which to compute quantiles, (2)
a boolean lower that determines whether p is interpreted as p (if true) or 1 - p (if false),
and (3) a boolean log that determines p is assumed to be on the log-scale (if true).

9.1 Density

Functions

Primary location of source code is the file inst/include/trunc.h. The following functions operate on
scalar arguments.

double d_trunc(
double x,
double 1lo,
double hi,
const density& f,
const cdf& F,
bool log = false

@OE OO

Rcpp: :NumericVector d_trunc(
const Rcpp: :NumericVector& x,

®

5

https://github.com/andrewraim/fntl/blob/main/inst/include/trunc.h

const Rcpp::NumericVector& lo,
const Rcpp: :NumericVector& hi,
const density& f,

const cdf& F,

bool log = false

@@

@ Argument of density and CDF.

@ Lower limit.

® Upper limit.

(@ Function that computes density of untruncated distribution.
() Function that computes CDF of untruncated distribution.
® Boolean; if true, probabilities p are given as log(p).

When x, 1o and hi are specified as vectors, they must be the same length.
Example

Compute density of the Beta(2, 5) distribution truncated to the interval (0.5,0.95]. A C++ function
with Repp interface is defined in the file examples/d_trunc. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"
// [[Rcpp: :export]]
Rcpp: :NumericVector d_trunc_ex(Rcpp: :NumericVector x, double shapel,
double shape2, double lo, double hi)
{
fntl::density f = [&] (double x, bool log) {
return R::dbeta(x, shapel, shape2, log);
)3
fntl::cdf F = [&] (double x, bool lower, bool log) {
return R::pbeta(x, shapel, shape2, lower, log);
)5
unsigned int n = x.size();
auto lo_vec = Rcpp::rep(lo, n);
auto hi_vec = Rcpp::rep(hi, n);
return fntl::d trunc(x, lo_vec, hi vec, f, F);
}

Call the function from R.

Rcpp: :sourceCpp("examples/d_trunc.cpp")
x = seq(0, 1, length.out = 30)

76

d_trunc_ex(x, shapel = 2, shape2 = 5, lo = 0.5, hi = 0.95)

[1] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[7] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[13] 0.000000000 0.000000000 0.000000000 7.705906512 6.111020294 4.714050598
[19] 3.524224612 2.540820209 1.754770673 1.150269427 0.706374764 0.398614573
[256] 0.200591069 0.085585523 0.028162986 0.005777023 0.000000000 0.000000000

9.2 CDF

Functions

Primary location of source code is the file inst/include/trunc.h. The following functions operate on
scalar arguments.

double p_trunc(
double x, @
double lo, ®)
double hi, ®
const cdf& F, ®
bool lower = true, ®
bool log = false ®

)

Rcpp: :NumericVector p_trunc(
const Rcpp: :NumericVector& x, ©)
const Rcpp: :NumericVector& lo, ©)
const Rcpp::NumericVector& hi, ®
const cdf& F, @
bool lower = true, ®
bool log = false ®

)

@ Argument of CDF.

(@ Lower limit.

® Upper limit.

(@ Function that specifies CDF of untruncated distribution.

(® Boolean; if true, probabilities are P(X < z), otherwise P(X > x).
(6 Boolean; if true, probabilities p are given as log(p).

When x, 1o and hi are specified as vectors, they must be the same length.
Example

Compute CDF of the Beta(2,5) distribution truncated to the interval (0.5,0.95]. A C++ function
with Repp interface is defined in the file examples/p_trunc. cpp.

7

https://github.com/andrewraim/fntl/blob/main/inst/include/trunc.h

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :NumericVector p_trunc_ex(Rcpp: :NumericVector x, double shapel,
double shape2, double lo, double hi)

{
fntl::cdf F = [&] (double x, bool lower, bool log) {
return R::pbeta(x, shapel, shape2, lower, log);
+;
unsigned int n = x.size();
auto lo_vec = Rcpp::rep(lo, n);
auto hi_vec = Rcpp::rep(hi, n);
return fntl::p_trunc(x, lo_vec, hi_vec, F);
}

Call the function from R.

Rcpp: :sourceCpp("examples/p_trunc.cpp")
x = seq(0, 1, length.out = 30)
p_trunc_ex(x, shapel = 2, shape2 = 5, lo = 0.5, hi = 0.95)

[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[8] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[15] 0.0000000 0.1402616 0.3779391 0.5639907 0.7054309 0.8094165 0.8829309
[22] 0.9325239 0.9641072 0.9828049 0.9928593 0.9975925 0.9994225 0.9999358
[29] 1.0000000 1.0000000

9.3 Quantile

Functions

Primary location of source code is the file inst /include/trunc.h. The following functions operate on
scalar arguments.

double gq_trunc(
double p,
double 1lo,
double hi,
const cdf& F,
const quantile& Finv,
bool lower = true,
bool log = false

QEPO®O®OEO

78

https://github.com/andrewraim/fntl/blob/main/inst/include/trunc.h

Rcpp: :NumericVector q_trunc(
const Rcpp: :NumericVector& p,
const Rcpp: :NumericVector& lo,
const Rcpp::NumericVector& hi,
const cdf& F,
const quantile& Finv,
bool lower = true,
bool log = false

QEPO®O®OEO

(@ Probability argument.

(@ Lower limit.

3@ Upper limit.

(@ Function that specifies CDF of untruncated distribution.

(® Function that computes quantiles of untruncated distribution.

® Boolean; if true, probabilities are P(X < z), otherwise P(X > x).
(™ Boolean; if true, probabilities p are given as log(p).

When x, 1o and hi are specified as vectors, they must be the same length.
Example

Compute CDF of the Beta(2,5) distribution truncated to the interval (0.5,0.95]. A C++ function
with Repp interface is defined in the file examples/q_trunc.cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"

// [[Rcpp: :export]]
Rcpp: :NumericVector q_trunc_ex(Rcpp: :NumericVector p, double shapel,
double shape2, double lo, double hi)
{
fntl::cdf F = [&] (double x, bool lower, bool log) {
return R::pbeta(x, shapel, shape2, lower, log);
I

fntl::quantile Finv = [&] (double x, bool lower, bool log) {
return R::gbeta(x, shapel, shape2, lower, log);
}s

unsigned int n = p.size(Q);

auto lo_vec = Rcpp::rep(lo, n);

auto hi_vec = Rcpp::rep(hi, n);

return fntl::q_trunc(p, lo_vec, hi_vec, F, Finv);

79

}

Call the function from R.

Rcpp: : sourceCpp("examples/q_trunc.cpp")
p = seq(0, 1, length.out = 30)
q_trunc_ex(p, shapel = 2, shape2 = 5, 1lo = 0.5, hi = 0.95)

[1] 0.5000000 0.5040725 0.5082484 0.5125348 0.5169392 0.5214703 0.5261377
[8] 0.5309521 0.5359256 0.5410720 0.5464070 0.5519487 0.5577180 0.5637392
[156] 0.5700412 0.5766582 0.5836313 0.5910108 0.5988592 0.6072551 0.6163001
[22] 0.6261286 0.6369246 0.6489497 0.6625967 0.6784987 0.6977879 0.7228540
[29] 0.7606480 0.9500000

9.4 Variate Generation

Functions

Primary location of source code is the file inst/include/trunc.h. The following functions operate on
scalar arguments.

double r_trunc(
double 1lo,
double hi,
const cdf& F,
const quantile& Finv

@® O

Rcpp: :NumericVector r_trunc(
unsigned int n,
const Rcpp::NumericVector& 1lo,
const Rcpp: :NumericVector& hi,
const cdf& F,
const quantile& Finv

@®OO O

@ Number of desired draws.

(@ Lower limit.

3@ Upper limit.

(@ Function that specifies CDF of untruncated distribution.

(® Function that computes quantiles of untruncated distribution.

When 1o and hi are specified as vectors, they must be the same length.

The following are analogous functions for some of the arguments are vectors, for convenience.

80

https://github.com/andrewraim/fntl/blob/main/inst/include/trunc.h

Example

Draw from the Beta(2,5) distribution truncated to the interval (0.5,0.95]. A C++ function with
Repp interface is defined in the file examples/rtrunc. cpp.

// [[Rcpp::depends(fntl)]]
#include "fntl.h"
// [[Rcpp: :export]]
Rcpp: :NumericVector r_trunc_ex(unsigned int n, double shapel, double shape2,
double lo, double hi)
{
fntl::cdf F = [&] (double x, bool lower, bool log) {
return R::pbeta(x, shapel, shape2, lower, log);
+;
fntl::quantile Finv = [&] (double x, bool lower, bool log) {
return R::gbeta(x, shapel, shape2, lower, log);
};
auto lo_vec = Rcpp::rep(lo, n);
auto hi_vec = Rcpp::rep(hi, n);
return fntl::r trunc(n, lo_vec, hi vec, F, Finv);
}

Call the function from R.

Rcpp: :sourceCpp("examples/r_trunc.cpp")
r_trunc_ex(n = 20, shapel = 2, shape2 = 5, lo = 0.5, hi = 0.95)

[1] 0.6326696 0.5736521 0.8097167 0.5843700 0.6878341 0.6011736 0.5971146
[8] 0.5039681 0.5328539 0.6428001 0.8706631 0.7532021 0.6344207 0.6138295
[156] 0.5317354 0.5955826 0.5883420 0.5058895 0.5508890 0.6966780

References

Albert, Jim. 2018. LearnBayes: Functions for Learning Bayesian Inference. https://CRAN.R-
project.org/package=LearnBayes.

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. “Julia: A Fresh
Approach to Numerical Computing.” SIAM Review 59 (1): 65-98. https://doi.org/10.1137/
141000671.

Brent, R. P. 1973. Algorithms for Minimization Without Derivatives. Prentice-Hall.

Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. “A Limited Memory Al-
gorithm for Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16 (5):
1190-1208. https://doi.org/10.1137/0916069.

81

https://CRAN.R-project.org/package=LearnBayes
https://CRAN.R-project.org/package=LearnBayes
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/0916069

Dennis, J. E., and Robert B. Schnabel. 1983. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall.

Eddelbuettel, Dirk, John W. Emerson, and Michael J. Kane. 2024. Boost c++ Header Files.
https://cran.r-project.org/package=BH.

Eddelbuettel, Dirk, and Romain Francois. 2024. ’Rcpp’ Integration for 'GNU GSL’ Vectors and
Matrices. https://cran.r-project.org/package=RcppGSL.

Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Inaki
Ucar, Douglas Bates, and John Chambers. 2024. Rcpp: Seamless r and c++ Integration.
https://CRAN.R-project.org/package=Rcpp.

Eddelbuettel, Dirk, and Conrad Sanderson. 2014. “RcppArmadillo: Accelerating R with High-
Performance C++ Linear Algebra.” Computational Statistics and Data Analysis 71: 1054—63.
https://doi.org/10.1016/j.csda.2013.02.005.

Fletcher, R., and C. M. Reeves. 1964. “Function Minimization by Conjugate Gradients.” The
Computer Journal 7 (2): 149-54. https://doi.org/10.1093/comjnl/7.2.149.

Galassi, Mark, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael
Booth, Fabrice Rossi, and Rhys Ulerich. 2009. GNU Scientific Library Reference Manual. 3rd
ed. http://www.gnu.org/software/gsl/.

Gilbert, Paul, and Ravi Varadhan. 2019. numDeriv: Accurate Numerical Derivatives. https:
//CRAN.R-project.org/package=numDeriv.

Ihaka, Ross, and Robert Gentleman. 1996. “R: A Language for Data Analysis and Graphics.”
Journal of Computational and Graphical Statistics 5 (3): 299-314. https://doi.org/10.1080/
10618600.1996.10474713.

Nash, J. C. 1990. Compact Numerical Methods for Computers. 2nd ed. Adam Hilger.

Nelder, J. A., and R. Mead. 1965. “A Simplex Method for Function Minimization.” The Computer
Journal 7 (4): 308-13. https://doi.org/10.1093/comjnl/7.4.308.

Nocedal, Jorge, and Stephen J. Wright. 2006. Numerical Optimization. 2nd ed. Springer.

Pan, Yi. 2022. Roptim: General Purpose Optimization in R Using C++. https://CRAN.R-
project.org/package=roptim.

Piessens, R., E. deDoncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner. 1983. QUADPACK:
A Subroutine Package for Automatic Integration. Springer.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Nu-
merical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press.

Qiu, Yixuan, Sreekumar Balan, Matt Beall, Mark Sauder, Naoaki Okazaki, and Thomas Hahn.
2023. ReppNumerical: 'Repp’ Integration for Numerical Computing Libraries. https://CRAN.R-
project.org/package=RcppNumerical.

Quarteroni, Alfio, Riccardo Sacco, and Fausto Saleri. 2007. Numerical Mathematics. 2nd ed.
Springer. https://doi.org/https://doi.org/10.1007/H98885.

R Core Team. 2024a. R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing. https://www.R-project.org/.

——— 2024b. Writing R Extensions. https://cran.r-project.org/doc/manuals/r-release/R-exts.
html.

Wickham, Hadley. 2019. Advanced R. 2nd ed. Chapman & Hall/CRC.

82

https://cran.r-project.org/package=BH
https://cran.r-project.org/package=RcppGSL
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1093/comjnl/7.2.149
http://www.gnu.org/software/gsl/
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1080/10618600.1996.10474713
https://doi.org/10.1093/comjnl/7.4.308
https://CRAN.R-project.org/package=roptim
https://CRAN.R-project.org/package=roptim
https://CRAN.R-project.org/package=RcppNumerical
https://CRAN.R-project.org/package=RcppNumerical
https://doi.org/10.1007/b98885
https://www.R-project.org/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html

	Disclaimer and Acknowledgments
	Introduction
	Overview
	A First Example
	Arguments
	Results
	Status Codes
	Function Typedefs
	Constants
	Error Actions
	Inferring Return Types^\dagger
	R Functions as Lambdas
	R Interface
	Performance Illustration
	Pass by Value and Reference

	Integration
	Differentiation
	Finite Differences
	Richardson Extrapolated Finite Differences
	Gradient
	Jacobian
	Hessian

	Root-Finding
	Bisection
	Brent's Algorithm

	Univariate Optimization
	Golden Section Search
	Brent's Algorithm

	Multivariate Optimization
	Nelder-Mead
	BFGS
	L-BFGS-B
	Conjugate Gradient
	Newton-Type Algorithm for Nonlinear Optimization

	Matrix Operations
	Apply
	Outer
	Matrix-Free Linear Solve
	Which

	Truncated Distributions
	Density
	CDF
	Quantile
	Variate Generation

	References

