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el2.cen.EMm Computes p-value for multiple mean-type hypotheses, based on two
independent samples that may contain censored data.
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2 el2.cen.EMm

Description

This function uses the EM algorithm to calculate a maximized empirical likelihood ratio for a set
of p hypotheses as follows:

Ho : E(g(x, y)−mean) = 0

whereE indicates expected value; g(x, y) is a vector of user-defined functions g1(x, y), . . . , gp(x, y);
andmean is a vector of p hypothesized values ofE(g(x, y)). The two samples x and y are assumed
independent. They may be uncensored, right-censored, left-censored, or left-and-right (“doubly”)
censored. A p-value for Ho is also calculated, based on the assumption that -2*log(empirical like-
lihood ratio) is asymptotically distributed as chisq(p).

Usage

el2.cen.EMm(x, dx, wx=rep(1,length(x)), y, dy, wy=rep(1,length(y)),
p, H, xc=1:length(x), yc=1:length(y), mean, maxit=15)

Arguments

x a vector of the data for the first sample

dx a vector of the censoring indicators for x: 0=right-censored, 1=uncensored,
2=left-censored

wx a vector of data case weight for x

y a vector of the data for the second sample

dy a vector of the censoring indicators for y: 0=right-censored, 1=uncensored,
2=left-censored

wy a vector of data case weight for y

p the number of hypotheses

H a matrix defined asH = [H1, H2, . . . ,Hp], whereHk = [gk(xi, yj)−muk], k =
1, . . . , p

xc a vector containing the indices of the x datapoints, controls if tied x collapse or
not

yc a vector containing the indices of the y datapoints, ditto

mean the hypothesized value of E(g(x, y))

maxit a positive integer used to control the maximum number of iterations of the EM
algorithm; default is 15

Details

The value of meank should be chosen between the maximum and minimum values of gk(xi, yj);
otherwise there may be no distributions for x and y that will satisfy Ho. If meank is inside this
interval, but the convergence is still not satisfactory, then the value of meank should be moved
closer to the NPMLE for E(gk(x, y)). (The NPMLE itself should always be a feasible value for
meank.)
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Value

el2.cen.EMm returns a list of values as follows:

xd1 a vector of unique, uncensored x-values in ascending order

yd1 a vector of unique, uncensored y-values in ascending order

temp3 a list of values returned by the el2.test.wtm function (which is called by
el2.cen.EMm)

mean the hypothesized value of E(g(x, y))

NPMLE a non-parametric-maximum-likelihood-estimator vector of E(g(x, y))

logel00 the log of the unconstrained empirical likelihood

logel the log of the constrained empirical likelihood

"-2LLR" -2*(log-likelihood-ratio) for the p simultaneous hypotheses

Pval the p-value for the p simultaneous hypotheses, equal to 1 - pchisq(-2LLR, df
= p)

logvec the vector of successive values of logel computed by the EM algorithm (should
converge toward a fixed value)

sum_muvec sum of the probability jumps for the uncensored x-values, should be 1

sum_nuvec sum of the probability jumps for the uncensored y-values, should be 1

Author(s)

William H. Barton <bbarton@lexmark.com>

References

Barton, W. (2010). Comparison of two samples by a nonparametric likelihood-ratio test. PhD
dissertation at University of Kentucky.

Chang, M. and Yang, G. (1987). “Strong Consistency of a Nonparametric Estimator of the Survival
Function with Doubly Censored Data.” Ann. Stat.,15, pp. 1536-1547.

Dempster, A., Laird, N., and Rubin, D. (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” J. Roy. Statist. Soc., Series B, 39, pp.1-38.

Gomez, G., Julia, O., and Utzet, F. (1992). “Survival Analysis for Left-Censored Data.” In Klein, J.
and Goel, P. (ed.), Survival Analysis: State of the Art. Kluwer Academic Publishers, Boston,
pp. 269-288.

Li, G. (1995). “Nonparametric Likelihood Ratio Estimation of Probabilities for Truncated Data.”
J. Amer. Statist. Assoc., 90, pp. 997-1003.

Owen, A.B. (2001). Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, pp. 223-227.

Turnbull, B. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored and
Truncated Data.” J. Roy. Statist. Soc., Series B, 38, pp. 290-295.

Zhou, M. (2005). “Empirical likelihood ratio with arbitrarily censored/truncated data by EM algo-
rithm.” J. Comput. Graph. Stat., 14, pp. 643-656.

Zhou, M. (2009) emplik package on CRAN website. The function el2.cen.EMm here extends
el.cen.EM2 inside emplik from one-sample to two-samples.
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Examples

x<-c(10, 80, 209, 273, 279, 324, 391, 415, 566, 85, 852, 881, 895, 954, 1101, 1133,
1337, 1393, 1408, 1444, 1513, 1585, 1669, 1823, 1941)
dx<-c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0)
y<-c(21, 38, 39, 51, 77, 185, 240, 289, 524, 610, 612, 677, 798, 881, 899, 946, 1010,
1074, 1147, 1154, 1199, 1269, 1329, 1484, 1493, 1559, 1602, 1684, 1900, 1952)
dy<-c(1,1,1,1,1,1,2,2,1,1,1,1,1,2,1,1,1,1,1,1,0,0,1,1,0,0,1,0,0,0)
nx<-length(x)
ny<-length(y)
xc<-1:nx
yc<-1:ny
wx<-rep(1,nx)
wy<-rep(1,ny)
mu=c(0.5,0.5)
p <- 2
H1<-matrix(NA,nrow=nx,ncol=ny)
H2<-matrix(NA,nrow=nx,ncol=ny)
for (i in 1:nx) {

for (j in 1:ny) {
H1[i,j]<-(x[i]>y[j])
H2[i,j]<-(x[i]>1060) } }

H=matrix(c(H1,H2),nrow=nx,ncol=p*ny)

# Ho1: X is stochastically equal to Y
# Ho2: mean of X equals mean of Y

el2.cen.EMm(x=x, dx=dx, y=y, dy=dy, p=2, H=H, mean=mu, maxit=10)

# Result: Pval is 0.6310234, so we cannot with 95 percent confidence reject the two
# simultaneous hypotheses Ho1 and Ho2

el2.cen.EMs Computes p-value for a single mean-type hypothesis, based on two
independent samples that may contain censored data.

Description

This function uses the EM algorithm to calculate a maximized empirical likelihood ratio for the
hypothesis

Ho : E(g(x, y)−mean) = 0

where E indicates expected value; g(x, y) is a user-defined function of x and y; and mean is the
hypothesized value of E(g(x, y)). The samples x and y are assumed independent. They may be
uncensored, right-censored, left-censored, or left-and-right (“doubly”) censored. A p-value for Ho

is also calculated, based on the assumption that -2*log(empirical likelihood ratio) is approximately
distributed as chisq(1).
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Usage

el2.cen.EMs(x,dx,y,dy,fun=function(x,y){x>=y}, mean=0.5, maxit=25)

Arguments

x a vector of the data for the first sample
dx a vector of the censoring indicators for x: 0=right-censored, 1=uncensored,

2=left-censored
y a vector of the data for the second sample
dy a vector of the censoring indicators for y: 0=right-censored, 1=uncensored,

2=left-censored
fun a user-defined, continuous-weight-function g(x, y) used to define the mean in

the hypothesis Ho. The default is fun=function(x,y){x>=y}.
mean the hypothesized value of E(g(x, y)); default is 0.5
maxit a positive integer used to set the number of iterations of the EM algorithm;

default is 25

Details

The value of mean should be chosen between the maximum and minimum values of g(xi, yj);
otherwise there may be no distributions for x and y that will satisfy Ho. If mean is inside this
interval, but the convergence is still not satisfactory, then the value of mean should be moved
closer to the NPMLE for E(g(x, y)). (The NPMLE itself should always be a feasible value for
mean.)

Value

el2.cen.EMs returns a list of values as follows:

xd1 a vector of the unique, uncensored x-values in ascending order
yd1 a vector of the unique, uncensored y-values in ascending order
temp3 a list of values returned by the el2.test.wts function (which is called by

el2.cen.EMs)
mean the hypothesized value of E(g(x, y))

funNPMLE the non-parametric-maximum-likelihood-estimator of E(g(x, y))

logel00 the log of the unconstrained empirical likelihood
logel the log of the constrained empirical likelihood
"-2LLR" -2*(logel-logel00)

Pval the estimated p-value for Ho, computed as 1 - pchisq(-2LLR, df = 1)

logvec the vector of successive values of logel computed by the EM algorithm (should
converge toward a fixed value)

sum_muvec sum of the probability jumps for the uncensored x-values, should be 1
sum_nuvec sum of the probability jumps for the uncensored y-values, should be 1
constraint the realized value of

∑n
i=1

∑m
j=1(g(xi, yj)−mean)µiνj , where mui and nuj

are the probability jumps at xi and yj , respectively, that maximize the empirical
likelihood ratio. The value of constraint should be close to 0.
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Author(s)

William H. Barton <bbarton@lexmark.com>

References

Barton, W. (2010). Comparison of two samples by a nonparametric likelihood-ratio test. PhD
dissertation at University of Kentucky.

Chang, M. and Yang, G. (1987). “Strong Consistency of a Nonparametric Estimator of the Survival
Function with Doubly Censored Data.” Ann. Stat.,15, pp. 1536-1547.

Dempster, A., Laird, N., and Rubin, D. (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” J. Roy. Statist. Soc., Series B, 39, pp.1-38.

Gomez, G., Julia, O., and Utzet, F. (1992). “Survival Analysis for Left-Censored Data.” In Klein, J.
and Goel, P. (ed.), Survival Analysis: State of the Art. Kluwer Academic Publishers, Boston,
pp. 269-288.

Li, G. (1995). “Nonparametric Likelihood Ratio Estimation of Probabilities for Truncated Data.”
J. Amer. Statist. Assoc., 90, pp. 997-1003.

Owen, A.B. (2001). Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, pp.223-227.

Turnbull, B. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored and
Truncated Data.” J. Roy. Statist. Soc., Series B, 38, pp. 290-295.

Zhou, M. (2005). “Empirical likelihood ratio with arbitrarily censored/truncated data by EM algo-
rithm.” J. Comput. Graph. Stat., 14, pp. 643-656.

Zhou, M. (2009) emplik package on CRAN website. The el2.cen.EMs function extends el.cen.EM
function from one-sample to two-samples.

Examples

x<-c(10,80,209,273,279,324,391,415,566,785,852,881,895,954,1101,
1133,1337,1393,1408,1444,1513,1585,1669,1823,1941)
dx<-c(1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1,1,0)
y<-c(21,38,39,51,77,185,240,289,524,610,612,677,798,881,899,946,
1010,1074,1147,1154,1199,1269,1329,1484,1493,1559,1602,1684,1900,1952)
dy<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0,0,0)

# Ho1: X is stochastically equal to Y
el2.cen.EMs(x, dx, y, dy, fun=function(x,y){x>=y}, mean=0.5, maxit=25)
# Result: Pval = 0.7090658, so we cannot with 95 percent confidence reject Ho1

# Ho2: mean of X equals mean of Y
el2.cen.EMs(x, dx, y, dy, fun=function(x,y){x-y}, mean=0.5, maxit=25)
# Result: Pval = 0.9695593, so we cannot with 95 percent confidence reject Ho2
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el2.test.wtm Computes maximum-likelihood probability jumps for multiple mean-
type hypotheses, based on two independent uncensored samples

Description

This function computes the maximum-likelihood probability jumps for multiple mean-type hy-
potheses, based on two samples that are independent, uncensored, and weighted. The target function
for the maximization is the constrained log(empirical likelihood) which can be expressed as,∑
dxi=1

wxi logµi+
∑

dyj=1

wyj log νj−η(1−
∑

dxi=1

µi)−δ(1−
∑

dyj=1

νj)−λ(µTH1ν, . . . , µ
THpν)

T

where the variables are defined as follows:

x is a vector of uncensored data for the first sample

y is a vector of uncensored data for the second sample

wx is a vector of estimated weights for the first sample

wy is a vector of estimated weights for the second sample

µ is a vector of estimated probability jumps for the first sample

ν is a vector of estimated probability jumps for the second sample

Hk = [gk(xi, yj)−meank], k = 1, . . . , p, where gk(x, y) is a user-chosen function

H = [H1, ...,Hp] (used as argument in el.cen.EMm function, which calls el2.test.wtm)

mean is a vector of length p of hypothesized means, such that meank is the hypothesized value of
E(gk(x, y))

E indicates “expected value”

Usage

el2.test.wtm(xd1,yd1,wxd1new, wyd1new, muvec, nuvec, Hu, Hmu, Hnu, p, mean, maxit=15)

Arguments

xd1 a vector of uncensored data for the first sample

yd1 a vector of uncensored data for the second sample

wxd1new a vector of estimated weights for xd1

wyd1new a vector of estimated weights for yd1

muvec a vector of estimated probability jumps for xd1

nuvec a vector of estimated probability jumps for yd1

Hu Hu = [H1 − [mean1], . . . ,Hp − [meanp]], dxi = 1, dyj = 1

Hmu a matrix, whose calculation is shown in the example below

Hnu a matrix, whose calculation is shown in the example below
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p the number of hypotheses

mean a vector of hypothesized values of E(gk(u, v)), k = 1, . . . , p

maxit a positive integer used to control the maximum number of iterations in the
Newton-Raphson algorithm; default is 10

Details

This function is called by el2.cen.EMm. It is listed here because the user may find it useful else-
where.

The value ofmeank should be chosen between the maximum and minimum values of gk(xd1i, yd1j);
otherwise there may be no distributions for xd1 and yd1 that will satisfy the the mean-type hypoth-
esis. If meank is inside this interval, but the convergence is still not satisfactory, then the value
of meank should be moved closer to the NPMLE for E(g(xd1, yd1)). (The NPMLE itself should
always be a feasible value for meank.) The calculations for this function are derived in Owen
(2001).

Value

el2.test.wtm returns a list of values as follows:

constmat a matrix of row vectors, where the kth row vector holds successive values of
µTHkν, k = 1, . . . , p, generated by the Newton-Raphson algorith m

lam the vector of Lagrangian mulipliers used in the calculations

muvec1 the vector of probability jumps for the first sample that maximize the weighted
empirical likelihood

nuvec1 the vector of probability jumps for the second sample that maximize the weighted
empirical likelihood

mean the vector of hypothesized means

Author(s)

William H. Barton <bbarton@lexmark.com>

References

Owen, A.B. (2001). Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, pp.223-227.

Examples

#Ho1: P(X>Y) = 0.5
#Ho2: P(X>1060) = 0.5
#g1(x) = I[x > y]
#g2(y) = I[x > 1060]

mean<-c(0.5,0.5)
p<-2
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xd1<-c(10,85,209,273,279,324,391,566,852,881,895,954,1101,1393,1669,1823,1941)
nx1=length(xd1)
yd1<-c(21,38,39,51,77,185,524,610,612,677,798,899,946,1010,1074,1147,1154,1329,1484,1602,1952)
ny1=length(yd1)

wxd1new<-c(2.267983, 1.123600, 1.121683, 1.121683, 1.121683, 1.121683, 1.121683,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.261740, 2.912753,
2.912753, 2.912753)

muvec<-c(0.08835785, 0.04075290, 0.04012084, 0.04012084, 0.04012084, 0.04012084,
0.04012084, 0.03538020, 0.03389263, 0.03389263, 0.03389263, 0.03322693, 0.04901516,
0.05902008, 0.13065491, 0.13065491, 0.13065491)

wyd1new<-c(1.431653, 1.431653, 1.431653, 1.431653, 1.431653, 1.438453, 1.079955, 1.080832,
1.080832, 1.080832, 1.080832, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.222883, 1.227865, 1.739636, 5.809616)

nuvec<-c(0.04249966, 0.04249966, 0.04249966, 0.04249966, 0.04249966, 0.04316922, 0.03425722,
0.03463312, 0.03463312, 0.03463312, 0.03463312, 0.03300598, 0.03300598, 0.03333333,
0.03333333, 0.03382827, 0.03382827, 0.04136800, 0.04229270, 0.05992020, 0.22762676)

H1u<-matrix(NA,nrow=nx1,ncol=ny1)
H2u<-matrix(NA,nrow=nx1,ncol=ny1)
for (i in 1:nx1) {

for (j in 1:ny1) {
H1u[i,j]<-(xd1[i]>yd1[j])
H2u[i,j]<-(xd1[i]>1060) } }

Hu=matrix(c(H1u,H2u),nrow=nx1,ncol=p*ny1)
for (k in 1:p) {

M1 <- matrix(mean[k], nrow=nx1, ncol=ny1)
Hu[,((k-1)*ny1+1):(k*ny1)] <- Hu[,((k-1)*ny1+1):(k*ny1)] - M1}

Hmu <- matrix(NA,nrow=p, ncol=ny1*nx1)
Hnu <- matrix(NA,nrow=p, ncol=ny1*nx1)
for (i in 1:p) {

for (k in 1:nx1) {
Hmu[i, ((k-1)*ny1+1):(k*ny1)] <- Hu[k,((i-1)*ny1+1):(i*ny1)] } }

for (i in 1:p) {
for (k in 1:ny1) {

Hnu[i,((k-1)*nx1+1):(k*nx1)] <- Hu[(1:nx1),(i-1)*ny1+k]} }

el2.test.wtm(xd1,yd1,wxd1new, wyd1new, muvec, nuvec, Hu, Hmu,
Hnu, p, mean, maxit=10)

#muvec1
# [1] 0.08835789 0.04075290 0.04012083 0.04012083 0.04012083 0.04012083 0.04012083
# [8] 0.03538021 0.03389264 0.03389264 0.03389264 0.03322693 0.04901513 0.05902002
# [15] 0.13065495 0.13065495 0.13065495

#nuvec1
# [1] 0.04249967 0.04249967 0.04249967 0.04249967 0.04249967 0.04316920 0.03425722
# [8] 0.03463310 0.03463310 0.03463310 0.03463310 0.03300597 0.03300597 0.03333333
# [15] 0.03333333 0.03382827 0.03382827 0.04136801 0.04229269 0.05992018 0.22762677

# $lam
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# [,1] [,2]
# [1,] 8.9549 -10.29119

el2.test.wts Computes maximium-likelihood probability jumps for a single mean-
type hypothesis, based on two independent uncensored samples

Description

This function computes the maximum-likelihood probability jumps for a single mean-type hypoth-
esis, based on two samples that are independent, uncensored, and weighted. The target function for
the maximization is the constrained log(empirical likelihood) which can be expressed as,∑
dxi=1

wxi logµi+
∑

dyj=1

wyj log νj−η(1−
∑

dxi=1

µi)−δ(1−
∑

dyj=1

νj)−λ
∑

dxi=1

∑
dyj=1

(g(xi, yj)−mean)µiνj

where the variables are defined as follows:

x is a vector of data for the first sample

y is a vector of data for the second sample

wx is a vector of estimated weights for the first sample

wy is a vector of estimated weights for the second sample

µ is a vector of estimated probability jumps for the first sample

ν is a vector of estimated probability jumps for the second sample

Usage

el2.test.wts(u,v,wu,wv,mu0,nu0,indicmat,mean,lamOld=0)

Arguments

u a vector of uncensored data for the first sample

v a vector of uncensored data for the second sample

wu a vector of estimated weights for u

wv a vector of estimated weights for v

mu0 a vector of estimated probability jumps for u

nu0 a vector of estimated probability jumps for v

indicmat a matrix [g(ui, vj)−mean] where g(u, v) is a user-chosen function

mean a hypothesized value of E(g(u, v)), where E indicates “expected value.”

lamOld The previous solution of lambda, used as the starting point to search for new
solution of lambda.
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Details

This function is called by el2.cen.EMs. It is listed here because the user may find it useful else-
where.

The value of mean should be chosen between the maximum and minimum values of (ui, vj);
otherwise there may be no distributions for u and v that will satisfy the the mean-type hypothesis.
If mean is inside this interval, but the convergence is still not satisfactory, then the value of mean
should be moved closer to the NPMLE for E(g(u, v)). (The NPMLE itself should always be a
feasible value for mean.) The calculations for this function are derived in Owen (2001).

Value

el2.test.wts returns a list of values as follows:

u the vector of uncensored data for the first sample

wu the vector of weights for u

jumpu the vector of probability jumps for u that maximize the weighted empirical like-
lihood

v the vector of uncensored data for the second sample

wv the vector of weights for v

jumpv the vector of probability jumps for v that maximize the weighted empirical like-
lihood

lam the value of the Lagrangian multipler found by the calculations

Author(s)

William H. Barton <bbarton@lexmark.com> and modified by Mai Zhou.

References

Owen, A.B. (2001). Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, pp.223-227.

Examples

u<-c(10, 209, 273, 279, 324, 391, 566, 785)
v<-c(21, 38, 39, 51, 77, 185, 240, 289, 524)
wu<-c(2.442931, 1.122365, 1.113239, 1.113239, 1.104113, 1.104113, 1.000000, 1.000000)
wv<-c( 1, 1, 1, 1, 1, 1, 1, 1, 1)
mu0<-c(0.3774461, 0.1042739, 0.09649724, 0.09649724, 0.08872055, 0.08872055, 0.0739222, 0.0739222)
nu0<-c(0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1095413, 0.1287447,
0.1534831)

mean<-0.5

#let fun=function(x,y){x>=y}
indicmat<-matrix(nrow=8,ncol=9,c(
-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
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-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, -0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, 0.5))
el2.test.wts(u,v,wu,wv,mu0,nu0,indicmat,mean)

# jumpu
# [1] 0.3774461, 0.1042739, 0.09649724, 0.09649724, 0.08872055, 0.08872055, 0.0739222, 0.0739222

# jumpv
# [1] 0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1013718, 0.1095413, 0.1287447,
# [9] 0.1534831

# lam
# [1] 7.055471



Index

∗ nonparametric
el2.cen.EMm, 1
el2.cen.EMs, 4
el2.test.wtm, 7
el2.test.wts, 10

el2.cen.EMm, 1
el2.cen.EMs, 4
el2.test.wtm, 7
el2.test.wts, 10
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