Package ‘cifmodeling’
January 10, 2026

Title Visualization and Polytomous Modeling of Survival and Competing
Risks

Version 0.9.8

Description A publication-ready toolkit for modern survival and competing risks
analysis with a minimal, formula-based interface. Both nonparametric
estimation and direct polytomous regression of cumulative incidence
functions (CIFs) are supported. The main functions 'cifcurve()', 'cifplot()’,
and 'cifpanel()' estimate survival and CIF curves and produce high-quality
graphics with risk tables, censoring and competing-risk marks, and
multi-panel or inset layouts built on 'ggplot2' and 'ggsurvfit'. The modeling
function "polyreg()' performs direct polytomous regression for coherent joint
modeling of all cause-specific CIFs to estimate risk ratios, odds ratios, or
subdistribution hazard ratios at user-specified time points. All core
functions adopt a formula-and-data syntax and return tidy and extensible
outputs that integrate smoothly with 'modelsummary’, 'broom’, and the broader
'tidyverse' ecosystem. Key numerical routines are implemented in C++ via
"Repp'.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

RdMacros lifecycle

Config/Needs/website lifecycle

Depends R (>=4.1.0)

Suggests survival, mets, modelsummary, gtsummary, knitr, rmarkdown,
testthat (>= 3.0.0), pkgdown

Config/testthat/edition 3
LinkingTo Rcpp

Imports Rcpp, nlegslv, boot, ggsurvfit, ggplot2, patchwork, scales,
generics, lifecycle

VignetteBuilder knitr

URL https://gestimation.github.io/cifmodeling/,
https://github.com/gestimation/cifmodeling

1

https://gestimation.github.io/cifmodeling/
https://github.com/gestimation/cifmodeling

2 cifcurve

BugReports https://github.com/gestimation/cifmodeling/issues
NeedsCompilation yes

Author Shiro Tanaka [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-6817-5235>),
Shigetaka Kobari [ctb],
Chisato Honda [ctb]

Maintainer Shiro Tanaka <gestimation@gmail.com>
Repository CRAN
Date/Publication 2026-01-10 09:20:02 UTC

Contents
cifeurveo e 2
cifpanel L 5
cifplot e 15
diabetes.complications e 24
Event 25
extract_time_to_eVeNnt e e 26
polyreg 28
polyreg-methods L 35
PIoState e e e e e e 37

Index 39

cifcurve Calculate the Kaplan-Meier estimator and the Aalen-Johansen esti-
mator
Description

Core estimation routine that computes a survfit-compatible object from a formula + data interface
(Event() or survival: :Surv() on the LHS, and a stratification variable on the RHS if necessary).
The back-end C++ routine supports both weighted and stratified data. Use this when you want
numbers only (e.g. estimates, SEs, CIs and influence functions) and will plot it yourself.

Usage

cifcurve(
formula,
data,
weights = NULL,
n.risk.type = "weighted”,
subset.condition = NULL,
na.action = na.omit,
outcome.type = c("survival”, "competing-risk"),
code.eventl =1,

https://github.com/gestimation/cifmodeling/issues
https://orcid.org/0000-0001-6817-5235

cifcurve

code.event2 =

2,

code.censoring = 0,

error = NULL,

conf.type = "arcsine-square root",
conf.int = 0.95,
report.influence.function = FALSE,
report.survfit.std.err = FALSE,
engine = "calculateAJ_Rcpp”,
prob.bound = 1e-07

Arguments

formula

data
weights
n.risk.type

A model formula specifying the time-to-event outcome on the LHS (typically
Event(time, status) or survival::Surv(time, status)) and, optionally, a
stratification variable on the RHS. Unlike cifplot(), this function does not
accept a fitted survfit object.

A data frame containing variables in the formula.
Optional name of the weight variable in data. Weights must be nonnegative.

Character string; one of "weighted”, "unweighted”, or "ess". Controls which
risk set size is returned in $n.risk without affecting estimates or standard er-
rors. (default "weighted").

subset.condition

na.action

outcome. type

code.event1
code.event2
code.censoring

error

conf.type

conf.int

Optional character string giving a logical condition to subset data (default NULL).
A function specifying the action to take on missing values (default na.omit).

Character string specifying the type of time-to-event outcome. One of "survival”
(Kaplan-Meier) or "competing-risk” (Aalen-Johansen). If NULL (default), the
function automatically infers the outcome type from the data: if the event vari-
able has more than two unique levels, "competing-risk” is assumed; oth-
erwise, "survival” is used. You can also use abbreviations such as "S" or
"C". Mixed or ambiguous inputs (e.g., c("S", "C")) trigger automatic detec-
tion based on the event coding.

Integer code of the event of interest (default 1).
Integer code of the competing risk (default 2).
Integer code of censoring (default 0).

Character string specifying the method for SEs and CIs used internally. For
"survival” without weights, choose one of "greenwood” (default), "tsiatis”,
or "if". For "competing-risk"” without weights, choose one of "delta” (de-
fault), "aalen”, or "if". SEs and CIs based on influence functions ("if") is
recommended for weighted analysis.

Character specifying the method of transformation for CIs used internally (de-
fault arcsine-square root).

Numeric two-sided level of Cls (default 9. 95).

report.influence.function

Logical. When TRUE and engine = "calculateAJ_Rcpp”, the influence func-
tion is also computed and returned (default FALSE).

cifcurve

report.survfit.std.err

Logical. If TRUE, report SE on the log-survival scale (survfit’s convention). Oth-
erwise SE is on the probability scale.

engine Character. One of "auto”, "calculateKM”, or "calculateAJ_Rcpp" (default
"calculateAJ_Rcpp").

prob.bound Numeric lower bound used to internally truncate probabilities away from 0 and
1 (default 1e-7).

Details

Typical use cases:
* When outcome. type = "survival”, this is a thin wrapper around the KM estimator with the
chosen variance / CI transformation.

e When outcome. type = "competing-risk”, this computes the AJ estimator of CIF for code. event1.
The returned $surv is 1 - CIF, i.e. in the format that ggsurvfit expects.

e Use cifplot() if you want to go straight to a figure; use cifcurve() if you only want the
numbers.
Risk set display:

* Set n.risk. type to control whether $n.risk reflects weighted, unweighted, or Kish effec-
tive sample size (ESS) counts. This only affects the reported counts (e.g., for plotting or
debugging) and leaves estimates and SEs unchanged.

Standard error and confidence intervals:

Argument Description Default
error SE for KM: "greenwood”, "tsiatis"”, "if". For CIF: "aalen"”, "delta”, "if". "greenwood”, "delta
conf.type Transformation for Cls: "plain”, "log"”, "log-log"”, "arcsin”, "logit", or "none”. "arcsin”
conf.int Two-sided CI level. 0.95
Value

A "survfit"” object. For outcome.type="survival”, $surv is the survival function. For outcome. type="competing-risl
$surv equals 1 - CIF for code.eventl. SE and CIs are provided per error, conf.type and
conf.int. This enables an independent use of standard methods for survfit such as:
e summary(): time-by-time estimates with SEs and Cls
* plot(): base R stepwise survival/CIF curves
¢ mean(): restricted mean survival estimates with CIs
e quantile(): quantile estimates with CIs
Note that $n.risk, $n.event, and $n.censor are rounded up to the nearest integer regardless

of whether the data is weighted or not. Some methods (e.g. residuals.survfit) may not be
supported.

Lifecycle
[Stable]

cifpanel 5

See Also

polyreg() for log-odds product modeling of CIFs; cifplot() for display of a CIF; cifpanel()
for display of multiple CIFs; ggsurvfit::ggsurvfit, patchwork::patchwork and modelsummary::modelsummary
for display helpers.

Examples

data(diabetes.complications)
outputl <- cifcurve(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
outcome. type="competing-risk")
cifplot(outputl,
outcome.type = "competing-risk”,
type.y = "risk"”,
add.risktable = FALSE,
label.y = "CIF of diabetic retinopathy”,
label.x = "Years from registration”)

cifpanel Arrange multiple survival and CIF plots in a panel display

Description

cifpanel() is the panel-building counterpart of cifplot(). It takes one or more model formulas
(or, alternatively, one formula and several event-coding specifications) and returns a multi-panel
figure, typically as a patchwork-compatible object. Most display options (axis labels, marks, style,
ggsave options) are shared with cifplot(), but per-panel legends and number-at-risk tables are
suppressed to avoid duplicated display. Typical use cases are:

* Compare CIF (event 1) vs CIF (event 2) in a 1x2 layout.
* Compare survival/CIF curves across strata with a shared legend and matched axes.

* Display a plot with an enlarged y-axis inside a full-scale plot.

Usage

cifpanel(
plots = NULL,
formula = NULL,
formulas = NULL,
data = NULL,
weights = NULL,
subset.condition = NULL,
na.action = na.omit,
outcome.type = NULL,
code.eventl = 1,
code.event2 = 2,

code.censoring = 0,
code.events = NULL,
error = NULL,
conf.type = NULL,
conf.int = NULL,

n.risk.type = c("weighted”, "unweighted”, "ess"),

type.y = NULL,
label.x = NULL,
label.y = NULL,
label.strata = NULL,
order.strata = NULL,
level.strata = NULL,
limits.x = NULL,

limits.y = NULL,
breaks.x = NULL,
breaks.y = NULL,
add.conf = NULL,

add.risktable = NULL,
add.estimate.table = NULL,
symbol.risk.table = NULL,
font.size.risk.table = NULL,
add.censor.mark = NULL,
shape.censor.mark = NULL,
size.censor.mark = NULL,
add.competing.risk.mark = NULL,
competing.risk.time = NULL,
shape.competing.risk.mark = NULL,
size.competing.risk.mark = NULL,
add.intercurrent.event.mark = NULL,
intercurrent.event.time = NULL,
shape.intercurrent.event.mark = NULL,
size.intercurrent.event.mark = NULL,
add.quantile = NULL,
level.quantile = NULL,
rows.columns.panel = c(1, 1),
inset.panel = FALSE,

title.panel = NULL,
subtitle.panel = NULL,
caption.panel = NULL,

tag.panel = NULL,

title.plot = NULL,

style = "classic”,

palette = NULL,

linewidth = 0.8,

linetype = FALSE,

font.family = "sans",

font.size = 8,

legend.position = "top”,

cifpanel

cifpanel 7

legend.collect =
inset.left = 0.6,
inset.bottom = 0.05,

inset.right = 0.98,

inset.top = 0.45,

inset.align.to = c("panel”, "plot”, "full"),
inset.legend.position = NULL,

print.panel = FALSE,

filename.ggsave = NULL,

width.ggsave = NULL,

height.ggsave = NULL,

dpi.ggsave = 300,

survfit.info = NULL,

axis.info = NULL,

visual.info = NULL,

TRUE,

panel.info = NULL,
style.info = NULL,
inset.info = NULL,

print.info = NULL,
ggsave.info = NULL,

engine = "cifplot”,
)
Arguments

plots Optional list of existing ggplot objects to be arranged into a panel. When plots
is supplied, no new models are fitted; the plots are used as-is.

formula A model formula specifying the time-to-event outcome on the left-hand side
(typically Event(time, status) or Surv(time, status)) and, optionally, a
stratification variable on the right-hand side. Unlike cifplot(), this function
does not accept a fitted survfit object.

formulas Optional list of formulas. When given, each formula defines one panel. This is
the most common way to create “one variable per plot” panels.

data A data frame containing variables in the formula.

weights Optional name of the weight variable in data. Weights must be nonnegative.

subset.condition
Optional character string giving a logical condition to subset data (default NULL).

na.action A function specifying the action to take on missing values (default na.omit).

outcome. type Character string specifying the type of time-to-event outcome. One of "survival”
(Kaplan-Meier) or "competing-risk” (Aalen-Johansen). If NULL (default), the
function automatically infers the outcome type from the data: if the event vari-
able has more than two unique levels, "competing-risk” is assumed; oth-
erwise, "survival” is used. You can also use abbreviations such as "S" or
"C". Mixed or ambiguous inputs (e.g., c("S", "C")) trigger automatic detec-
tion based on the event coding.

code.event1 Integer code of the event of interest (default 1).

code.event?2
code.censoring

code.events

error

conf. type
conf.int

n.risk.type

type.y

label.x
label.y

label.strata

order.strata

level.strata

limits.x

limits.y

cifpanel

Integer code of the competing risk (default 2).
Integer code of censoring (default 0).

Optional specification of event/censoring codes. For single-panel calls, sup-

ply a numeric vector. For competing-risk outcomes, use c(eventl, event2,
censoring). For survival outcomes, a length-2 or length-3 vector is allowed:
c(event, censoring) or c(event, *, censoring), where any middle ele-
ment is ignored. When supplied, this argument overrides code.event1, code.event?2,
and code.censoring for the purpose of estimation. For panel displays (e.g.
cifpanel () or when panel.per.event = TRUE or panel.censoring = TRUE),
code.events may also be a list of such numeric vectors, one per panel.

Character string specifying the method for SEs and CIs used internally. For
"survival” without weights, choose one of "greenwood” (default), "tsiatis”,
or "if". For "competing-risk” without weights, choose one of "delta” (de-
fault), "aalen"”, or "if". SEs and CIs based on influence functions ("if") is
recommended for weighted analysis.

Character specifying the method of transformation for CIs used internally (de-
fault arcsine-square root).

Numeric two-sided level of Cls (default @. 95).

Character string; one of "weighted”, "unweighted”, or "ess”. Controls which
risk set size is returned in $n.risk without affecting estimates or standard er-
rors. (default "weighted").

Character string specifying the y-scale. For survival/CIF curves, "surv” implies
survival probabilities and "risk"” implies CIF (1-survival in simple survival set-
tings). Specify "cumhaz"” to plot cumulative hazard or "cloglog” to generate
a complementary log-log plot. If NULL, a default is chosen from outcome. type
or the survfit object.

Character x-axis label (default "Time").

Character y-axis label (default is chosen automatically from outcome. type and
type.y, e.g. "Survival", "Cumulative incidence" or "Cumulative hazard").

Character vector or named character vector specifying labels for strata. Names
(if present) must match the (re-ordered) underlying strata levels. Note: when
any of the panel modes is active (panel.per.variable = TRUE, panel.per.event
= TRUE, panel. censoring = TRUE, or panel.mode = "auto” and it actually dis-
patches to a panel), strata labels are suppressed to avoid duplicated legends
across sub-plots.

Optional character vector specifying the display order of strata in the legend/number-
at-risk table. Specify the levels of strata. Levels not listed are dropped.

Optional character vector giving the full set of expected strata levels. When
provided, both order.strata and label.strata are validated against it before
application.

Numeric length-2 vector specifying x-axis limits. If NULL, it is set from the fitted
object (typically c(@, max(time))).

Numeric length-2 vector specifying y-axis limits. If NULL, it is set to c(@, 1)
for probability-type outcomes.

cifpanel 9

breaks.x Numeric vector of x-axis breaks (default NULL).

breaks.y Numeric vector of y-axis breaks (default NULL).

add. conf Logical; if TRUE, adds a CI ribbon (via ggsurvfit: :add_confidence_interval()).
Default TRUE.

add.risktable Logical; if TRUE, adds a numbers-at-risk table under the plot. Default TRUE.
Note: when a panel mode is active, tables are suppressed.
add.estimate. table
Logical; if TRUE, adds a table of estimates and CIs. Default FALSE. Note: when
a panel mode is active, tables are suppressed.
symbol.risk.table
Character specifying the symbol used in the risk table to denote strata: "square”,
"circle”, or "triangle” (default "square").
font.size.risk.table
Numeric font size for texts in risk / estimate tables (default 3).
add.censor.mark

Logical; if TRUE, draws censoring marks on each curve (via ggsurvfit: :add_censor_mark()).
Default TRUE.
shape.censor.mark

Integer point shape used for censoring marks (default 3).
size.censor.mark
Numeric point size used for censoring marks (default 2).
add. competing.risk.mark
Logical; if TRUE, draws time marks for the competing event (event 2). If no
times are supplied via competing.risk.time, the function tries to extract them
automatically from the data. Default FALSE.
competing.risk.time
A named list of numeric vectors. Each name must correspond to a strata label,
and its numeric vector gives the times at which the competing event occurred in
that stratum. Typically left as 1ist() and filled internally.
shape.competing.risk.mark
Integer point shape for competing-risk marks (default 16).
size.competing.risk.mark
Numeric point size for competing-risk marks (default 2).
add.intercurrent.event.mark

Logical; if TRUE, overlays user-specified intercurrent-event times per stratum.
Default FALSE.
intercurrent.event.time

A named list of numeric vectors for intercurrent events (names must match
strata labels).
shape.intercurrent.event.mark
Integer point shape for intercurrent-event marks (default 1).
size.intercurrent.event.mark
Numeric point size for intercurrent-event marks (default 2).

add.quantile Logical; if TRUE, adds a quantile reference line (via ggsurvfit: :add_quantile()).
Default FALSE.

10

cifpanel

level.quantile Numeric quantile level to be shown (default @.5 for the median).
rows.columns.panel
Optional integer vector c(nrow, ncol) controlling the layout of the panel re-
turned by the panel modes. If NULL, an automatic layout is determined from the
number of subplots.

inset.panel Logical. If FALSE (default), all panels are arranged in a regular grid using
patchwork: :wrap_plots() and plot_layout(). If TRUE, the function switches
to “inset mode”: the first plot becomes the main plot and the second plot (only
the second) is drawn on top of it as an inset. Additional plots beyond the sec-
ond are ignored in inset mode. Use grid mode to display more than two panels
(inset.panel = FALSE).

title.panel, subtitle.panel, caption.panel
Character annotations applied to the whole panel layout (not to individual plots).
These are passed to patchwork: :plot_annotation() and are useful for creat-
ing figure-like outputs (title + subfigures + caption).

tag.panel Passed to patchwork: :plot_annotation() to auto-label individual panels (e.g.

nn

"A","B", "C"). Typical values are "A"”, "1", or "a". See ?patchwork: :plot_annotation.

title.plot Character vector of titles for each panel in the order they are drawn. Length-1
values are recycled to all panels. In inset mode, the first element refers to the
main plot and the second (if present) to the inset.

style Character choosing the base plot style: "classic”, "bold"”, "framed”, "grid”,
"gray" or "ggsurvfit"” (default "classic”). Abbreviations such as "C", "B",
"F", or "G" are also accepted.

palette Optional character vector specifying the color palette to use across strata.

linewidth Optional numeric specifying the line width of curve (default @. 8).

linetype Optional logical using different line types of curve (default FALSE).

font.family Character specifying the font family: "sans”, "serif”, or "mono” (default
"sans").

font.size Integer specifying the base font size (default 12).

legend.position
Character specifying the legend position: "top”, "right"”, "bottom”, "left",
or "none” (default "top"”).

legend.collect Logical; if TRUE, try to collect a single legend for all panels (passed to patch-
work). Default TRUE.

inset.left, inset.bottom, inset.right, inset.top
Numeric values in the range [@, 1] that define the inset box as fractions of
the reference area. inset.left / inset.right control the horizontal position,
inset.bottom/ inset. top control the vertical position. Values are interpreted
as “from the left/bottom” of the reference. For example, inset.left =0.4,
inset.right = 1.0 draws the inset over the right 60% of the reference area.

inset.align.to Character string specifying the coordinate system for the inset box. One of
"panel” (default; the box is placed relative to the panel area, i.e. the plotting
region excluding outer titles/margins), "plot” (relative to the entire plot area,
including axes and titles of the main plot), or "full” (relative to the full patch-
work canvas). This argument is passed to patchwork: :inset_element().

cifpanel 11

inset.legend.position
Optional legend position for the inset plot only. If NULL (default), the inset plot
keeps whatever legend position was defined for it (often this means a legend will
also be inset). Set, for example, "none” to hide the legend inside the inset, while
still showing the main plot’s legend.

print.panel Logical. When TRUE, panel displays created internally are printed automatically
in interactive sessions; otherwise they are returned invisibly for further modifi-
cation (default FALSE).

filename.ggsave

Character; if non-NULL, save the plot to this file.
width.ggsave Numeric width passed to ggplot2::ggsave() (default 6).
height.ggsave Numeric height passed to ggplot2::ggsave() (default 6).

dpi.ggsave Numeric DPI passed to ggplot2: :ggsave() (default 300).
survfit.info, axis.info, visual.info, panel.info, style.info,
print.info, ggsave.info, inset.info
Internal lists used for programmatic control. Not intended for direct user input.

engine Character string specifying the internal rendering engine used to build each
panel. Currently intended for internal use; default is "cifplot”.

Additional arguments forwarded to the internal cifplot_single() calls that
build each panel. Use this to pass low-level options such as competing.risk. time,
intercurrent.event. time, or styling overrides.

Details

Overview:

cifpanel () composes multiple survival/CIF plots into a single figure. For each panel, it estimates
curves via cifcurve() and renders them with cifplot(). You can supply a single formula
reused across panels or a list in formulas (one per panel). When both are provided, formulas
wins.

Outcome type & event coding:

» Use outcome. type to set per-panel estimator ("survival”=KM, "competing-risk"=Al).
* Alternatively, pass code.events per panel to infer the type:

— length 2 = survival: c(event1, censor)

— length 3 = competing-risk: c(event1, event2, censor)

¢ If code.events is NULL, code.event1, code.event2, code.censoring are combined into
code.events = list(c(code.eventl, code.event2, code.censoring)) with NA values
dropped.

* If outcome. type is NULL, the function infers each panel from its code.events[[i]] length.
When both are given, outcome. type takes precedence.

* Control risk-set displays via n.risk.type, which is recycled per panel and forwarded to
cifcurve() to decide which risk set size populates $n.risk (e.g., weighted vs. unweighted
counts).

12

cifpanel

Panel-wise vs shared arguments:

Panel layout is specified by length-2 vector rows.columns.panel. This function can also auto-
matically determine the panel count in the following order: (1) if plots is supplied, its length
defines the number of plots, (2) else if formulas is supplied, its length defines the number of
plots, (3) else if code.events is supplied, its length defines the number of plots together with
formula, and (4) otherwise rows.columns.panel=c(1,1).

Many arguments accept a scalar (recycled to all panels) or a list/vector (one entry per panel).
Precedence: panel-wise explicit values > shared scalar > internal defaults. Length-1 inputs are
recycled.

Grid vs inset composition:

¢ Grid mode (inset.panel = FALSE, default): plots are arranged with patchwork: :wrap_plots()
and plot_layout(). If legend.collect = TRUE, legends are collected across panels where
possible.

¢ Inset mode (inset.panel = TRUE): the second plot is overlaid into the first using patchwork: : inset_element ().
Only the first two plots are used; extra plots are ignored. Control the inset box with inset. left,
inset.bottom, inset.right, inset.top, and its reference frame via inset.align.to
("panel”, "plot”, or "full").

Advanced panel controls (forwarded to cifplot()):
The following arguments allow per-panel control by supplying vectors/lists, or shared control by
supplying scalars. They are forwarded to cifplot().

» formula or formulas: one formula or a list of formulas; each entry creates a panel.

* data, outcome. type, code.events, type.y: recycled across panels unless a list is supplied
for per-panel control.

* rows.columns.panel: specification of grid layout by c(rows, cols).

e inset.panel: inset layout.

e title.panel, subtitle.panel, caption.panel, title.plot: overall titles and captions.

* tag.panel: panel tag style (e.g., "A", "a", "1").

e label.x, label.y, limits.x, limits.y, breaks.x, breaks.y: shared axis control unless a
list is supplied for per-panel control.

Scale & labels:

Argument Meaning Default
type.y "risk” (CIF y-axis) or NULL (survival). inferred
label.x, label.y Axis labels per panel. auto
label.strata Legend labels per panel. from data
limits.x, limits.y Axis limits c(min, max). auto

breaks.x, breaks.y Axis breaks (forwarded to breaks. x/breaks.y). auto

Plot layers (toggles):
Argument Effect Default
add. conf CI ribbon. TRUE

add.censor.mark Censor marks. TRUE

cifpanel 13

add.competing.risk.mark Marks for event2 at supplied times. FALSE
add.intercurrent.event.mark User-specified intercurrent marks. FALSE
add.quantile Quantile reference line(s). FALSE

(Time marks inputs such as competing.risk.time/ intercurrent.event. time can be given
via ... if needed; names must match strata labels.)

Legend & annotations:

* legend.position: "top”, "right"”, "bottom”, "left"”, or "none” (applies to all panels).
e Grid mode: legend.collect = TRUE attempts a shared legend.

¢ Panel annotations: title.panel, subtitle.panel, caption.panel.

» Tagging: tag.panel is passed to patchwork: :plot_annotation().

* Ininset mode, title.plot = c(title_base, title_inset) labels the two plots.

Export (optional):
If filename. ggsave is non-NULL, the composed panel is saved with ggsave () usingwidth. ggsave,
height.ggsave, and dpi.ggsave. Otherwise, the function returns objects without saving.

Notes

* Mixed panel types are supported (e.g., AJ in panel 1; KM in panel 2).
o If formulas is shorter than the grid capacity, empty slots are ignored.

* When supplying vectors/lists per panel, their lengths must match the number of panels;
length-1 inputs are recycled; otherwise an error is thrown.

 For CIF displays, set type.y = "risk"”. For survival scale, use type.y = NULL or = "surv".
For ADaM-style data, use code.events=c(@,1) or code.eventl =0, code.censoring =
1.

* Additional graphical options (e.g., theme) can be added post-hoc to each element of 1ist.plot
or to the composed patchwork.

Value
A "cifpanel” object (returned invisibly), which is a list with at least the following elements:
e list.plot: alist of ggplot objects, one per panel
* patchwork: a patchwork object representing the composed panel

* plot: reserved for backwards compatibility (always NULL)

» metadata fields mirroring those in cifplot() (such as information on the fitted curves and
display settings)

When print.panel = TRUE, the patchwork object is printed in interactive sessions in addition to

being returned.

Lifecycle

[Experimental]

14 cifpanel

See Also

polyreg() for log-odds product modeling of CIFs; cifcurve() for KM/AJ estimators; cifplot()
for display of a CIF; ggsurvfit::ggsurvfit, patchwork::patchwork and modelsummary::modelsummary
for display helpers.

Examples

data(diabetes.complications)
outputl <- cifpanel(
title.panel = "A comparison of cumulative incidence of competing events”,
rows.columns.panel = c(1,2),
formula = Event(t, epsilon) ~ fruitq,
data = diabetes.complications,
outcome.type = "competing-risk”,
code.events = list(c(1,2,0), c(2,1,0)),
label.y = c("Diabetic retinopathy”, "Macrovascular complications”),
label.x = "Years from registration”,
subtitle.panel = "Stratified by fruit intake",
caption.panel = "Data: diabetes.complications”,
title.plot = c("Diabetic retinopathy”, "Macrovascular complications”),
legend.position = "bottom”,
legend.collect=TRUE
)
print(outputl)

output2 <- cifplot(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
outcome. type="competing-risk"”,
code.eventl1=2,
code.event2=1,
add.conf = FALSE,
add.risktable = FALSE,
label.y="CIF of macrovascular complications”,
label.x="Years from registration”)
output3 <- cifplot(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
outcome. type="competing-risk"”,
code.event1=2,
code.event2=1,
add.conf = FALSE,
add.risktable = FALSE,
label.y="",
label.x="",
limits.y=c(0,0.15))
output4 <- list(a = output2$plot, b = output3s$plot)
output5 <- cifpanel(plots = output4,
inset.panel = TRUE,
inset.left = 0.40, inset.bottom = 0.45,
inset.right = 1.00, inset.top = 0.95,
inset.align.to = "plot”,
inset.legend.position = "none”,
legend.position = "bottom")

citplot 15

print(output5)
cifplot Generate a survival/CIF curve with marks that represent censoring,
competing risks and intercurrent events
Description

This function generates a survival or CIF curve from a unified formula—data interface or from an ex-
isting survfit object. When a formula is supplied, the LHS is typically Event () or survival: :Surv(),
and the RHS specifies an optional stratification variable. In addition to the curves themselves,
cifplot() can add numbers-at-risk tables, tables of point estimates and Cls, censoring marks,
competing-risk marks, and intercurrent-event marks.

For usual single-panel mode, the function returns an object whose plot component is a regular
ggplot object that can be further modified (compatible with + and %+%). For more complex multi-
panel displays, cifplot() can internally call cifpanel() via several “panel modes” (per event,
per variable, or censoring-focused).

Usage
cifplot(
formula_or_fit,
data = NULL,

weights = NULL,

subset.condition = NULL,

na.action = na.omit,

outcome.type = c("competing-risk”, "survival"),
code.eventl = 1,

code.event2 = 2,

code.censoring = 0,

code.events = NULL,

error = NULL,

conf.type = "arcsine-square root",
conf.int = 0.95,

n.risk.type = c("weighted”, "unweighted”, "ess"),
type.y = NULL,

label.x = "Time",

label.y = NULL,

label.strata = NULL,

level.strata = NULL,

order.strata = NULL,

limits.x = NULL,

limits.y = NULL,

breaks.x = NULL,

breaks.y = NULL,
use.coord.cartesian = FALSE,

16

add.conf = TRUE,

add.risktable = TRUE,
add.estimate.table = FALSE,
symbol.risk.table = "square”,
font.size.risk.table = 3,
add.censor.mark = TRUE,
shape.censor.mark = 3,
size.censor.mark = 2,
add.competing.risk.mark = FALSE,
competing.risk.time = list(),
shape.competing.risk.mark = 16,
size.competing.risk.mark = 2,
add.intercurrent.event.mark = FALSE,
intercurrent.event.time = list(),
shape.intercurrent.event.mark = 1,
size.intercurrent.event.mark = 2,
add.quantile = FALSE,
level.quantile = 0.5,
panel.per.event = FALSE,
panel.censoring = FALSE,
panel.per.variable = FALSE,
panel.mode = "auto”,
rows.columns.panel = NULL,

style = "classic”,

palette = NULL,

linewidth = 0.8,

linetype = FALSE,

font.family = "sans",

font.size = 12,

legend.position = "top”,
print.panel = FALSE,
filename.ggsave = NULL,
width.ggsave = 6,

height.ggsave = 6,

dpi.ggsave = 300,

survfit.info = NULL,

axis.info = NULL,

visual.info = NULL,

panel.info = NULL,

style.info = NULL,

inset.info = NULL,

print.info = NULL,

ggsave.info = NULL,

cifplot

citplot 17

Arguments

formula_or_fit Either a model formula or a survfit object. When a formula is supplied, the LHS
must be Event(time, status) or Surv(time, status). The RHS specifies an
optional stratification variable.

data A data frame containing variables in the formula.

weights Optional name of the weight variable in data. Weights must be nonnegative.
subset.condition
Optional character string giving a logical condition to subset data (default NULL).

na.action A function specifying the action to take on missing values (default na.omit).

outcome. type Character string specifying the type of time-to-event outcome. One of "survival”
(Kaplan-Meier) or "competing-risk” (Aalen-Johansen). If NULL (default), the
function automatically infers the outcome type from the data: if the event vari-
able has more than two unique levels, "competing-risk” is assumed; oth-
erwise, "survival” is used. You can also use abbreviations such as "S" or
"C". Mixed or ambiguous inputs (e.g., c("S", "C")) trigger automatic detec-
tion based on the event coding.

code.event1 Integer code of the event of interest (default 1).
code.event?2 Integer code of the competing risk (default 2).
code.censoring Integer code of censoring (default 0).

code.events Optional specification of event/censoring codes. For single-panel calls, sup-
ply a numeric vector. For competing-risk outcomes, use c(event1, event2,
censoring). For survival outcomes, a length-2 or length-3 vector is allowed:
c(event, censoring) or c(event, *, censoring), where any middle ele-
ment is ignored. When supplied, this argument overrides code. event1, code.event?2,
and code.censoring for the purpose of estimation. For panel displays (e.g.
cifpanel () or when panel.per.event = TRUE or panel.censoring = TRUE),
code.events may also be a list of such numeric vectors, one per panel.

error Character string specifying the method for SEs and CIs used internally. For
"survival” without weights, choose one of "greenwood” (default), "tsiatis”,
or "if". For "competing-risk” without weights, choose one of "delta” (de-
fault), "aalen”, or "if". SEs and CIs based on influence functions ("if") is
recommended for weighted analysis.

conf. type Character specifying the method of transformation for CIs used internally (de-
fault arcsine-square root).

conf.int Numeric two-sided level of Cls (default @. 95).

n.risk.type Character string; one of "weighted”, "unweighted”, or "ess”. Controls which

risk set size is returned in $n.risk without affecting estimates or standard er-
rors. (default "weighted").

type.y Character string specifying the y-scale. For survival/CIF curves, "surv" implies
survival probabilities and "risk" implies CIF (1-survival in simple survival set-
tings). Specify "cumhaz"” to plot cumulative hazard or "cloglog” to generate
a complementary log-log plot. If NULL, a default is chosen from outcome. type
or the survfit object.

label.x Character x-axis label (default "Time").

18

cifplot

label.y Character y-axis label (default is chosen automatically from outcome. type and
type.y, e.g. "Survival", "Cumulative incidence" or "Cumulative hazard").

label.strata Character vector or named character vector specifying labels for strata. Names
(if present) must match the (re-ordered) underlying strata levels. Note: when
any of the panel modes is active (panel.per.variable = TRUE, panel.per.event
= TRUE, panel.censoring = TRUE, or panel.mode = "auto” and it actually dis-
patches to a panel), strata labels are suppressed to avoid duplicated legends
across sub-plots.

level.strata Optional character vector giving the full set of expected strata levels. When
provided, both order.strata and label.strata are validated against it before
application.

order.strata Optional character vector specifying the display order of strata in the legend/number-
at-risk table. Specify the levels of strata. Levels not listed are dropped.

limits.x Numeric length-2 vector specifying x-axis limits. If NULL, it is set from the fitted
object (typically c(@, max(time))).

limits.y Numeric length-2 vector specifying y-axis limits. If NULL, it is set to c(@, 1)
for probability-type outcomes.

breaks.x Numeric vector of x-axis breaks (default NULL).

breaks.y Numeric vector of y-axis breaks (default NULL).

use.coord.cartesian
Logical; if TRUE, uses ggplot2::coord_cartesian() for zooming instead of
changing the scale limits (default FALSE).

add.conf Logical; if TRUE, adds a CI ribbon (via ggsurvfit::add_confidence_interval()).
Default TRUE.

add.risktable Logical; if TRUE, adds a numbers-at-risk table under the plot. Default TRUE.
Note: when a panel mode is active, tables are suppressed.

add.estimate.table
Logical; if TRUE, adds a table of estimates and CIs. Default FALSE. Note: when
a panel mode is active, tables are suppressed.

symbol.risk.table
Character specifying the symbol used in the risk table to denote strata: "square”,
"circle”, or "triangle” (default "square").

font.size.risk.table
Numeric font size for texts in risk / estimate tables (default 3).

add. censor.mark

Logical; if TRUE, draws censoring marks on each curve (via ggsurvfit: :add_censor_mark()).
Default TRUE.
shape.censor.mark

Integer point shape used for censoring marks (default 3).
size.censor.mark
Numeric point size used for censoring marks (default 2).
add.competing.risk.mark
Logical; if TRUE, draws time marks for the competing event (event 2). If no
times are supplied via competing.risk. time, the function tries to extract them
automatically from the data. Default FALSE.

citplot

19

competing.risk.time

shape.competing

A named list of numeric vectors. Each name must correspond to a strata label,
and its numeric vector gives the times at which the competing event occurred in
that stratum. Typically left as 1ist () and filled internally.

.risk.mark

Integer point shape for competing-risk marks (default 16).

size.competing.risk.mark

Numeric point size for competing-risk marks (default 2).

add.intercurrent.event.mark

Logical; if TRUE, overlays user-specified intercurrent-event times per stratum.
Default FALSE.

intercurrent.event.time

A named list of numeric vectors for intercurrent events (names must match
strata labels).

shape.intercurrent.event.mark

Integer point shape for intercurrent-event marks (default 1).

size.intercurrent.event.mark

add.quantile

level.quantile
panel.per.event

panel.censoring

Numeric point size for intercurrent-event marks (default 2).

Logical; if TRUE, adds a quantile reference line (via ggsurvfit: :add_quantile()).
Default FALSE.

Numeric quantile level to be shown (default @.5 for the median).

Logical. Explicit panel mode. If TRUE and outcome. type == "competing-risk”,
cifplot() internally calls cifpanel () to display two event-specific CIFs side-
by-side (event 1 and event 2) using reversed code.events. Ignored for non-
competing-risk outcomes.

Logical. Explicit panel mode. If TRUE and outcome.type == "survival”,
cifplot() internally calls cifpanel() to display KM curves for (event, censor)
and (censor, event) so that censoring patterns can be inspected.

panel.per.variable

panel.mode

Logical. Explicit panel mode. If TRUE and the RHS of the formula has multiple
covariates (e.g. ~ a + b + ¢), the function produces a panel where each variable
in the RHS is used once as the stratification factor.

Character specifying Automatic panel mode. If "auto” and none of panel.per.variable,
panel.per.event, panel.censoring has been set to TRUE, the function chooses

a suitable panel mode automatically: (i) if the formula RHS has 2+ variables, it

behaves like panel.per.variable = TRUE; (ii) otherwise, if outcome. type ==
"competing-risk”, it behaves like panel.per.event = TRUE; (iii) otherwise,

if outcome. type == "survival”, it behaves like panel.censoring = TRUE. If

a panel mode is explicitly specified, panel.mode is ignored.

rows.columns.panel

Optional integer vector c(nrow, ncol) controlling the layout of the panel re-
turned by the panel modes. If NULL, an automatic layout is determined from the
number of subplots.

20 cifplot

style Character choosing the base plot style: "classic”, "bold", "framed”, "grid",
"gray"” or "ggsurvfit"” (default "classic"). Abbreviations such as "C", "B",
"F", or "G" are also accepted.

palette Optional character vector specifying the color palette to use across strata.

linewidth Optional numeric specifying the line width of curve (default @. 8).

linetype Optional logical using different line types of curve (default FALSE).

font.family Character specifying the font family: "sans”, "serif”, or "mono” (default
"sans").

font.size Integer specifying the base font size (default 12).

legend.position
Character specifying the legend position: "top”, "right"”, "bottom”, "left",
or "none” (default "top").

print.panel Logical. When TRUE, panel displays created internally are printed automatically
in interactive sessions; otherwise they are returned invisibly for further modifi-
cation (default FALSE).

filename.ggsave

Character; if non-NULL, save the plot to this file.
width.ggsave Numeric width passed to ggplot2: :ggsave() (default 6).
height.ggsave Numeric height passed to ggplot2::ggsave() (default 6).

dpi.ggsave Numeric DPI passed to ggplot2: :ggsave() (default 300).

survfit.info, axis.info, visual.info, panel.info, style.info,
inset.info, print.info, ggsave.info
Internal lists used for programmatic control. Not intended for direct user input.

Additional arguments passed to internal helper functions.

Details

Typical use cases:

¢ Draw one survival/CIF curve set by exposure groups (e.g., treatment vs control).

 Call cifpanel () with a simplified code to create a panel displaying plots of multiple strati-
fied survival/CIF curves or CIF curves for each event type.

* Add CIs and censor/competing-risk/intercurrent-event marks.

* Add number-at-risk table to display the number at risk or the estimated survival probabilities
or CIFs and CIs at each point in time.

Key arguments shared with cifcurve():

* Outcome type and estimator

— outcome. type = "survival”: Kaplan-Meier estimator

— outcome. type = "competing-risk”: Aalen-Johansen estimator
* Confidence intervals

— conf.int sets the two-sided level (default 0.95)

— conf. type chooses the transformation ("arcsine-square root”, "plain”, "log", "log-log"
"logit", or "none")

citplot

21

error chooses the estimator for SE ("greenwood”, "tsiatis” or "if" for survival
curves and "delta”, "aalen” or "if" for CIFs)

¢ Risk sets used in tables

n.risk.type controls whether $n. risk reflects weighted, unweighted, or effective sam-
ple size counts when building risk tables (forwarded to cifcurve()); when a fitted
survfit object is supplied, existing risk sets are used as-is.

Key arguments for cifplot():

¢ Data visualization

add. conf adds CIs on the ggplot2-based plot

add.competing.risk.mark and add.intercurrent.event.mark adds symbols to de-
scribe competing risks or intercurrent events in addition to conventional censoring marks
with add. censor.mark

add.risktable adds numbers at risk
add.estimate. table adds time-by-time estimates and Cls
add.quantile adds a reference line at a chosen quantile level

¢ Plot customization

type.y chooses y-axis ("surv” for survival and "risk" for 1-survival/CIF)
limits.x, limits.y, breaks.x, breaks.y: numeric vectors for axis control

style specifies the appearance of plot ("classic”, "bold"”, "framed”, "grid", "gray"
or "ggsurvfit")

palette specifies color of each curve (e.g. palette=c("bluel”, "cyan3”, "navy", "deepskyblue3")))

* Panel display

panel.per.variable produces multiple survival/CIF curves per stratification variable
specified in the formula

panel.per.event produces CIF curves for each event type

panel.censoring produces the Kaplan—-Meier curves for (event, censor) and (censor,
event) so that censoring patterns can be inspected

panel.mode uses automatic panel mode

When panel.per.event = TRUE, two panels are created with code.events = list(c(el, e2,
c), c(e2, el, c)), where code.events = c(el, e2, c) is the input coding for eventl, event2,
and censoring. Common legend is collected by default (legend.collect = TRUE).

Numeric stratification variables are normalized automatically. Columns with fewer than nine
distinct numeric values are coerced to factors; columns with nine or more distinct numeric values
are split at the median into “Below median” and “Above median” strata.

Advanced control not required for typical use:

The arguments below fine-tune internal estimation and figure appearance. Most users do not
need to change these defaults.

Graphical layers:
Argument Description Default
add. conf Add confidence interval ribbon. TRUE
add.risktable Add numbers-at-risk table below the plot. TRUE

add.estimate. table Add estimates and confidence intervals table. FALSE

22 cifplot
symbol.risk.table Symbol for strata in risk / estimate tables "square”
font.size.risk.table Font size for texts in risk / estimate tables 3
add. censor.mark Add censoring marks. TRUE
add. competing.risk.mark Add marks for event2 of "competing-risk"” outcome. FALSE
add.intercurrent.event.mark Add intercurrent event marks at user-specified times. FALSE
add.quantile Add quantile reference lines. FALSE
level.quantile Quantile level for add.quantile. 0.5

Time for marks:
Argument Description
competing.risk.time Named list of numeric vectors that contains times of competing risks. Names must match stra

intercurrent.event.time Named list of numeric vectors that contains times of intercurrent events. Names must match s

Appearance of marks:

Argument Applies to Default
shape.censor.mark Censoring marks 3 (cross)
size.censor.mark Censoring marks 2
shape.competing.risk.mark Competing-risk marks 16 (filled circle)
size.competing.risk.mark Competing-risk marks 2
shape.intercurrent.event.mark Intercurrent marks 1 (circle)
size.intercurrent.event.mark Intercurrent marks 2
Panel display:
Argument Description

panel.per.variable

panel.per.event

panel.censoring

panel.mode with 2+ stratification variables
panel.mode with outcome.type = "competing-risk"
panel.mode with outcome.type = "survival"

One panel per stratification variable

For "competing-risk"”, show CIFs of event 1 and event 2
For survival, show (event, censor) vs (censor, event)
Behave like panel.per.variable

Behave like panel.per.event

Behave like panel.censoring

Axes and legend:

Argument Description Default
limits.x, limits.y Axis limits (c(min, max)) Auto
breaks.x, breaks.y Tick breaks for x and y axes Auto
use.coord.cartesian For zooming use coord_cartesian() FALSE
legend.position "top”, "right”, "bottom”, "left"”, "none” "top"

Export:

citplot 23

Argument Description Default
filename.ggsave If non-NULL, save the plot using ggsave() NULL
width.ggsave Size passed to ggsave() 6
height.ggsave Size passed to ggsave() 6
dpi.ggsave DPI passed to ggsave() 300

Notes

» For CIF displays, set type.y = "risk”. For survival scale, use type.y = NULL or = "surv".
For a cumulative hazard plot, use type.y = "cumhaz"”. To generate a log-log plot, use
type.y = "cloglog”.

* Event coding can be controlled via code.eventl, code.event2, code.censoring. For
ADaM-style data, use code.event1 =0, code.censoring = 1.

* Per-stratum time lists should have names identical to plotted strata labels.

Value
A "cifplot” object (a list) with at least the following elements:

* plot: a ggplot object containing the main plot

* patchwork: reserved for compatibility with panel displays (typically NULL for single-panel
plots)

e survfit.info, axis.info, visual.info,panel.info, style.info, inset.info, print.info,
ggsave.info: internal lists storing the fitted curves and display settings

* version: a character string giving the cifmodeling version used

* call: the original function call

When a panel mode is active and print.panel = TRUE, the panel is also printed in interactive ses-
sions.

Lifecycle
[Stable]

See Also

polyreg() for log-odds product modeling of CIFs; cifcurve() for KM/AJ estimators; cifpanel()
for display of multiple CIFs; ggsurvfit::ggsurvfit, patchwork::patchwork and modelsummary::modelsummary
for display helpers.

Examples

data(diabetes.complications)
cifplot(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
outcome. type="competing-risk”,
add.risktable = FALSE,
label.y='CIF of diabetic retinopathy',
label.x="'Years from registration')

24 diabetes.complications

diabetes.complications
Data from a cohort study of patients with type 2 diabetes

Description

Anonymized data from a cohort study of patients with type 2 diabetes followed for ocular and
macro-vascular complications.

Usage

data(diabetes.complications)

Format
A data frame with 978 observations and 19 variables:

t Follow-up time in years.

epsilon Event type indicator (0 = censored, 1 = diabetic retinopathy, 2 = macro-vascular complica-
tion).

fruit Fruit intake (g/day).

fruitq Quartile of fruit intake.

fruitql Binary indicator for low fruit intake.

strata Stratum used for inverse probability of censoring weights.
age Age at baseline (years).

sex Sex coded as 0 = woman, 1 = man.

bmi Body mass index at baseline.

hbalc Hemoglobin Alc (%).

diabetes_duration Duration of diabetes (years).
drug_oha Indicator for oral hypoglycemic agent use.
drug_insulin Indicator for insulin use.

sbp Systolic blood pressure (mmHg).

1dl Low-density lipoprotein cholesterol (mg/dL).

hdl High-density lipoprotein cholesterol (mg/dL).

tg Triglycerides (mg/dL).

current_smoker Indicator for current smoking status.
alcohol_drinker Indicator for current alcohol drinking.

Itpa Leisure-time physical activity (METs).

Details

The variables include follow-up time, cause-specific event indicators, exposure indicators for fruit
intake, censoring strata, and a set of covariates used in the package vignettes.

Event 25

Source

Anonymized data supplied with the package for documentation and demonstration purposes.

Examples

data(diabetes.complications)
str(diabetes.complications)

Event Create a survival or competing-risks response

Description

A lightweight response constructor used in cifcurve() and polyreg() to pass survival and competing-
risks data via a model formula.

Usage

Event(time, event, allowed = getOption("cifmodeling.allowed”, c(0, 1, 2)))

Arguments
time Numeric vector of follow-up times (non-negative).
event Integer (O=censor, 1,2,...) or a character/factor vector whose levels are numeric
codes "0","1","2",... for competing events.
allowed Numeric vector of acceptable event codes.
Value

An object of class "Event” (a 2-column matrix) with columns time, event.

Lifecycle

[Stable]

See Also

polyreg() for log-odds product modeling of CIFs; cifcurve() for KM/AJ estimators; cifplot()
for display of a CIF; cifpanel () for display of multiple CIFs; ggsurvfit::ggsurvfit, patchwork::patchwork
and modelsummary::modelsummary for display helpers.

26 extract_time_to_event

Examples

event: 0@=censor, 1=primary, 2=competing
data(diabetes.complications)
output <- polyreg(
nuisance.model = Event(t, epsilon) ~ +1,
exposure = "fruitql”,
data = diabetes.complications,
effect.measurel = "RR",
effect.measure2 = "RR",
time.point = 8,
outcome.type = "competing-risk”

extract_time_to_event Extract per-stratum event times from a formula and data

Description

Creates a list of event times that can be passed to downstream visualization or analysis functions
such as competing.risk.time or intercurrent.event.time in cifplot() and cifpanel().
Event types are specified by event 1, event 2, censoring, or user-specified codes.

Usage

extract_time_to_event(
formula,
data,
subset.condition = NULL,
na.action = na.omit,
which.event = c("event2”, "eventl”, "censor”, "censoring”, "user_specified"),
code.eventl 1,
code.event2 = 2,
code.censoring = 0,
code.user.specified = NULL,
read.unique.time = TRUE,
drop.empty = TRUE

)

Arguments
formula A model formula specifying the outcome and (optionally) strata().
data A data frame containing variables in formula.

subset.condition
Optional expression (as a character string) defining a subset of data to analyse.
Defaults to NULL.

na.action Function to handle missing values (default: na.omit in stats).

extract_time_to_event 27

which.event One of "event1”, "event2”, "censor", "censoring”, or "user_specified”,
indicating which event type to extract times for.

code.eventl, code.event2, code.censoring
Integer codes representing the event and censoring categories. Defaults are 1, 2,
and 9, respectively.

code.user.specified
When which.event = "user_specified”, the integer event code to extract (e.g.,
3 for an intercurrent event).

read.unique.time

Logical if TRUE, only unique and sorted time points are returned for each stra-
tum.

drop.empty Logical if TRUE (default), strata with no events are dropped from the returned list.
Set to FALSE to retain empty strata as numeric (@) vectors (useful for diagnostics
or consistent list length).

Details

This function is typically used internally by plotting and model functions, but can also be called
directly to inspect the per-stratum event-time structure of a data frame.

Value

A named list of numeric vectors, where each element corresponds to a stratum and contains the
event times of the selected type.

Lifecycle
[Stable]

See Also

polyreg() for log-odds product modeling of CIFs; cifcurve() for KM/AJ estimators; cifplot()
for display of a CIF; cifpanel () for display of multiple CIFs; ggsurvfit::ggsurvfit, patchwork::patchwork
and modelsummary::modelsummary for display helpers.

Examples

data(diabetes.complications)
output <- extract_time_to_event(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
which.event = "event2")
cifplot(Event(t,epsilon) ~ fruitq,
data = diabetes.complications,
outcome. type="competing-risk”,
add. conf=FALSE,
add.risktable=FALSE,
add. censor.mark=FALSE,
add.competing.risk.mark=TRUE,
competing.risk.time=output,
label.y="CIF of diabetic retinopathy”,

28 polyreg
label.x="Years from registration”)
polyreg Fit coherent regression models of CIFs using polytomous log odds
products
Description

Usage

polyreg(

nuisance.model,
exposure,

strata = NULL,

data,

subset.condition = NULL,
na.action = na.omit,
code.eventl = 1,
code.event2 = 2,
code.censoring = 0,
code.exposure.ref = 0,

effect.measurel = "RR",
effect.measure2 = "RR",
time.point = NULL,

outcome.type = "competing-risk”,

conf.int = 0.95,
report.nuisance.parameter = FALSE,
report.optim.convergence = FALSE,
report.sandwich.conf = TRUE,
report.boot.conf = NULL,

boot.bca = FALSE,

boot.multiplier = "rademacher”,
boot.replications = 200,
boot.seed = 46,

nlegslv.method = "Newton”,
optim.parameter1 = 1e-06,

polyreg() fits regression models of CIFs, targeting familiar effect measures (risk ratios, odds ratios
and subdistribution hazard ratios). Modeling the nuisance structure using polytomous log odds
products ensures that the sum of cause-specific CIFs does not exceed one, and enables coherent
modelling of the multiplicative effects.

This function follows a familiar formula—data workflow: the outcome and covariates other than the
exposure are specified through a formula in nuisance.model (with Event () or survival: :Surv()
on the LHS), and the exposure of interest is given by a separate variable name in exposure.
The fitted object contains tidy summaries of exposure effects (point estimates, SEs, Cls, and p-
values) and can be summarised with summary.polyreg() or formatted with external tools such as
modelsummary: :modelsummary().

polyreg 29

optim.parameter2 = 1e-06,
optim.parameter3 = 100,
optim.parameter4 = 50,
optim.parameter5 = 50,
optim.parameter6 = 50,
optim.parameter7 = 1e-10,
optim.parameter8 = 1e-06,
optim.parameter9 = 1e-06,
optim.parameter10 = 40,
optim.parameter11 = 0.025,
optim.parameter12 = 2,
optim.parameter13 = 0.5,
data.initial.values = NULL,
normalize.covariate = TRUE,
terminate.time.point = TRUE,
prob.bound = 1e-07

Arguments

nuisance.model A formula describing the outcome and nuisance covariates, excluding the expo-
sure of interest. The LHS mustbe Event(time, status) or survival::Surv(time,

status).
exposure A character string giving the name of the categorical exposure variable in data.
strata Optional character string with the name of the stratification variable used to

adjust for dependent censoring (default NULL).
data A data frame containing the outcome, exposure and nuisance covariates refer-
enced by nuisance.model.

subset.condition
Optional character string giving a logical condition to subset data (default NULL).

na.action A function specifying the action to take on missing values (default na.omit).
code.event1 Integer code of the event of interest (default 1).
code.event?2 Integer code of the competing event (default 2).

code.censoring Integer code of censoring (default 0).

code.exposure.ref
Integer code identifying the reference exposure category (default 0).
effect.measurel
Character string specifying the effect measure for the primary event. Supported
values are "RR"”, "OR" and "SHR".
effect.measure2

Character string specifying the effect measure for the competing event. Sup-
ported values are "RR"”, "OR" and "SHR".

time.point Numeric time point at which the exposure effect is evaluated for time-point mod-
els. Required for "competing-risk” and "survival” outcomes.

30

polyreg

outcome. type Character string selecting the outcome type. Valid values are "competing-risk”,
"survival”, "binomial”, "proportional-survival”, and "proportional-competing-risk".
The defaultis "competing-risk”. If explicitly set to NULL, polyreg() attempts
to infer the outcome type from the data: if the event variable has more than two
distinct levels, "competing-risk” is assumed; otherwise, "survival” is as-
sumed. Abbreviations such as "S" or "C" are accepted; mixed or ambiguous
inputs trigger automatic detection from the event coding in data.

conf.int Numeric two-sided level of Cls (default @. 95).

report.nuisance.parameter
Logical; if TRUE, the returned object includes estimates of the nuisance model
parameters (default FALSE).

report.optim.convergence
Logical; if TRUE, optimization convergence summaries are returned (default
FALSE).

report.sandwich.conf
Logical or NULL. When TRUE, CIs based on sandwich variance are computed.
When FALSE, they are omitted (default TRUE). This CI is default for time-point
models ("outcome. type=competing-risk”, "survival” or "binomial”) and
is not available otherwise.

report.boot.conf
Logical or NULL. When TRUE, bootstrap CIs are computed. When FALSE, they are
omitted. If NULL, the function chooses based on outcome. type (default NULL).
This Cl is default for proportional models (outcome. type="proportional-competing-risk”
or "proportional-survival”).

boot.bca Logical indicating the bootstrap CI method. Use TRUE for bias-corrected and
accelerated intervals or FALSE for the normal approximation (default FALSE).

boot.multiplier
Character string specifying the wild bootstrap weight distribution. One of "rademacher”,
"mammen” or "gaussian” (default "rademacher™).

boot.replications
Integer giving the number of bootstrap replications (default 200).

boot. seed Numeric seed used for resampling of bootstrap.
nlegslv.method Character string specifying the solver used in nleqslv(). Available choices are
"Broyden" and "Newton".

optim.parameteri
Numeric tolerance for convergence of the outer loop (default 1e-6).

optim.parameter?2

Numeric tolerance for convergence of the inner loop (default 1e-6).
optim.parameters3

Numeric constraint on the absolute value of parameters (default 100).
optim.parameter4

Integer maximum number of outer loop iterations (default 50).
optim.parameter5

Integer maximum number of nleqslv iterations per outer iteration (default 50).

polyreg 31

optim.parameter6

Integer maximum number of iterations for the Levenberg-Marquardt routine
(default 50).

optim.parameter?7
Numeric convergence tolerance for the Levenberg-Marquardt routine (default
1e-10).

optim.parameters8

Numeric tolerance for updating the Hessian in the Levenberg-Marquardt routine
(default 1e-6).

optim.parameter9

Numeric starting value for the Levenberg-Marquardt damping parameter lambda
(default 1e-6).

optim.parameter10
Numeric upper bound for lambda in the Levenberg-Marquardt routine (default
40).

optim.parameterii

Numeric lower bound for lambda in the Levenberg-Marquardt routine (default
0.025).

optim.parameteri?2

Numeric multiplicative increment applied to lambda when the Levenberg-Marquardt
step is successful (default 2).

optim.parameteri3
Numeric multiplicative decrement applied to lambda when the Levenberg-Marquardt
step is unsuccessful (default 0. 5).
data.initial.values
Optional data frame providing starting values for the optimization (default NULL).
normalize.covariate
Logical indicating whether covariates should be centered and scaled prior to
optimization (default TRUE).
terminate.time.point
Logical indicating whether time points that contribute estimation are terminated
by min of max follow-up times of each exposure level (default TRUE).

prob.bound Numeric lower bound used to internally truncate probabilities away from 0 and
1 (default 1e-5).

Details

Overview:

polyreg() implements log odds product modeling for CIFs at user-specified time points, fo-
cusing on multiplicative effects of a categorical exposure, or constant effects over time like Cox
regression and Fine-Gray models. It estimates multiplicative effects such as risk ratios, odds
ratios, or subdistribution hazard ratios, while ensuring that the probabilities across compet-
ing events sum to one. This is achieved through reparameterization using polytomous log odds
products, which fits so-called effect-measure models and nuisance models on multiple competing
events simultaneously. Additionally, polyreg() supports direct binomial regression for survival
outcomes and the Richardson model for binomial outcomes, both of which use log odds products.

32 polyreg

Key arguments:
* nuisance.model: a formula with Event() or survivai: :Surv() describing the outcome
and nuisance covariates, excluding the exposure of interest.
* exposure: name of the categorical exposure variable

e effect.measurel and effect.measure2: the effect measures for eventl and event2 ("RR",
HORH OI. IISHRII).

* outcome. type: type of the outcome variable ("competing-risk”, "survival”, "binomial”,
"proportional-survival” or "proportional-competing-risk").

* time.point: time point(s) at which the exposure effect is evaluated. Required for "competing-risk”
and "survival” outcomes.

* strata: name of the stratification variable used for IPCW adjustment for dependent censor-
ing.

Outcome type and event status coding:

The outcome. type argument must be set to:

* Effects on cumulative incidence probabilities at a specific time: "competing-risk”.

 Effects on arisk at a specific time: "survival”.

* Common effects on cumulative incidence probabilities over time: "proportional-competing-risk”.
e Common effects on a risk over time: "proportional-survival”.

¢ Effects on a risk of a binomial outcome: "binomial”.

Setting Codes Meaning
competing-risk code.eventl, code.event2, code.censoring event of interest / compe
competing-risk (default) code.eventl =1, code.event2 = 2, code.censoring =@ event of interest / comp
survival code.event1, code.censoring event / censoring
survival (default) code.eventl =1, code.censoring =@ event / censoring
survival (ADaM-ADTTE) code.eventl =0, code.censoring =1 set to match ADaM con
proportional-survival code.eventl, code.censoring event / censoring
proportional-survival (default) code.eventl =1, code.censoring =0 event / censoring
proportional-survival (ADaM) code.eventl =0, code.censoring =1 set to match ADaM con
proportional-competing-risk code.eventl, code.event2, code.censoring event of interest / comp

proportional-competing-risk (default) code.eventl =1, code.event2 =2, code.censoring =0 event of interest / comp

Effect measures for categorical exposure:
Choose the effect scale for event 1 and (optionally) event 2:

Argument Applies to Choices Default
effect.measurel event of interest "RR”, "OR", "SHR" "RR"
effect.measure2 competing event "RR", "OR", "SHR" "RR"

¢ RR: risk ratio at time.point or common over time.
* OR: odds ratio at time.point or common over time.

¢ SHR: subdistribution hazard ratio or common over time.

polyreg 33

Inference and intervals (advanced):

Argument Meaning Default
conf.int Wald-type CI level 0.95
report.sandwich.conf Sandwich variance CIs TRUE
report.boot.conf Bootstrap CIs (used by "proportional-*" types) NULL
boot.bca Use BCa intervals (else normal approximation) FALSE
boot.multiplier Method for wild bootstrap "rademacher”
boot.replications Bootstrap replications 200
boot.seed Seed for resampling 46

Optimization & solver controls (advanced):
polyreg() solves estimating equations with optional inner routines.

Argument Role Default
nlegslv.method Root solver "Newton"”
optim.parameterl, optim.parameter2 Outer /inner convergence tolerances 1e-6, 1e-6
optim.parameter3 Parameter absolute bound 100
optim.parameter4 Max outer iterations 50
optim.parameter5 Max nlegsly iterations per outer 50
optim.parameter6:13 Levenberg—Marquardt controls (iterations, tolerances, lambda) see defaults

Data handling and stability:

Argument Meaning Default
subset.condition Expression (as character) to subset data NULL

na.action NA handling function stats::na.omit
normalize.covariate Center/scale nuisance covariates TRUE
terminate.time.point Truncate support by exposure-wise follow-up maxima TRUE
prob.bound Truncate probabilities away from 0/1 (numerical guard) 1e-5
data.initial.values Optional starting values data frame NULL

Downstream use:

polyreg() returns an object of class "polyreg"” that contains regression coefficients (coef),
variance-covariance matrix (vcov) and a list of event-wise tidy and glance tables (summary). Users
should typically access results via the S3 methods:

e coef () — extract regression coefficients.

* vcov() — extract the variance—covariance matrix (sandwich or bootstrap, depending on
outcome. type and the report.* arguments).

¢ nobs() — number of observations used in the fit.

* summary () — print an event-wise, modelsummary-like table of estimates, CIs and p-values,
and return the underlying list of tidy/glance tables invisibly.

For backward compatibility, components named coefficient and cov may also be present and
mirror coef and vcov, respectively. The summary component can be passed to external functions
such as modelsummary () for further formatting, if desired.

34 polyreg

Reproducibility and conventions:
* If convergence warnings appear, relax/tighten tolerances or cap the parameter bound (optim.parameteri-3)
and inspect the output with report.optim.convergence = TRUE.

* If necessary, modify other optim.parameter, provide user-specified initial values, or reduce
the number of nuisance parameters (e.g., provide a small set of time points contributing to
estimation when using "proportional-survival” or "proportional-competing-risk").

* Set boot. seed for reproducible bootstrap results.

e Match CDISC ADaM conventions via code.eventl =0, code.censoring = 1 (and, if ap-
plicable, code. event2 for competing events).

Value

A list of class "polyreg"” containing the fitted exposure effects and supporting results. Key compo-
nents and methods include:

* coef: regression coefficients on the chosen effect-measure scale

* vcov: variance—covariance matrix of the regression coefficients

e diagnostic.statistics: a data frame with inverse probability weights, influence function
contributions, and predicted potential outcomes

* summary: event-wise tidy/glance summaries used by summary.polyreg() or modelsummary: :modelsummary ()

* additional elements storing convergence information and internal tuning parameters.

Standard S3 methods are available: coef.polyreg(), vcov.polyreg(), nobs.polyreg(), and
summary.polyreg().

Lifecycle

[Experimental]

See Also

cifcurve() for KM/AJ estimators; cifplot() for display of a CIF; cifpanel() for display of
multiple CIFs; ggsurvfit::ggsurvfit, patchwork::patchwork and modelsummary::modelsummary for
display helpers.

Examples

data(diabetes.complications)
output <- polyreg(
nuisance.model = Event(t, epsilon) ~ +1,
exposure = "fruitql”,
data = diabetes.complications,
effect.measurel = "RR",
effect.measure2 = "RR",
time.point = 8,
outcome.type = "competing-risk”

)

coef (output)

polyreg-methods 35

vcov (output)
nobs (output)
summary (output)

polyreg-methods Methods for polyreg objects

Description

S3 methods to extract coefficients, variance-covariance matrix, sample size, formatted summaries,
and tidy/glance/augment from objects returned by polyreg().

Usage

S3 method for class 'polyreg'
coef(object, ...)

S3 method for class 'polyreg'
vcov(object, type = c("default”, "sandwich”, "bootstrap”), ...)

S3 method for class 'polyreg'
nobs(object, ...)

S3 method for class 'polyreg'
summary (object, ...)

S3 method for class 'summary.polyreg'
print(x, digits = 3, ...)

effect_label.polyreg(
X,
event = c("eventl1”, "event2"),
add. time.point = TRUE,
add.outcome = TRUE,
add.exposure.levels = TRUE,
add.conf = TRUE,
add.p = TRUE,
value.time = NULL,
unit.time = NULL,

digits = 2,
p_digits = 2,
p_cut = 0.05,

)

S3 method for class 'polyreg'

36

polyreg-methods

tidy(x, event = c("eventl”, "event2"”, "both"), ...)

S3 method for class 'polyreg'
glance(x, event = c("eventl”, "event2"), ...)

S3 method for class 'polyreg'

augment(x,

Arguments

object

type

digits

event

add. time.point

add.outcome

A polyreg object returned by polyreg().
Further arguments passed to or from methods.

Character string; one of "default”, "sandwich”, or "bootstrap”. When
"default”, the function chooses between sandwich and bootstrap variance based
on the original polyreg() settings, using outcome. type, report.sandwich. conf,
and report.boot.conf. (Used only by vcov.polyreg().)

Object to be printed or summarised. Typically a "summary.polyreg” object
for print.summary.polyreg(), or a "polyreg” object for tidy.polyreg(),
glance.polyreg(), augment.polyreg(), and effect_label.polyreg().

Number of digits to print for parameter estimates or effect measures. Used by
print.summary.polyreg() and effect_label.polyreg().

Character string indicating which event to extract. For effect_label.polyreg()
and glance.polyreg() thisis one of "event1"” or "event2"”. For tidy.polyreg()
it can also be "both” to return rows for all events.

Logical; if TRUE, effect_label.polyreg() appends the time point to the label
(e.g., “at 5 years”).

Logical; if TRUE, effect_label.polyreg() appends the outcome/event de-
scription (e.g., “of event 17).

add.exposure.levels

add.conf

add.p

value.time

unit.time

p_digits
p_cut

Logical; if TRUE, effect_label.polyreg() includes the exposure level in the
label (e.g., treatment group).

Logical; if TRUE, effect_label.polyreg() includes a confidence interval in
the label.

Logical; if TRUE, effect_label.polyreg() includes a p-value or thresholded
p-value (e.g. p <0.05).

Optional numeric value overriding the time point stored in the "polyreg"” object
when constructing labels in effect_label.polyreg().

Optional character string giving the time unit to display in labels constructed by
effect_label.polyreg(), such as "years” or "months".

Integer; number of digits used to format p-values in effect_label.polyreg().

Numeric threshold used by effect_label.polyreg() to decide between print-
ing p < p_cut and an exact p-value.

prostate 37

Value

* coef.polyreg() returns a numeric vector of regression coefficients.

* vcov.polyreg() returns a variance-covariance matrix.

* nobs.polyreg() returns the number of observations.

* summary.polyreg() returns a list of tidy and glance summaries by event.

e print.summary.polyreg() is called for its side effect of printing a formatted, modelsummary-
like table to the console and returns x invisibly.

e tidy.polyreg() returns a data frame of tidy coefficients by event.
* glance.polyreg() returns a data frame of model-level summaries by event.

* augment.polyreg() returns an augmented data frame containing diagnostics, weights, and
predicted CIFs.

See Also

polyreg() for log odds product modeling of CIFs

prostate Data from a prostate cancer trial in Byer & Green (1980)

Description

Anonymized data from a randomized clinical trial of prostate cancer published in Byer & Green
(1980).

Usage

data(prostate)

Format
A data frame with 502 observations and 16 variables, including:

dtime Follow-up time in days.

status Event status ("alive", "dead - prostatic ca", "dead - other ca", "dead - heart or vascular”,
"dead - cerebrovascular").

rx Treatment assignment to diethylstilbestrol (DES) or a placebo.
age Age at baseline (years).

wt Weight in pounds.

pf Performance status.

hx History of cardiovascular disease.

sbp Systolic blood pressure.

dbp Diastolic blood pressure.

38 prostate

ekg Electrocardiogram category.
hg Hemoglobin level.

sz Size of the primary tumor.

sg Stage/grade of disease.

ap Serum acid phosphatase.

bm Bone metastases indicator.
stage Clinical stage.

sdate Start date.

patno Patient number.

Details

The dataset records follow-up for cause of death together with treatment assignment and baseline
characteristics. It is used in the package documentation to illustrate stratified cumulative incidence
analyses.

Source
Byer, D. P. & Green, S. B. (1980), *Prognostic variables for survival in a randomized comparison
of treatments for prostatic cancer’, Bulletin du Cancer 67, 477-488

Examples

data(prostate)
head(prostate)

Index

x datasets
diabetes.complications, 24
prostate, 37

augment.polyreg (polyreg-methods), 35

cifcurve, 2
cifcurve(),4, 11, 14,21, 23, 25,27, 34
cifpanel, 5
cifpanel(), 5, 15, 19, 23, 25-27, 34
cifplot, 15
cifplot(), 3-5,7, 13-15, 19, 25-27, 34
coef.polyreg (polyreg-methods), 35

diabetes.complications, 24

effect_label.polyreg (polyreg-methods),
35

Event, 25

extract_time_to_event, 26

ggsurvfit::ggsurvfit, 5, 14, 23, 25, 27, 34
glance.polyreg (polyreg-methods), 35

modelsummary: :modelsummary, 5, 14, 23, 25,
27,34

nobs.polyreg (polyreg-methods), 35

patchwork: :patchwork, 5, 14, 23, 25, 27, 34

polyreg, 28

polyreg(), 5, 14, 23, 25,27, 37

polyreg-methods, 35

print.summary.polyreg
(polyreg-methods), 35

prostate, 37

summary.polyreg (polyreg-methods), 35
tidy.polyreg (polyreg-methods), 35

vcov.polyreg (polyreg-methods), 35

39

	cifcurve
	cifpanel
	cifplot
	diabetes.complications
	Event
	extract_time_to_event
	polyreg
	polyreg-methods
	prostate
	Index

