Package 'OtsuFire'

June 14, 2025

Type Package

Title Fire Scars, Severity and Regeneration Mapping Using 'Otsu' Thresholding

Version 0.1.4

Description Tools to segment fire scars and assess severity and vegetation regeneration using 'Otsu' thresholding on Relative Burn Ratio (RBR) and differenced Normalized Burn Ratio (dNBR) image composites.

Includes support for mosaic handling, polygon metrics, post-fire regeneration detection, day-ofyear flagging,

and validation against reference datasets. Designed for analysis of fire history in the Iberian Peninsula.

Input Landsat composites follow the methodology described in Quintero et al. (2025) <doi:10.2139/ssrn.4929831>.

License GPL-3

Encoding UTF-8

URL https://github.com/olgaviedma/OtsuFire

BugReports https://github.com/olgaviedma/OtsuFire/issues

Depends R (>= 4.1.0)

Imports data.table, dplyr, gdalUtilities, glue, purrr, raster, sf, stringr, terra, magrittr, tidyr, rlang, OtsuSeg

Suggests testthat (>= 3.0.0)

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Natalia Quintero [aut], Olga Viedma [aut, cre], Hammadi Achour [ctb], Jose Manuel Moreno [ctb]

Maintainer Olga Viedma <olga.viedma@uclm.es>

Repository CRAN

Date/Publication 2025-06-14 09:00:06 UTC

Contents

calculate_doy_flags	2
calculate_polygon_metrics	4
flag_otsu_regenera	6
generate_burnable_mask	9
mask_to_mosaic	11
mosaic_reproject_resample	13
process_otsu_rasters	14
process_otsu_regenera 1	18
validate_fire_maps	20
2	24

Index

calculate_doy_flags

Calculate DOY-Based Flags and Summary Statistics from Raster and Fire Polygons

Description

This function extracts Day-of-Year (DOY) values from a raster (e.g., from a Landsat composite), masked by burned area polygons, and computes per-polygon statistics: mode, median, and optionally percentiles (e.g., 5th, 25th, 95th). These DOY values are converted to calendar dates, and their components (day, month, year) are also included.

Optionally, the function can threshold the DOY band around the median and/or mode of each polygon using user-defined DOY windows (e.g., \pm10 days), create binary raster masks, and vectorize them using GDAL.

Use this function to assign a representative burning date (DOY) to each fire event and to discard events with unusually high internal variation in DOY among their pixels.

The function supports either a single shapefile (original burned areas) or a named list of shapefiles or 'sf' objects generated with different Otsu thresholds.

Arguments

raster	A multi-band 'SpatRaster' object. One of the bands must contain DOY values.
doy_band	Integer. The index of the DOY band in the raster (default is 2).
polygons_sf	A single shapefile path, an 'sf' object, or a named list of shapefiles or 'sf' objects. Names are used to label outputs (e.g., '"ge50"', '"ge100"').
output_dir	Directory where output raster and shapefile files will be saved.
year	Calendar year (numeric or character) used for DOY-to-date conversion and file- names.
doy_thresholds	Numeric vector of DOY windows (e.g., 'c(10, 15)') to apply around the selected statistic(s).
stats	Statistic(s) to use for thresholding. One of "median", "mode", or "both" (default "both").

calc_percentiles

	Logical. If 'TRUE', compute additional DOY percentiles. Default is 'TRUE'.	
percentiles	Numeric vector of percentiles to calculate (default: 'c(0.05, 0.25, 0.95)').	
polygonize	Logical. If 'TRUE', vectorize the DOY binary masks using GDAL ('gdal_polygonize.py'). Default is 'TRUE'.	
python_exe	Path to the Python executable. Required if 'polygonize = TRUE'.	
gdal_polygonize	e_script	
	Path to 'gdal_polygonize.py'. Required if 'polygonize = TRUE'.	
get_mode	Optional custom function to calculate the mode. Default function provided.	
get_median	Optional custom function to calculate the median. Default function provided.	
get_quantile	Optional custom function to calculate percentiles. Default function provided.	
keep_all_polygons		
	Logical. If 'TRUE', all polygons are kept and a flag column is added indicat- ing which polygons meet the threshold condition. If 'FALSE', only polygons	

Value

A named list with two elements:

sf_objects Named list of 'sf' outputs containing DOY statistics and date components for each input polygon set.

meeting the condition are saved. Default: 'TRUE'.

shp_paths Named list of output shapefile paths, including DOY summary shapefiles and any polygonized threshold layers.

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

The DOY raster band should be derived from a Landsat composite generated in Google Earth Engine (GEE), following the approach described by Quintero et al. (2025).

References

Quintero, N., Viedma, O., Veraverbeke, S., & Moreno, J. M. (2025). *Optimising Regional Fire Severity Mapping Using Pixel-Based Image Compositing*. SSRN 4929831.

Examples

```
## Not run:
# Case 1: Multiple Otsu-based burned area shapefiles
rast <- terra::rast("rbr_doy_stack_1987.tif")
polys <- list(
  ge50 = "burned_areas_1987_otsu_ge50.shp",
  ge100 = "burned_areas_1987_otsu_ge100.shp"
)
calculate_doy_flags(
```

```
raster = rast,
 doy_band = 2,
 polygons_sf = polys,
 output_dir = "output/",
 year = 1987,
 stats = "both",
 doy_thresholds = c(10, 15),
 calc_percentiles = TRUE,
 percentiles = c(0.05, 0.25, 0.95),
 polygonize = TRUE,
 python_exe = "/usr/bin/python",
 gdal_polygonize_script = "/usr/bin/gdal_polygonize.py"
)
# Case 2: Single shapefile without polygonization
calculate_doy_flags(
 raster = rast,
 polygons_sf = "burned_areas_1987_origval.shp",
 output_dir = "output/",
 year = 1987,
 stats = "median",
 doy_thresholds = 10,
 calc_percentiles = FALSE,
 polygonize = FALSE
)
## End(Not run)
```

calculate_polygon_metrics

Calculate Geometric Metrics and Filter Fire Polygons (Batch Mode)

Description

Calculates geometric descriptors for fire-affected polygons from a list of input shapefiles. Metrics include area, perimeter, bounding box dimensions, rotated bounding box, and shape ratios. Option-ally applies spatial filters and performs attribute joins to enrich outputs.

For each input shapefile, the function: - Computes metrics per polygon and saves a new shapefile. - Applies spatial filters and saves a filtered version. - Optionally joins metrics back to the original input polygons (if 'join_attributes = TRUE').

If 'dissolve = TRUE', adjacent polygons are merged to reconstruct contiguous burned areas. A numeric 'burned_id' is then assigned to each resulting polygon and used in subsequent joins.

Metrics computed per polygon: - 'area_ha': Area in hectares. - 'bbox_wx': Width of axisaligned bounding box (x). - 'bbox_hy': Height of axis-aligned bounding box (y). - 'perim_m': Perimeter in meters. - 'p_w_ratio': Perimeter-to-width ratio. - 'h_w_ratio': Height-to-width ratio. - 'burned_id': Polygon ID if 'dissolve = TRUE'.

4

Filter behavior: All thresholds are optional. If a threshold is 'NULL', the corresponding filter is skipped. If 'filter_logic = "AND"', all active filters must be satisfied. If '"OR"', any filter match is sufficient.

Spatial join ('join_attributes = TRUE'): - Attributes from the original input shapefile are preserved via intersection-based joins. - Only input polygons with area ? 'min_input_area_ha' are used. - The join selects, for each input polygon, the intersecting output polygon with the largest shared area. - Only polygons that intersect filtered outputs are retained in the joined outputs. - Optionally, you can restrict which variables from the original shapefile to retain using 'columns_to_keep'.

Arguments

shapefile_paths

Shaper ITE_pachs		
	Character vector. Paths to input shapefiles.	
output_dir	Optional. Directory to save outputs. Defaults to the input file's folder.	
area_min_ha	Minimum area in hectares ('area_ha'). Default: 10.	
bbox_h_min	Minimum height of axis-aligned bounding box ('bbox_hy'). Default: 630.	
<pre>mnbbx_wd_min</pre>	Minimum width of rotated bounding box. Default: 800.	
p_w_ratio_min	Minimum perimeter-to-width ratio. Default: 4.0.	
h_w_ratio_min	Minimum height-to-width ratio. Default: 0.35.	
output_format	Output format for saved files: "shp" or "geojson". Default: "shp".	
filter_logic	Logical combination of filters: "AND" (default) or "OR".	
dissolve	Logical. If 'TRUE', dissolve adjacent polygons before computing metrics. De- fault: TRUE.	
join_attributes		
	Logical. If 'TRUE', joins filtered/dissolved polygons back to the original shape-	
	file. Default: TRUE.	
min_input_area_ha		
	Minimum area (in hectares) for input polygons used in spatial joins. Default:	
	10.	
overlay_polygons_path		
	Optional. 'sf' object or path to shapefile to be used for join instead of the input	
	shapefile. Default: 'NULL'.	
columns_to_keep		
	Optional. Character vector of variable names to retain from the original shapefile	
	during spatial join. Default: 'NULL' (keep all).	

Value

A named list (one element per input file), each containing:

metrics Path to shapefile with all polygons and computed metrics.

filtered Path to shapefile with only polygons passing the filters.

joined_metrics (If 'join_attributes = TRUE') Path to joined shapefile with original attributes + metrics.

joined_filtered (If 'join_attributes = TRUE') Path to joined filtered shapefile.

polygons_all 'sf' object of all polygons with computed metrics.

polygons_filtered 'sf' object of polygons that passed the filters.

Note

Examples require large external raster files (hosted on Zenodo). Therefore, they are wrapped#' in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
burned_files <- list.files("path/to/shapefiles", pattern = "\\.shp$", full.names = TRUE)</pre>
results <- calculate_polygon_metrics(</pre>
 shapefile_paths = burned_files,
 output_dir = "outputs/",
 area_min_ha = 10,
 bbox_h_min = 600,
 mnbbx_wd_min = 800,
 p_w_ratio_min = 4.0,
 h_w_ratio_min = 0.25,
 output_format = "geojson",
 filter_logic = "AND",
 dissolve = TRUE,
 join_attributes = TRUE,
 min_input_area_ha = 5,
 columns_to_keep = c("CLC_CODE", "ECOR_REGION")
)
## End(Not run)
```

flag_otsu_regenera Flag Burned Polygons Based on Regeneration Overlap

Description

This function assigns regeneration flags to burned area polygons based on their spatial overlap with post-fire regeneration polygons (e.g., from years 1, 2, or more after fire). A polygon is flagged as "regenera" if the total intersected area with regeneration polygons from a specific post-fire year exceeds a user-defined minimum threshold ('min_regen_ratio') relative to its own area.

Filenames of the regeneration layers must contain "P1", "P2", etc., to indicate the number of years after fire. These period labels are automatically extracted and used to name the output columns (e.g., 'regen_ratio_P1', 'regenera_flag_P1').

For each detected regeneration year, the function adds:

- 'regen_ratio_Px': proportion of the burned polygon area overlapping with regeneration polygons.
- 'regenera_flag_Px': '"regenera"' if the threshold is met, '"no_regenera"' otherwise.

A final column 'regenera_flag_all' is also created, indicating '"regenera"' only if all selected years in 'remove_condition' meet their respective thresholds.

If 'replace_by_P1 = TRUE', the function will optionally replace burned polygons in the filtered output by overlapping P1 regeneration polygons that are larger in area. Optionally, a maximum area ratio ('max_area_ratio_p1') can be defined to restrict replacements to only those P1 polygons not exceeding a given multiple of the burned area.

You can also choose to export polygons flagged as "no_regenera" using 'save_no_regenera'. These can be optionally filtered by a minimum area threshold ('min_area_no_regenera').

If 'validate_geometries = TRUE', geometries are checked and corrected using 'sf::st_make_valid()', which is more robust but significantly slower. Set to 'FALSE' by default for performance.

Arguments

burned_files	Character vector with paths to burned area shapefiles (.shp).	
regenera_files	Character vector with paths to regeneration shapefiles (.shp). Filenames must contain "P1", "P2", etc., to indicate the year after fire.	
<pre>min_regen_ratio</pre>		
	Named numeric vector with minimum area ratio thresholds (between 0 and 1) for each regeneration year. Names must correspond to period labels (e.g., 'c(P1 = 0.05 , P2 = 0.10)'). These values are used: (1) when no classwise_regen_thresholds are provided, (2) or as fallback when a polygon has no match or NA thresholds.	
<pre>remove_no_reger</pre>	nera	
	Logical. If 'TRUE', polygons that do not meet all specified thresholds (see 'remove_condition') will be excluded from the filtered output.	
remove_condition	on	
	Character vector indicating the post-fire years (e.g., "P1", "P2", "P3") that must meet their thresholds in 'min_regen_ratio' in order for a polygon to be retained. Used to identify false fire detections due to lack of regeneration.	
output_dir	Optional output directory. If 'NULL', output files are saved in the same folder as the burned shapefiles.	
replace_by_P1	Logical. If 'TRUE' (default), filtered burned polygons will be replaced by over- lapping P1 regeneration polygons when the latter are larger in area.	
<pre>max_area_ratio_</pre>	_p1	
	Optional. Maximum allowed ratio between the area of a P1 regeneration poly- gon and the intersected burned polygon. If specified, only regenerated polygons with area greater than the burned area and not exceeding max_area_ratio_p1 times that area will be used to replace burned polygons. If NULL (default), only the condition area_ha > burn_area_ha is applied.	
save_no_regener		
	Character. Options are "all" (save all "no_regenera" polygons), "area_filter" (save only those with area ? 'min_area_no_regenera'), or "none" (do not save them).	
min_area_no_regenera		
	Numeric. Minimum area in hectares to retain a "no_regenera" polygon when 'save_no_regenera = "area_filter". Default is '0.1' ha.	
validate_geometries		
	Logical. If 'TRUE', applies 'st_make_valid()' to correct invalid geometries be- fore processing. Default is 'FALSE' for faster performance.	

output_format Character. Output format for saved files: "shp" for ESRI Shapefile (default) or "geojson" for GeoJSON. @param classwise_regen_thresholds Optional 'data.frame' with per-class regeneration thresholds. Must include:

- class_field: field name in the burned polygons (e.g., "CORINE_CLA"', "eco_id"').
- class_value: corresponding class value.
- One or more columns named P1, P2, etc., with numeric thresholds.

If provided, these thresholds will override min_regen_ratio for polygons matching each class. Polygons without a match will fall back to the values in min_regen_ratio.

Value

Saves up to four shapefiles per burned area file:

- **Main shapefile (unfiltered)** All polygons with 'regen_ratio_Px', 'regenera_flag_Px', and 'regenera_flag_all'.
- Filtered shapefile Only polygons that satisfy all thresholds defined in 'remove_condition'. File ends in '_filter.shp'.
- **Final shapefile with replacements** (if 'replace_by_P1 = TRUE') Filtered polygons with some replaced by larger P1 regeneration polygons. File ends in '_new.shp'.
- Shapefile of no_regenera polygons (if 'save_no_regenera != "none"') Contains polygons not meeting regeneration thresholds. File ends in '_no_selected.shp'.

Note

Examples require large external raster files (hosted on Zenodo). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
# Apply per-period regeneration thresholds and filter non-regenerating polygons
burned_files <- list.files("data/burned", pattern = "\\.shp$", full.names = TRUE)
regenera_files <- list.files("data/regenera", pattern = "\\.shp$", full.names = TRUE)</pre>
```

```
flag_otsu_regenera(
    burned_files = burned_files,
    regenera_files = regenera_files,
    min_regen_ratio = c(P1 = 0.05, P2 = 0.10),
    remove_no_regenera = TRUE,
    remove_condition = c("P1", "P2"),
    output_dir = "results/",
    replace_by_P1 = TRUE,
    max_area_ratio_p1 = 3,
    save_no_regenera = "area_filter",
    min_area_no_regenera = 100,
    validate_geometries = FALSE,
    output_format = c("geojson")
)
```

```
# Define class-specific regeneration thresholds
class_thresholds <- data.frame(</pre>
  class_field = "CORINE_CLA",
  class_value = c(1, 2),
  P1 = c(0.15, 0.15),
  P2 = c(0.0, 0.05)
)
# Run flag_otsu_regenera1 using classwise thresholds and fallback values
result <- flag_otsu_regenera(</pre>
  burned_files = burned_list,
  regenera_files = regenera_list,
  min_regen_ratio = c(P1 = 0.05, P2 = 0.15), # fallback for classes not in the table
  classwise_regen_thresholds = class_thresholds,
  group_field = "CORINE_CLA",
  remove_no_regenera = TRUE,
  remove_condition = c("P1", "P2"),
  replace_by_P1 = TRUE,
  max_area_ratio_p1 = 3,
  save_no_regenera = TRUE,
  min_area_no_regenera = 500,
  validate_geometries = FALSE,
  output_format = "shp",
  output_dir = burned_dir
)
## End(Not run)
```

generate_burnable_mask

Generate Burnable Mask from CORINE Rasters

Description

This function reclassifies CORINE land cover rasters into binary burnable masks using a predefined set of vegetation-related land cover classes. It masks the rasters using an Iberian Peninsula shape-file, optionally reprojects them to EPSG:3035 and/or EPSG:4326, and polygonizes the result using GDAL tools. The raster masks can be used in GEE for masking the Landsat composites.

The reclassification uses the following CORINE classes (corine_code / description): - 244: Agroforestry areas (22) - 311: Broad-leaved forest (23) - 312: Coniferous forest (24) - 313: Mixed forest (25) - 321: Natural grasslands (26) - 322: Moors and heathland (27) - 323: Sclerophyllous vegetation (28) - 324: Transitional woodland-shrub (29) - 333: Sparsely vegetated areas (32) - 334: Burnt areas (33)

These classes are assigned a gridcode from 22 to 33 in the final output shapefile. The .csv file with gridcode and CORINE classes correspondences is provided in the README folder (clc_legend_gridcode.csv) (if 'vectorize = TRUE').

Usage

```
generate_burnable_mask(
    corine_rasters,
    peninsula_shapefile,
    output_raster_dir,
    output_vector_dir,
    gdalwarp_path,
    python_exe,
    gdal_polygonize_script,
    reproject = TRUE,
    res = 90,
    to_wgs84 = TRUE,
    vectorize = TRUE
)
```

Arguments

corine_rasters	Named list of CORINE raster file paths (e.g., one per year).	
peninsula_shapefile		
	Path to the Iberian Peninsula shapefile used to mask the extent.	
output_raster_d	lir	
	Directory where binary and class rasters will be written.	
output_vector_d	lir	
	Directory where vector shapefiles will be saved (if 'vectorize = TRUE').	
gdalwarp_path	Full path to the GDAL 'gdalwarp' executable.	
python_exe	Full path to the Python executable.	
gdal_polygonize_script		
	Full path to 'gdal_polygonize.py'.	
reproject	Logical. Whether to reproject rasters to EPSG:3035. Default is TRUE.	
res	Numeric. Output resolution in meters (used when reprojecting). Default is 90.	
to_wgs84	Logical. If TRUE, generates an additional raster version reprojected to EPSG:4326.	
vectorize	Logical. Whether to convert the reclassified raster to polygon shapefile. Default is TRUE.	

Value

No R object is returned, but the following files are written: - Binary raster mask ('burneable_mask_binary_<year>_ETRS89.ti - Optional EPSG:4326 version ('..._wgs84.tif') - Multiclass raster with selected CORINE codes ('burneable_classes_def1_<year>_ETRS89.tif') - Polygon shapefile with selected CORINE classes ('burneable_classes_def1_<year>_ETRS89.shp')

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

10

mask_to_mosaic

Examples

```
## Not run:
corine_rasters <- list(</pre>
  "corine06" = "data/CORINE_2006.tif"
)
generate_burnable_mask(
  corine_rasters = corine_rasters,
  peninsula_shapefile = "data/peninsula_ib.shp",
  output_raster_dir = "output/rasters",
  output_vector_dir = "output/vectors",
  gdalwarp_path = "C:/ProgramData/anaconda3/Library/bin/gdalwarp.exe",
  python_exe = "C:/ProgramData/anaconda3/python.exe",
  gdal_polygonize_script =
  "C:/ProgramData/anaconda3/Lib/site-packages/osgeo/scripts/gdal_polygonize.py",
  reproject = TRUE,
  res = 90.
  to_wgs84 = TRUE,
  vectorize = TRUE
)
## End(Not run)
```

mask_to_mosaic

Apply a Binary Raster Mask (and Optional Geographic Clip) to a Two-Band Mosaic

Description

This function applies a binary raster mask to a 2-band burned area mosaic (RBR and DOY). All pixels in the mosaic where the mask does not match 'valid_mask_value' are assigned 'NA'. Optionally, a shapefile can be provided to crop and mask the mosaic to a specific geographic area (e.g., the Iberian Peninsula).

The function ensures that the mask raster is projected and aligned to the mosaic before applying. The output is saved with the same resolution as the input mosaic.

Usage

```
mask_to_mosaic(
   mosaic_path,
   mask_raster_path,
   output_path = NULL,
   valid_mask_value = 1,
   crs_target = 3035,
   shapefile_clip = NULL
)
```

Arguments

<pre>mosaic_path</pre>	Character. Path to the input 2-band raster mosaic (e.g., with RBR and DOY).	
mask_raster_path		
	Character. Path to the binary mask raster (e.g., burnable areas).	
output_path	Character (optional). Output destination. There are three behaviors:	
	• If 'NULL', the output is saved in the same folder as the input mosaic, using the same base name with suffix '_mosaic_masked_res90m.tif'.	
	• If a directory path is provided, the output file will be saved inside that folder, using the same base name as the input mosaic, with suffix '_mo-saic_masked_res90m.tif'.	
	• If a full file path ending in '.tif' is provided, that name is used directly as the output.	
valid_mask_value		
	Numeric. Value in the mask that defines valid pixels (default is 1).	
crs_target	Integer or character. EPSG code for reprojection (only used if needed). Default: 3035.	
<pre>shapefile_clip</pre>	Character (optional). Path to a shapefile to further crop and mask the mosaic.	

Details

This function is typically used after mosaicking burned area products derived from satellite imagery. It filters areas outside a burnable mask (e.g., based on land cover) and optionally restricts output to a defined geographic region (e.g., the Iberian Peninsula).

Input mosaic must have: - Band 1: Relative Burn Ratio (RBR) - Band 2: Day of Year (DOY)

Output raster is written in GeoTIFF format with LZW compression.

Value

Character. Full path to the final masked (and optionally clipped) raster.

Note

Examples require large external raster files (hosted on Zenodo). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
# Case 1: Let the function generate the output name in the same folder
mask_to_mosaic(
    mosaic_path = "data/IBERIAN_MinMin_all_year_2012_mosaic_res90m.tif",
    mask_raster_path = "data/burneable_mask_corine_ETRS89.tif"
)
# Case 2: Save the output to a specific folder, name generated automatically
mask_to_mosaic(
```

mosaic_path = "data/IBERIAN_MinMin_all_year_2012_mosaic_res90m.tif",

```
mask_raster_path = "data/burneable_mask_corine_ETRS89.tif",
    output_path = "outputs/"
)
# Case 3: Define the full output file name explicitly
mask_to_mosaic(
    mosaic_path = "data/IBERIAN_MinMin_all_year_2012_mosaic_res90m.tif",
    mask_raster_path = "data/burneable_mask_corine_ETRS89.tif",
    output_path = "outputs/custom_masked_output_2012.tif"
)
## End(Not run)
```

mosaic_reproject_resample

Mosaic, Reproject, and Resample Burned Area Tiles

Description

This function creates a seamless mosaic from multiple raster tiles (e.g., RBR and DOY composites), masks them with a shapefile (e.g., Iberian Peninsula), reprojects the mosaic to a specified CRS (default: EPSG:3035), and resamples it to a target resolution (default: 90m).

It assumes the input rasters are two-band GeoTIFFs: - Band 1: RBR (Relative Burn Ratio) - Band 2: DOY (Day of Year of fire)

Usage

```
mosaic_reproject_resample(
  folder_path,
  mask_path,
  year = NULL,
  raster_pattern = "IBERIAN_MinMin_all_year_*.tif",
  crs_target = "EPSG:3035",
  res_target = 90,
  nodata_value = -9999
)
```

Arguments

folder_path	Character. Path to the folder containing the raster tiles.
mask_path	Character. Path to a polygon shapefile used to mask the rasters (e.g., burnable area mask).
year	Integer or character. Year label used for naming output files. If NULL, uses folder name.
raster_pattern	Character. Regex pattern to identify input raster tiles. Default: 'IBERIAN_MinMin_all_year_*.tif'.
crs_target	Character. EPSG code string for the target CRS to reproject (default: "EPSG:3035").

res_target	Numeric. Target spatial resolution in meters. Default: 90.
nodata_value	Numeric. NoData value to assign to missing values. Default: -9999.

Details

The function uses 'gdalbuildvrt' and 'gdalwarp' for efficient VRT-based mosaicking and reprojection. Steps: 1. Apply spatial mask to each raster tile. 2. Create VRT mosaic. 3. Reproject and resample the mosaic with 'gdalwarp'. 4. Clean NoData values and assign band names ('rbr', 'doy'). 5. Save compressed GeoTIFF output.

Value

Character. Full path to the final resampled GeoTIFF mosaic.

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
mosaic_reproject_resample(
   folder_path = "ZENODO/exdata",
   mask_path = "ZENODO/exdata/iberian_peninsula_proj_final.shp",
   year = 2012,
   raster_pattern = "IBERIAN_MinMin_all_year_2012_*.tif",
   crs_target = "EPSG:3035",
   res_target = 90
)
### End(Not run)
```

process_otsu_rasters Process Burned Area Rasters Using Otsu Thresholding or Percentile Clipping

Description

This function computes binary burned area masks from a severity index raster (RBR or dNBR) using Otsu's thresholding or percentile clipping. The segmentation can be applied to the full raster or stratified by: - CORINE land cover classes ('corine_raster_path') - WWF ecoregions ('ecoregion_shapefile_path') - or the intersection of both (CORINE ? Ecoregion)

Key features: - Supports Otsu thresholding after pre-filtering by minimum index values ('otsu_thresholds') or using original values - Supports percentile-based thresholding via 'trim_percentiles' - Enforces

a minimum threshold ('min_otsu_threshold_value') when Otsu yields low values - Allows stratification by CORINE, ecoregions, or their intersection - Enables CORINE reclassification using a custom 'reclass_matrix' - Automatically computes RBR or dNBR if 'nbr_pre_path' and 'nbr_post_path' are provided - Outputs: - Burned area binary rasters - Polygon shapefiles (dissolved by threshold label) - Histogram and inter-class variance plots per threshold - Threshold log files

Arguments

raster_path	Path to a single-band RBR or dNBR raster.		
nbr_pre_path, nb			
	Optional. Paths to pre- and post-fire NBR rasters for RBR/dNBR calculation.		
output_dir	Directory to save output files.		
year	Optional year label.		
otsu_thresholds	3		
	Numeric vector of minimum values to filter raster before applying Otsu.		
trim_percentile			
	Optional data.frame with 'min' and 'max' columns to define percentile clipping thresholds.		
use_original	Logical. Use raw values without filtering (ignored if 'trim_percentiles' is set).		
corine_raster_p	path		
	Path to CORINE raster for stratified segmentation.		
reclassify_cori	ne		
	Logical. If TRUE, reclassifies CORINE using 'reclass_matrix'.		
reclass_matrix	Matrix with original and new values for CORINE reclassification.		
peninsula_shape	efile		
	Shapefile used to crop CORINE before reclassification.		
<pre>output_corine_r</pre>			
	Directory to save reclassified CORINE raster.		
output_corine_v			
	Directory to save reclassified CORINE shapefile.		
reproject	Logical. Reproject reclassified CORINE raster to EPSG:3035.		
resolution	Numeric. Target resolution for reprojected CORINE raster.		
corine_classes	Optional vector of reclassified CORINE classes to keep.		
ecoregion_shape			
	Path to WWF ecoregions shapefile.		
ecoregion_field	ecoregion_field		
	Column in ecoregion shapefile used for class labels.		
ecoregion_class			
	Optional. Vector of selected ecoregion class names.		
<pre>segment_by_inte</pre>			
	Logical. If TRUE, intersects CORINE and ecoregions.		
<pre>min_otsu_thresh</pre>			
	Minimum acceptable threshold. Used if Otsu value is lower.		

python_exe	Path to Python executable.	
gdal_polygonize_script		
	Path to 'gdal_polygonize.py' script.	
gdalwarp_path	Path to 'gdalwarp' executable (default = "gdalwarp").	
n_rows,n_cols	Number of rows/columns for raster tiling.	
tile_overlap	Overlap buffer (in map units) for tiles.	
tile	Logical. Apply raster tiling before polygonization.	
index_type	"RBR" or "dNBR". Used if 'nbr_pre_path'/'nbr_post_path' are provided.	
output_format	Output vector file format: "shp" or "geojson".	

Details

- Raster values are internally rescaled to [0, 255] before Otsu thresholding. - Histogram smoothing and variance curves are used for enhanced threshold detection. - Output shapefiles can be in ESRI Shapefile or GeoJSON format. - Intermediate tile shapefiles and rasters are cleaned after processing.

Value

Named list of 'sf' polygons grouped by segmentation. Output files saved to 'output_dir'.

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
# Example 1: Basic Otsu thresholds (global)
process_otsu_rasters(
  raster_path = "data/rbr_1985.tif",
  output_dir = "output/1985",
  otsu_thresholds = c(0, 50, 100),
  python_exe = "C:/Python/python.exe",
  gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py"
)
# Example 2: Global with percentile trimming
process_otsu_rasters(
  raster_path = "data/rbr_1985.tif",
  output_dir = "output/1985",
  trim_percentiles = data.frame(min = 0.01, max = 0.99),
  python_exe = "C:/Python/python.exe",
  gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py",
  output_format = "geojson"
)
```

Example 3: Stratified by reclassified CORINE

```
process_otsu_rasters(
 raster_path = "data/rbr_1985.tif",
 output_dir = "output/1985",
 corine_raster_path = "data/corine_1990_etrs89.tif",
 reclassify_corine = TRUE,
 reclass_matrix = matrix(c(
    22, 1, # grasslands ? 1
   26, 1,
   32, 1,
   27, 2, # shrublands ? 2
   29, 2,
   33, 3, # burnt areas ? 3
   23, 4, # broadleaved forest ? 4
   25, 5, # mixed forest ? 5
   24, 6 # coniferous ? 6
 ), ncol = 2, byrow = TRUE),
 corine_classes = c(1, 2, 4, 5, 6),
 peninsula_shapefile = "data/peninsula_clip.shp",
 output_corine_raster_dir = "output/corine",
 output_corine_vector_dir = "output/corine",
 otsu_thresholds = c(50),
 min_otsu_threshold_value = 150,
 python_exe = "C:/Python/python.exe",
 gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py"
)
# Example 4: Stratified by WWF ecoregions (default field: "EnS_name")
process_otsu_rasters(
 raster_path = "data/rbr_1985.tif",
 output_dir = "output/1985",
 ecoregion_shapefile_path = "data/ecoregions_olson.shp",
 otsu_thresholds = c(50),
 min_otsu_threshold_value = 150,
 python_exe = "C:/Python/python.exe",
 gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py"
)
# Example 5: Stratified by WWF ecoregions with custom field
process_otsu_rasters(
 raster_path = "data/rbr_1985.tif",
 output_dir = "output/1985",
 ecoregion_shapefile_path = "data/ecoregions_olson.shp",
 ecoregion_field = "EnZ_name",
 ecoregion_classes = c("Iberian Conifer Forests", "Mediterranean Shrublands"),
 otsu_thresholds = c(50),
 min_otsu_threshold_value = 150,
 python_exe = "C:/Python/python.exe",
 gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py"
)
# Example 6: Stratified by CORINE ? Ecoregion intersection
process_otsu_rasters(
 raster_path = "data/rbr_1985.tif",
```

```
output_dir = "output/1985",
 corine_raster_path = "data/corine_1990_etrs89.tif",
 reclassify_corine = TRUE,
 reclass_matrix = matrix(c(
   22, 1, 26, 1, 32, 1, # grasslands
   27, 2, 29, 2,
                         # shrublands
   23, 4, 25, 5, 24, 6 # forests
 ), ncol = 2, byrow = TRUE),
 corine_classes = c(1, 2, 4, 5, 6),
 peninsula_shapefile = "data/peninsula_clip.shp",
 output_corine_raster_dir = "output/corine",
 output_corine_vector_dir = "output/corine"
 ecoregion_shapefile_path = "data/ecoregions_olson.shp",
 ecoregion_field = "EnZ_name",
 segment_by_intersection = TRUE,
 otsu_thresholds = c(50),
 min_otsu_threshold_value = 150,
 python_exe = "C:/Python/python.exe",
 gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py"
)
## End(Not run)
```

process_otsu_regenera Detect Post-Fire Regeneration Using Otsu or Fixed Thresholds

Description

This function detects vegetation regeneration signals using negative RBR or dNBR values. By default ('use_fixed_threshold = FALSE'), the function identifies regeneration areas where RBR or dNBR values are below 0. If 'use_fixed_threshold = TRUE', a fixed threshold value (e.g., -100) is applied instead.

Optionally, percentile-based clipping can be applied before thresholding, and tiling can be used to handle large rasters. The function outputs binary rasters and shapefiles, optionally merged into a single shapefile if 'bind_all = TRUE'.

If a historical burn raster ('rbr_date') is provided, it will be used to mask out areas previously burned (i.e., where RBR \ge 0), so that regeneration is only detected in those affected by the most recent fire.

Arguments

rbr_post	Path to post-fire RBR or dNBR raster. Alternatively, provide 'nbr_pre_path' and 'nbr_post_path'. If a named list is provided, names should match the format '"P1"', '"P2"', etc.
nbr_pre_path	Path to pre-fire NBR raster (for index computation).
nbr_post_path	Path to post-fire NBR raster (for index computation).
rbr_date	Optional path to an RBR raster used to mask previously burned areas (RBR \ge
	0).

18

output_dir	Directory where outputs (rasters, shapefiles, plots) will be saved.
python_exe	Path to the Python executable (used to call GDAL).
gdal_polygonize_script	
	Path to 'gdal_polygonize.py' script.
n_rows,n_cols	Number of rows and columns for tiling. Ignored if 'tile = FALSE'.
tile_overlap	Overlap size (in meters) between tiles. Used for seamless polygonization.
tile	Logical. If 'TRUE', raster is tiled before polygonization.
index_type	Index type to compute: either '"RBR"' or '"dNBR"'. Ignored if 'rbr_post' is provided.
trim_percentiles	
	Data frame with columns 'min' and 'max', defining percentile ranges to clip negative RBR values before thresholding. **Note:** This parameter is currently not used unless percentile-based thresholding is implemented.
bind_all	Logical. If 'TRUE', all shapefiles from each threshold are merged into one combined shapefile.
regen_year	Integer vector specifying the number of years after the fire to consider for regeneration (e.g., 'c(2)').
fire_year	Integer indicating the fire year. Used for output naming and labeling.
use_fixed_threshold	
	Logical. If 'TRUE', applies 'fixed_threshold_value' instead of using the default threshold (< 0).
fixed_threshold_value	
	Numeric threshold to use when 'use_fixed_threshold = TRUE'. Default is '- 100 '.
output_format	Character. Output format for saved files: "shp" for ESRI Shapefile (default) or "geojson" for GeoJSON.

Value

A named list of results per regeneration year ('P1', 'P2', etc.) with:

'raster' Path to the binary regeneration raster for that year.

'shapefile' Path to the shapefile with polygons derived from the raster tiles for that year.

If 'bind_all = TRUE', an additional item named 'combined' is returned, which contains the path to a single shapefile:

'combined' Path to the shapefile with all valid regeneration polygons combined across all years. The filename includes all 'P' labels used (e.g., '_P1P2_').

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
# Regeneration detection using RBR raster and default threshold (< 0)
process_otsu_regenera(
 rbr_post = list(P2 = "data/RBR_1986.tif"),
 output_dir = "output/regenera",
 python_exe = "/usr/bin/python3",
 gdal_polygonize_script = "/usr/bin/gdal_polygonize.py",
 fire_year = 1984,
 regen_year = c(2),
 use_fixed_threshold = FALSE,
 output_format = c("geojson")
)
# Same detection but using a fixed threshold of -150
process_otsu_regenera(
 rbr_post = list(P2 = "data/RBR_1986.tif"),
 output_dir = "output/regenera",
 python_exe = "/usr/bin/python3",
 gdal_polygonize_script = "/usr/bin/gdal_polygonize.py",
 fire_year = 1984,
 regen_year = c(2),
 use_fixed_threshold = TRUE,
 fixed_threshold_value = -150,
 bind_all = FALSE,
 n_rows = 2,
 n_{cols} = 3,
 tile_overlap = 1000,
 tile = TRUE,
 output_format = c("shp")
)
## End(Not run)
```

validate_fire_maps Validate burned area maps against reference polygons

Description

The 'validate_fire_maps()' function evaluates the spatial accuracy of burned area detection shapefiles by comparing them against independent reference fire polygons (e.g., from Focclim or national databases).

It calculates both **pixel-based metrics** and **area-based metrics**, unless a specific mode is selected. Reference polygons are masked to retain only burnable areas based on a CORINE-derived raster and filtered by a minimum area threshold if specified.

Important: If 'min_area_reference_ha' is changed, you must set 'force_reprocess_ref = TRUE' to recalculate the masked reference polygons.

20

Arguments

input_shapefile Character vector. One or more paths to shapefiles containing the burned polygons to validate. ref_shapefile Character. Path to the shapefile with reference burned area polygons. mask_shapefile Character. Path to the shapefile defining the study area boundary. burnable_raster Character. Path to the raster file indicating burnable areas (binary or categorical). year_target Numeric. Target year for filtering reference polygons. validation_dir Character. Output directory to save validation results. binary_burnable Logical. TRUE if the burnable raster is binary (1 = burnable, 0 = non-burnable). Default is TRUE. burnable_classes Optional numeric vector of raster values considered burnable if 'binary burnable = FALSE'. Optional character. Path to a shapefile containing class information (e.g., CORINE class_shape or ecoregions) used for class-wise error breakdown. class_field Optional character. Name of the field in 'class_shape' to group omission and commission errors by class (e.g., "CORINE", "eco_name", "cor_eco"). buffer Numeric. Optional buffer distance (in meters) applied around reference polygons for pixel-based validation. Default is 0. threshold_completely_detected Numeric. Minimum percentage (e.g., 90) of a reference polygon area that must be intersected to be considered completely detected. Default is 90. min_area_reference_ha Numeric. Minimum area (in hectares) to retain reference polygons after masking. Default is NULL (no filtering). Logical. Whether to use external GDAL (via Python) for polygonizing rasters use_gdal (faster for large datasets). Default is TRUE. python_exe Character. Path to the Python executable used for GDAL polygonization. gdal_polygonize_script Character. Path to the 'gdal_polygonize.py' script. force_reprocess_ref Logical. If TRUE, forces recalculation of masked reference polygons even if cached versions exist. Default is FALSE. metrics_type Character. Type of metrics to compute. One of "all" (default), "pixel", or "area"'.

Details

Pixel-based metrics (when 'metrics_type = "pixel"' or '"all"'): - **True Positives (TP)**: Pixels correctly detected as burned. - **False Positives (FP)**: Pixels wrongly detected as burned. -

False Negatives (FN): Burned pixels missed by the detection. - **True Negatives (TN)**: Pixels correctly identified as unburned.

Derived indicators: - **Precision** = TP / (TP + FP) - **Recall** = TP / (TP + FN) - **F1 Score** = 2 * (Precision * Recall) / (Precision + Recall) - **Intersection over Union (IoU)** = TP / (TP + FP + FN) - **Error Rate** = (FP + FN) / (TP + FP + FN + TN)

Area-based metrics (when 'metrics_type = "area"' or '"all"'): - **N_Reference_Polygons**: Number of reference polygons after masking and filtering. - **N_Completely_Detected**: Count of reference polygons where detected area? 'threshold_completely_detected'. - **N_Detected_Polygons**: Reference polygons partially or fully detected (>0 - **N_Not_Detected**: Reference polygons without any detected overlap. - **Perc_Detected_Polygons**: Share of reference polygons detected. - **Area_Reference_ha**: Total area of reference polygons (ha). - **Area_Detected_ha**: Total area of detected burned polygons (ha). - **Area_Intersection_ha**: Area of intersection between detection and reference polygons (ha). - **Area_Reference_NotDetected**: Share of reference area missed (- **Recall_Area_percent** = (Area_Intersection_ha / Area_Reference_ha) * 100 - **Precision_Area_percent** = (Area_Intersection_ha / Area_Detected_ha) * 100

Class-wise error breakdown: If 'class_shape' and 'class_field' are provided and valid: - 'ref_not_detected'
and 'det_not_matched' polygons are joined to 'class_shape'. - Output CSV files: - 'omission_by_<class_field>_<input>.csv'
- 'commission_by_<class_field>_<input>.csv'

Output files: - 'metrics_summary_<year>.csv' and/or 'polygon_summary_<year>.csv' - Shapefiles of undetected and unmatched polygons - Class-wise omission/commission CSVs (if class information is provided)

Value

A list with:

metrics A data.table of pixel-based accuracy metrics, or NULL if 'metrics_type' excludes them.

polygon_summary A data.table of area-based metrics, or NULL if 'metrics_type' excludes them.

Note

Examples require large external raster files (hosted on Zenodo) and depend on external software (Python, GDAL). Therefore, they are wrapped in dontrun to avoid errors during R CMD check and to ensure portability.

Examples

```
## Not run:
validate_fire_maps(
    input_shapefile = list.files("shapefiles", pattern = "\\.shp$", full.names = TRUE),
    ref_shapefile = "ref_polygons_2022.shp",
    mask_shapefile = "mask_region.shp",
    burnable_raster = "burnable.tif",
    year_target = 2022,
    validation_dir = "validation_results",
    binary_burnable = TRUE,
    min_area_reference_ha = 1,
    buffer = 30,
```

```
threshold_completely_detected = 90,
use_gdal = TRUE,
python_exe = "C:/Python/python.exe",
gdal_polygonize_script = "C:/Python/Scripts/gdal_polygonize.py",
force_reprocess_ref = TRUE,
metrics_type = "all",
class_shape = "corine_eco_regions.shp",
class_field = "cor_eco"
)
```

```
## End(Not run)
```

Index

calculate_doy_flags, 2
calculate_polygon_metrics, 4

flag_otsu_regenera, 6

generate_burnable_mask, 9

mask_to_mosaic, 11
mosaic_reproject_resample, 13

process_otsu_rasters, 14
process_otsu_regenera, 18

validate_fire_maps, 20