Package ‘LBBNN’

January 7, 2026
Title Latent Binary Bayesian Neural Networks Using 'torch’
Version 0.1.3
Maintainer Lars Skaaret-Lund <lars.skaaret-lund@nmbu.no>

Description Latent binary Bayesian neural networks (LBBNNs) are implemented using
'torch’, an R interface to the LibTorch backend. Supports mean-field variational
inference as well as flexible variational posteriors using normalizing flows.
The standard LBBNN implementation follows Hu-
bin and Storvik (2024) <doi:10.3390/math12060788>,
using the local reparametrization trick as in Skaaret-Lund et al. (2024)
<https://openreview.net/pdf?id=d6kqUKzG3V>. Input-skip connections are also supported,
as described in Hgyheim et al. (2025) <doi:10.48550/arXiv.2503.10496>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Language en-US

Suggests testthat (>= 3.0.0), knitr, rmarkdown, torchvision
Config/testthat/edition 3

Depends R (>=3.5)

LazyData true

VignetteBuilder knitr

Imports ggplot2, torch, igraph, coro, svglite
NeedsCompilation no

Author Lars Skaaret-Lund [aut, cre],
Aliaksandr Hubin [aut],
Eirik Hgyheim [aut]

Repository CRAN
Date/Publication 2026-01-07 21:20:02 UTC

https://doi.org/10.3390/math12060788
https://openreview.net/pdf?id=d6kqUKzG3V
https://doi.org/10.48550/arXiv.2503.10496

2 coef.lbbnn_net
Contents
coefllbbnn_net e 2
CUStOML_ACtiVation v v e e e e e e e e e e 4
gallstone_dataset e 4
get_dataloaders 5
get_local_explanations_gradient oL ool 6
Ibbnn_conv2d e e 7
Ibbnn_linear e 8
Ibbnn_net L e 10
normalizing_flow 12
plotdbbnn_net 13
plot_active_paths 13
plot_local_explanations_gradient 15
predict.Ilbbnn_net 15
printlbbnn_net L 17
QUANES . . o o v e e e e e e e e e e e e e e e e e e 18
raisin_dataset L 18
residuals.lbbnn_net L 19
mvp_layer e e e 20
summary.lbbnn_net oL 21
train_lbbnn L L e e e 22
validate lbbnn L e 23
Index 25
coef.lbbnn_net Get model coefficients (local explanations) of 1bbnn_net object
Description
Given an input sample x_1,... x_j (with j the number of inputs, the local explanation is found
by considering active paths. If relu activation functions are assumed, each path is a piecewise
linear function, so the contribution for x_j is just the sum of the weights associated with the paths
connecting x_j to the output. The contributions are found by taking the gradient wrt x.
Usage
S3 method for class 'lbbnn_net'
coef(
object,
dataset,

inds = NULL,
output_neuron = 1,
num_data = 1,
num_samples = 10,

coef.lbbnn_net 3

Arguments
object an object of class 1bbnn_net.
dataset Either a torch: :dataloader object, or a torch: :torch_tensor object. The
former is assumed to be the same torch: :dataloader used for training or test-
ing. The latter can be any user-defined data.
inds Optional integer vector of row indices in the dataset to compute explanations

for.
output_neuron integer, which output neuron to explain (default = 1).

num_data integer, if no indices are chosen, the first num_data of dataset are automatically
used for explanations.

num_samples integer, how many samples to use for model averaging when sampling the weights
in the active paths.

further arguments passed to or from other methods.

Details

* If num_data = 1, confidence intervals are computed using model averaging over num_samples
weight samples.

e If num_data > 1, confidence intervals are computed across . the mean explanations for each
sample.

* The output is a data frame with row names as input variables (x@, x1, x2, ...) and columns
giving mean and 95% confidence intervals for each variable.

Value
A data frame with rows corresponding to input variables and the following columns:

¢ lower: lower bound of the 95% confidence interval
¢ mean: mean contribution of the variable

* upper: upper bound of the 95% confidence interval

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression'

sizes <- c(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem,sizes,inclusion_priors,stds,inclusion_inits,flow = FALSE,
input_skip = TRUE)

train_lbbnn(epochs = 1,LBBNN = model, 1lr = 0.01,train_dl = train_loader)
coef(model,dataset = x, num_data = 1)

4 gallstone_dataset

custom_activation Generate a custom activation function.

Description

The first 3 entries are customized in order to see if we can learn that structure. The rest will be relu.
this function is only for experimental purposes so far.

Usage

custom_activation()

Value

Returns a ‘torch: :nn_module, can be used in 1bbnn_net

gallstone_dataset Gallstone Dataset

Description

Taken from the UCI machine learning repository. The task is to classify whether the patient had
gallstones or not. It contains a mix of demographic data and bioimpedance data.

Usage

gallstone_dataset

Format

This dataset has 319 rows and 38 columns.

Source

https://pmc.ncbi.nlm.nih.gov/articles/PMC11309733/#T2

https://pmc.ncbi.nlm.nih.gov/articles/PMC11309733/#T2

get_dataloaders

get_dataloaders Wrapper around torch: :dataloader

Description

Avoids users having to manually define their own dataloaders.

Usage

get_dataloaders(
dataset,
train_proportion,
train_batch_size,
test_batch_size,
standardize = TRUE,
shuffle_train = TRUE,
shuffle_test = FALSE,
seed = 1

Arguments

dataset A data.frame. The last column is assumed to be the dependent variable.

train_proportion
numeric, between 0 and 1. Proportion of data to be used for training.

train_batch_size
integer, samples per batch in the train dataloader.

test_batch_size
integer, samples per batch in the test dataloader.

standardize logical, standardize input-features, default is TRUE.
shuffle_train logical, shuffle training data each epoch. default TRUE
shuffle_test logical, shuffle test data, default is FALSE.

seed integer. Used for reproducibility in the train/test split.

Value

A list containing:

train_loader A torch::dataloader for the training data.

test_loader A torch::dataloader for the test data.

6 get_local_explanations_gradient

get_local_explanations_gradient
Get gradient based local explanations for input-skip LBBNNS.

Description

Works by computing the gradient wrt to input, given we have relu activation functions.

Usage

get_local_explanations_gradient(
model,
input_data,
num_samples = 1,
magnitude = TRUE,
include_potential_contribution = FALSE,

device = "cpu"
)
Arguments
model A LBBNN_Net with input-skip
input_data The data to be explained (one sample).
num_samples integer, samples to use to produce credible intervals.
magnitude If TRUE, only return explanations. If FALSE, multiply by input values.

include_potential_contribution
IF TRUE, If covariate=0, we assume that the contribution is negative (good/bad
that it is not included) if FALSE, just removes zero covariates.

device character, the device to be trained on. Default is *cpu’, can be mps’ or *gpu’.

Value
A list with the following elements:
explanations A torch::tensor of shape (num_samples, p, num_classes).

p integer, the number of input features.

predictions A torch::tensor of shape (num_samples, num_classes).

Ibbnn_conv2d 7

1bbnn_conv2d Class to generate an LBBNN convolutional layer.

Description
It supports:

* Prior inclusion probabilities for weights and biases in each layer.

 Standard deviation priors for weights and biases in each layer.

* Optional normalizing flows (RNVP) for a more flexible posterior.

» Forward pass using either the full model or the Median Probability Model (MPM).

» Computation of the KL-divergence.

Usage

1bbnn_conv2d(
in_channels,
out_channels,
kernel_size,
prior_inclusion,
standard_prior,
density_init,
flow = FALSE,
num_transforms = 2,
hidden_dims = c(200, 200),
device = "cpu"

Arguments

in_channels integer, number of input channels.
out_channels integer, number of output channels.

kernel_size size of the convolving kernel.
prior_inclusion
numeric scalar, prior inclusion probability for each weight and bias in the layer.

standard_prior numeric scalar, prior standard deviation for weights and biases in each layer.

density_init A numeric of size 2, used to initialize the inclusion parameters, one for each
layer.

flow logical, whether to use normalizing flows
num_transforms integer, number of transformations for flow. Default is 2.

hidden_dims numeric vector, dimension of the hidden layer(s) in the neural networks of the
RNVP transform.

device The device to be used. Default is CPU.

8 Ibbnn_linear

Value

A torch::nn_module object representing a convolutional LBBNN layer. The module has the fol-
lowing methods:

* forward(input, MPM = FALSE): Computes activation (using the LRT at training time) of a
batch of inputs.

e kl_div(): Computes the KL-divergence.

* sample_z(): Samples from the flow if flow = TRUE, in addition returns the log-determinant
of the Jacobian of the transformation.

Examples

layer <- lbbnn_conv2d(in_channels = 1,out_channels = 32,kernel_size = c¢(3,3),
prior_inclusion = 0.2,standard_prior = 1,density_init = c(0,1),device = 'cpu')
x <-torch::torch_randn(100,1,28,28)

out <-layer(x)

print(dim(out))

lbbnn_linear Class to generate an LBBNN feed forward layer

Description
This module implements a fully connected LBBNN layer. It supports:

* Prior inclusion probabilities for weights and biases in each layer.

 Standard deviation priors for weights and biases in each layer.

* Optional normalizing flows (RNVP) for a more flexible posterior.

» Forward pass using either the full model, or the Median Probability Model (MPM).

» Computation of the KL-divergence.

Usage

lbbnn_linear(
in_features,
out_features,
prior_inclusion,
standard_prior,
density_init,
flow = FALSE,
num_transforms = 2,
hidden_dims = c(200, 200),
device = "cpu”,
bias_inclusion_prob = FALSE,
conv_net = FALSE

Ibbnn_linear 9

Arguments

in_features integer, number of input neurons.

out_features integer, number of output neurons.

prior_inclusion
numeric scalar, prior inclusion probability for each weight and bias in the layer.

standard_prior numeric scalar, prior standard deviation for weights and biases in each layer.

density_init A numeric of size 2, used to initialize the inclusion parameters, one for each
layer.

flow logical, whether to use normalizing flows

num_transforms integer, number of transformations for flow. Default is 2.

hidden_dims numeric vector, dimension of the hidden layer(s) in the neural networks of the
RNVP transform.
device The device to be used. Default is CPU.

bias_inclusion_prob
logical, determines whether the bias should be as associated with inclusion prob-
abilities.

conv_net logical, whether the layer is used in a convolutional net.

Value

A torch::nn_module object, representing a fully connected LBBNN layer. The module has the
following methods:

» forward(input, MPM = FALSE): Computes activation (using the LRT at training time) of a
batch of inputs.

e kl_div(): Computes the KL-divergence.

* sample_z(): Samples from the flow if flow = TRUE, in addition returns the log-determinant
of the Jacobian of the transformation.

Examples

11 <~ 1lbbnn_linear(in_features = 10,out_features = 5,prior_inclusion = 0.25,
standard_prior = 1,density_init = c(0,1),flow = FALSE)

x <- torch::torch_rand(20,10,requires_grad = FALSE)

output <- 11(x,MPM = FALSE) #the forward pass, output has shape (20,5)
print(11$kl_div()$item()) #compute KL-divergence after the forward pass

10 Ibbnn_net

1bbnn_net Feed-forward Latent Binary Bayesian Neural Network (LBBNN)

Description

Each layer is defined by lbbnn_linear. For example, sizes = c(20, 200, 200, 5) generates a
network with:

* 20 input features,
* two hidden layers of 200 neurons each,

* an output layer with 5 neurons.

Usage

1bbnn_net(
problem_type,
sizes,
prior,
std,
inclusion_inits,
input_skip = FALSE,
flow = FALSE,
num_transforms = 2,
dims = c(200, 200),
device = "cpu”,
raw_output = FALSE,
custom_act = NULL,

link = NULL,
nll = NULL,
bias_inclusion_prob = FALSE
)
Arguments

problem_type character, one of: 'binary classification’', 'multiclass classification’,
'regression’', or 'custom’.

sizes Integer vector specifying the layer sizes of the network. The first element is
the input size, the last is the output size, and the intermediate integers represent
hidden layers.

prior numeric vector of prior inclusion probabilities for each weight matrix. length

must be length(sizes) - 1.

std numeric vector of prior standard deviation for each weight matrix. length must
be length(sizes) - 1.

inclusion_inits
numeric matrix of shape (2, number of weight matrices) specifying the lower
and upper bounds for initializations of the inclusion parameters.

Ibbnn_net

input_skip
flow
num_transforms

dims

device

raw_output

custom_act
link
nll

11

logical, whether to include input_skip.
logical, whether to use normalizing flows.
integer, how many transformations to use in the flow.

numeric vector, hidden dimension for the neural network in the RNVP trans-
form.

the device to be trained on. Can be ’cpu’, *gpu’ or ‘'mps’. Default is cpu.

logical, whether the network skips the last sigmoid/softmax layer to compute
local explanations.

Allows the user to submit their own customized activation function.
User can define their own link function (not implemented).

User can define their own likelihood function (not implemented).

bias_inclusion_prob

Value

logical, determines whether the bias should be as associated with inclusion prob-
abilities.

A torch: :nn_module object representing the LBBNN. It includes the following methods:

* forward(x, MPM = FALSE): Performs a forward pass through the whole network.

e kl_div(): Returns the KL divergence of the network.

e density(): Returns the density of the whole network, i.e. the proportion of weights with
inclusion probabilities greater than 0.5.

» compute_paths(): Computes active paths through the network without input-skip.

* compute_paths_input_skip(): Computes active paths with input-skip enabled.

* density_active_path(): Returns network density after removing inactive paths.

Examples

layers <- ¢(190,2,5)

alpha <- ¢(0.3,0.9)

stds <- ¢(1.0,1.0)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

prob <- 'multiclass classification'

net <- lbbnn_net(problem_type = prob, sizes = layers, prior = alpha,
std = stds, inclusion_inits = inclusion_inits,input_skip = FALSE,
flow = FALSE,device = 'cpu')

x <- torch::torch_rand(20,10,requires_grad = FALSE)

output <- net(x)

net$kl_div()$item()

net$density()

12 normalizing_flow

normalizing_flow Class to generate a normalizing flow

Description

Used inLBBNN_Net when the argument flow = TRUE. Contains a torch: :nn_module where the ini-
tial vector gets transformed through all the layers in the module. Also computes the log-determinant
of the Jacobian for the entire transformation, the sum of the log-determinants of the independent
layers.

Usage

normalizing_flow(input_dim, transform_type, num_transforms)

Arguments

input_dim numeric vector, the dimensionality of each layer. The first item is the input
vector size.

transform_type Transformation type. Currently RNVP is implemented.

num_transforms integer, how many layers of transformations to include.

Value

A torch: :nn_module object representing the normalizing flow. The module provides:

forward(z) Applies all flow transformation layers to the input tensor z. Returns a named list
containing:

z A torch_tensor containing the transformed version of the input, with the same shape as
z.

logdet A scalar torch_tensor equal to the sum of the log-determinants of all transformation
layers.

Examples

flow <- normalizing_flow(c(2,5,5), transform_type='RNVP', num_transforms = 3)
flow$to(device = 'cpu')

X <- torch::torch_rand(2, device = 'cpu')

output <- flow(x)

z_out <- output$z

print(dim(z_out))

log_det <- output$logdet

print(log_det)

plot.Ibbnn_net 13

plot.lbbnn_net Plot 1bbnn_net objects

Description
Given a trained 1bbnn_net model, this function produces either:

* Global plot: a visualization of the network structure, showing only the active paths.

* Local explanation: a plot of the local explanation for a single input sample, including error
bars obtained from Monte Carlo sampling of the network weights.

Usage

S3 method for class 'lbbnn_net'

plot(x, type = c("global”, "local”), data = NULL, num_samples = 100, ...)
Arguments

X An instance of 1bbnn_net.

type Either "global” or "local”.

data If local is chosen, one sample must be provided to obtain the explanation. Must

be a torch: :torch_tensor of shape (1,p).

num_samples integer, how many samples to use for model averaging over the weights in case
of local explanations.

further arguments passed to or from other methods.

Value

No return value. Called for its side effects of producing a plot.

plot_active_paths Function to plot an input skip structure after removing weights in non-
active paths.

Description

Uses igraph to plot.

14 plot_active_paths

Usage

plot_active_paths(

model,

layer_spacing = 1,
neuron_spacing = 1,
vertex_size = 1
label_size = 0.
edge_width = 0.
save_svg = NULL

0,
5,
35,

Arguments
model A trained 1bbnn_net model with input_skip enabled.
layer_spacing numeric, spacing in between layers.

neuron_spacing numeric, spacing between neurons within a layer.

vertex_size numeric, size of the neurons.
label_size numeric, size of the text within neurons.
edge_width numeric, width of the edges connecting neurons.
save_svg the path where the plot will be saved.

Value

This function produces plots as a side effect and does not return a value.

Examples

sizes <- ¢(2,3,3,2)
problem <- 'multiclass classification'’
inclusion_priors <- ¢(0.1,0.1,0.1)
std_priors <- ¢(1.0,1.0,1.0)
inclusion_inits <- matrix(rep(c(-10,10),3), nrow = 2, ncol = 3)
device <- 'cpu
torch: :torch_manual_seed(0)
model <- lbbnn_net(problem_type = problem, sizes = sizes,
prior = inclusion_priors, inclusion_inits = inclusion_inits,
input_skip = TRUE, std = std_priors, flow = FALSE,
num_transforms = 2, dims = c(200,200), device = device)
model $compute_paths_input_skip()
LBBNN: : :plot_active_paths(model, 1, 1, 14, 1)

1

plot_local_explanations_gradient

15

plot_local_explanations_gradient
Plot the gradient based local explanations for one sample.

Description

Plots the contribution of each covariate, and the prediction, with error bars.

Usage
plot_local_explanations_gradient(
model,
input_data,
num_samples,
device = "cpu”,
save_svg = NULL
)
Arguments
model An instance of LBBNN_Net with input-skip enabled
input_data The data to be explained (one sample).
num_samples integer, samples to use to produce credible intervals.
device character, the device to be trained on. Default is cpu. Can be "mps’ or "gpu’.
save_svg the path where the plot will be saved as svg, if save_svg is not NULL.
Value

This function produces plots as a side effect and does not return a value.

predict.lbbnn_net Obtain predictions from the posterior of an LBBNN model

Description

Draw from the posterior of a trained 1bbnn_net object.

16 predict.Ibbnn_net

Usage
S3 method for class 'lbbnn_net'
predict(
object,
newdata,
mpm = FALSE,
draws = 10,
device = "cpu”,
link = NULL,
)
Arguments
object A trained 1bbnn_net object
newdata A torch: :dataloader object containing the data with which to predict.
mpm logical, whether to use the median probability model.
draws integer, the number of samples to draw from the posterior.
device character, device for computation (default = "cpu").
link Optional link function to apply to the network output.
further arguments passed to or from other methods.
Value

A torch::torch_tensor of shape (draws,N,C) where N is the number of samples in newdata,
and C the number of outputs.

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression'

sizes <- c¢(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem,sizes,inclusion_priors,stds,inclusion_inits,
flow = FALSE,input_skip = TRUE)

train_lbbnn(epochs = 1,LBBNN = model, 1lr = 0.01,train_dl = train_loader)
predict(model,mpm = FALSE,newdata = train_loader,draws = 1)

print.Ibbnn_net 17

print.lbbnn_net Print summary of an 1bbnn_net object

Description

Provides a summary of a trained 1bbnn_net object. Includes the model type (input-skip or not),
whether normalizing flows are used, module and sub-module structure, number of trainable param-
eters, and prior variance and inclusion probabilities for the weights.

Usage
S3 method for class 'lbbnn_net'
print(x, ...)
Arguments
X An object of class 1bbnn_net.
Further arguments passed to or from other methods.
Value

Invisibly returns the input x.

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression’

sizes <- ¢c(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem,sizes,inclusion_priors,stds,inclusion_inits,
flow = FALSE, input_skip = TRUE)

print(model)

18 raisin_dataset

quants Function to obtain empirical 95% confidence interval, including the
mean

Description

Using the built in quantile function to return 95% confidence interval

Usage

quants(x)

Arguments

X numeric vector whose sample quantiles is desired.

Value

The quantiles in addition to the mean.

raisin_dataset Raisins Dataset

Description

Ilkay Cinar, Murat Kokl and Sakir Tasdemi(2020) provide a dataset consisting of 2 varieties of
Turkish raisins, with 450 samples of each type. The dataset contains 7 morphological features,
extracted from images taken of the Raisins. The goal is to classify to one of the two types of
Raisins.

Usage

raisin_dataset

Format
this data frame has 900 rows and the following 8 columns:

Area Number of pixels within the boundary

MajorAxisLength Length of the main axis

MinorAxisLength Length of the small axis

Eccentricity Measure of the eccentricity of the ellipse

ConvexArea The number of pixels of the smallest convex shell of the region formed by the raisin
grain

Extent Ratio of the region formed by the raisin grain to the total pixels in the bounding box

Perimeter distance between the boundaries of the raisin grain and the pixels around it

Class Kecimen or Besni raisin.

residuals.lbbnn_net

Source

https://archive.ics.uci.edu/dataset/850/raisin

residuals.lbbnn_net Residuals from LBBNN fit

Description

Residuals from an object of the 1bbnn_net class.

Usage
S3 method for class 'lbbnn_net'
residuals(object, type = c("response”), ...)
Arguments
object An object of class 1bbnn_net.
type Only ’‘response’ is implemented i.e. y_true - y_predicted.

further arguments passed to or from other methods.

Value

A numeric vector of residuals (y_true - y_predicted)

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression’

sizes <- ¢c(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem,sizes, inclusion_priors, stds ,inclusion_inits,
flow = FALSE, input_skip = TRUE)

train_lbbnn(epochs = 1,LBBNN = model, 1r = @.01,train_dl = train_loader)
residuals(model)

https://archive.ics.uci.edu/dataset/850/raisin

20 rnvp_layer

rnvp_layer Single RNVP transform layer.

Description

Affine half flow aka Real Non-Volume Preserving (x = z * exp(s) + t), where a randomly selected
half z1 of the dimensions in z are transformed as an Affine function of the other half z2, i.e. scaled
by s(z2) and shifted by t(z2). From "Density estimation using Real NVP", Dinh et al. (May 2016)
https://arxiv.org/abs/1605.08803 This implementation uses the numerically stable updates intro-
duced by IAF: https://arxiv.org/abs/1606.04934

Usage

rnvp_layer(hidden_sizes, device = "cpu")

Arguments

hidden_sizes A vector of integers. The first is the dimensionality of the vector, to be trans-
formed by RNVP. The subsequent are hidden dimensions in the mlp.

device The device to be used. Default is CPU.

Value

A torch::nn_module object representing a single RNVP layer. The module has the following
methods:

forward(z) Applies the RNVP transformation. Returns a torch: :torch_tensor with the same
shape as z.

log_det() A scalar torch::torch_tensor giving the log-determinant of the Jacobian of the
transformation.

Examples

z <- torch::torch_rand(200)

layer <- rnvp_layer(c(200,50,100))
out <- layer(z)

print(dim(out))
print(layer$log_det())

summary.lbbnn_net 21

summary . lbbnn_net Summary of LBBNN fit

Description

Summary method for objects of the 1bbnn_net class. Only applies to objects trained with input_skip

= TRUE.
Usage
S3 method for class 'lbbnn_net'
summary (object, ...)
Arguments
object An object of class 1bbnn_net.

further arguments passed to or from other methods.

Details
The returned table combines two types of information:

* Number of times each input variable is included in the active paths from each layer (obtained
from get_input_inclusions()).

* Average inclusion probabilities for each input variable from each layer, . including a final
column showing the average across all layers.

Value

A data. frame containing the above information. The function prints a formatted summary to the
console. The returned data. frame is invisible.

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression’

sizes <- ¢(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem, sizes, inclusion_priors, stds, inclusion_inits,
flow = FALSE, input_skip = TRUE)

train_lbbnn(epochs = 1,LBBNN = model, 1lr = @.01,train_dl = train_loader)
summary (model)

22 train_Ibbnn

train_lbbnn Train an instance of 1bbnn_net.

Description

Function that for each epoch iterates through each mini-batch, computing the loss and using back-
propagation to update network parameters.

Usage

train_lbbnn(
epochs,
LBBNN,
1r,
train_dl,
device = "cpu”,
scheduler = NULL,
sch_step_size = NULL

)
Arguments

epochs integer, total number of epochs to train for, where one epoch is a pass through
the entire training dataset (all mini batches).

LBBNN An instance of 1bbnn_net, to be trained.

1r numeric, the learning rate to be used in the Adam optimizer.

train_dl An instance of torch: :dataloader consisting of a tensor dataset with features
and targets.

device the device to be trained on. Default is "cpu’, also accepts "gpu’ or 'mps’.

scheduler A torch learning rate scheduler object. Can be used to decay learning rate for

better convergence, currently only supports step’.

sch_step_size Where to decay if using torch::1r_step. E.g. 1000 means learning rate is
decayed every 1000 epochs.

Value

a list containing the losses and accuracy (if classification) and density for each epoch during training.
For comparisons sake we show the density with and without active paths.

A list with elements (returned invisibly):

accs Vector of accuracy per epoch (classification only).
loss Vector of average loss per epoch.

density Vector of network densities per epoch.

validate_Ibbnn 23

Examples

x<-torch::torch_randn(3,2)

b <- torch::torch_rand(2)

y <- torch::torch_matmul(x,b)

train_data <- torch::tensor_dataset(x,y)

train_loader <- torch::dataloader(train_data,batch_size = 3,shuffle=FALSE)
problem<-'regression’

sizes <- ¢c(2,1,1)

inclusion_priors <-c(0.9,0.2)

inclusion_inits <- matrix(rep(c(-10,10),2),nrow = 2,ncol = 2)

stds <- ¢(1.0,1.0)

model <- lbbnn_net(problem,sizes,inclusion_priors,stds,inclusion_inits,
flow = FALSE)

output <- train_lbbnn(epochs = 1,LBBNN = model, 1r = 0.01,

train_dl = train_loader)

validate_lbbnn Validate a trained LBBNN model.

Description

Computes metrics on a validation dataset without computing gradients. Supports model averaging
(recommended) by sampling from the variational posterior (num_samples > 1) to improve predic-
tions. Returns metrics for both the full model and the sparse model.

Usage

validate_lbbnn(LBBNN, num_samples, test_dl, device = "cpu”)

Arguments
LBBNN An instance of a trained 1bbnn_net to be validated.
num_samples integer, the number of samples from the variational posterior to be used for
model averaging.
test_dl An instance of torch: :dataloader, containing the validation data.
device The device to perform validation on. Default is cpu’; other options include
’gpu’ and “mps’.
Value

A list containing the following elements:

accuracy_full_model Classification accuracy of the full (dense) model (if classification).
accuracy_sparse Classification accuracy using only weights in active paths (if classification).

validation_error Root mean squared error for the full model (if regression).

24

validate_lbbnn

validation_error_sparse Root mean squared error using only weights in active paths (if regres-
sion).

density Proportion of weights with posterior inclusion probability > 0.5 in the whole network.

density_active_path Proportion of weights . with inclusion probability > 0.5 after removing
weights not in . active paths.

Index

x datasets
gallstone_dataset, 4
raisin_dataset, 18

coef.lbbnn_net, 2
custom_activation, 4

gallstone_dataset, 4
get_dataloaders, 5
get_local_explanations_gradient, 6

lbbnn_conv2d, 7
lbbnn_linear, 8
lbbnn_net, 10

normalizing_flow, 12

plot.lbbnn_net, 13
plot_active_paths, 13
plot_local_explanations_gradient, 15
predict.lbbnn_net, 15
print.lbbnn_net, 17

quants, 18

raisin_dataset, 18
residuals.lbbnn_net, 19
rnvp_layer, 20

summary . lbbnn_net, 21
train_lbbnn, 22

validate_lbbnn, 23

25

	coef.lbbnn_net
	custom_activation
	gallstone_dataset
	get_dataloaders
	get_local_explanations_gradient
	lbbnn_conv2d
	lbbnn_linear
	lbbnn_net
	normalizing_flow
	plot.lbbnn_net
	plot_active_paths
	plot_local_explanations_gradient
	predict.lbbnn_net
	print.lbbnn_net
	quants
	raisin_dataset
	residuals.lbbnn_net
	rnvp_layer
	summary.lbbnn_net
	train_lbbnn
	validate_lbbnn
	Index

