Last updated on 2025-08-18 05:49:51 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1.0 | 14.40 | 1248.99 | 1263.39 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.1.0 | 10.88 | 1082.59 | 1093.47 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.1.0 | 1321.94 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.1.0 | 1134.47 | OK | |||
r-devel-windows-x86_64 | 1.1.0 | 16.00 | 361.00 | 377.00 | ERROR | |
r-patched-linux-x86_64 | 1.1.0 | 14.62 | 1111.71 | 1126.33 | OK | |
r-release-linux-x86_64 | 1.1.0 | 13.54 | 1150.39 | 1163.93 | OK | |
r-release-macos-arm64 | 1.1.0 | 280.00 | OK | |||
r-release-macos-x86_64 | 1.1.0 | 70.00 | OK | |||
r-release-windows-x86_64 | 1.1.0 | 17.00 | 328.00 | 345.00 | OK | |
r-oldrel-macos-arm64 | 1.1.0 | 44.00 | OK | |||
r-oldrel-macos-x86_64 | 1.1.0 | 73.00 | OK | |||
r-oldrel-windows-x86_64 | 1.1.0 | 21.00 | 463.00 | 484.00 | OK |
Version: 1.1.0
Check: tests
Result: ERROR
Running 'testthat.R' [175s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(spinner)
>
> test_check("spinner")
OMP: Warning #96: Cannot form a team with 48 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
epoch: 10 Train loss: 0.7486569 Val loss: 0.7800032
epoch: 20 Train loss: 0.7147133 Val loss: 0.7812155
epoch: 30 Train loss: 0.5311723 Val loss: 0.8140318
early stop at epoch: 30 Train loss: 0.5311723 Val loss: 0.8140318
epoch: 10 Train loss: 0.8149799 Val loss: 0.6569888
epoch: 20 Train loss: 0.7742518 Val loss: 0.679642
epoch: 30 Train loss: 0.7390918 Val loss: 0.7518083
epoch: 40 Train loss: 0.7262532 Val loss: 0.7133583
epoch: 50 Train loss: 0.6861349 Val loss: 0.7356399
epoch: 60 Train loss: 0.741177 Val loss: 0.6589386
early stop at epoch: 62 Train loss: 0.8439299 Val loss: 0.7158753
epoch: 10 Train loss: 0.714011 Val loss: 0.6018636
epoch: 20 Train loss: 0.6375813 Val loss: 0.6132447
epoch: 30 Train loss: 0.6658431 Val loss: 0.6168148
epoch: 40 Train loss: 0.741826 Val loss: 0.7606002
early stop at epoch: 48 Train loss: 0.8146416 Val loss: 0.6643777
epoch: 10 Train loss: 0.6187043 Val loss: 0.6570629
epoch: 20 Train loss: 0.6403114 Val loss: 0.528401
epoch: 30 Train loss: 0.663863 Val loss: 0.7588031
early stop at epoch: 38 Train loss: 0.6762978 Val loss: 0.5857113
time: 37.01 sec elapsed
epoch: 10 Train loss: 0.7436095 Val loss: 0.6927934
epoch: 20 Train loss: 0.800496 Val loss: 0.7240676
epoch: 30 Train loss: 0.7728008 Val loss: 0.7102702
epoch: 40 Train loss: 0.7943477 Val loss: 0.647045
early stop at epoch: 48 Train loss: 0.8220833 Val loss: 0.7192143
epoch: 10 Train loss: 0.7441427 Val loss: 0.7084176
epoch: 20 Train loss: 0.7173657 Val loss: 0.7212861
epoch: 30 Train loss: 0.7472219 Val loss: 0.6843075
epoch: 40 Train loss: 0.7721328 Val loss: 0.7066767
epoch: 50 Train loss: 0.7647601 Val loss: 0.7069074
epoch: 60 Train loss: 0.7533206 Val loss: 0.727624
epoch: 70 Train loss: 0.7161092 Val loss: 0.6867431
epoch: 80 Train loss: 0.7361518 Val loss: 0.7121109
early stop at epoch: 81 Train loss: 0.7610539 Val loss: 0.7137319
epoch: 10 Train loss: 0.5843707 Val loss: 0.7889569
epoch: 20 Train loss: 0.7383975 Val loss: 0.705764
epoch: 30 Train loss: 0.6087832 Val loss: 0.818958
early stop at epoch: 30 Train loss: 0.6087832 Val loss: 0.818958
epoch: 10 Train loss: 0.7361695 Val loss: 0.5001021
epoch: 20 Train loss: 0.6927315 Val loss: 0.4913872
epoch: 30 Train loss: 0.7349723 Val loss: 0.5151635
epoch: 40 Train loss: 0.72136 Val loss: 0.4980692
epoch: 50 Train loss: 0.7344683 Val loss: 0.5309991
epoch: 60 Train loss: 0.7187083 Val loss: 0.5345974
epoch: 70 Train loss: 0.7534055 Val loss: 0.6033567
epoch: 80 Train loss: 0.7158951 Val loss: 0.4875903
epoch: 90 Train loss: 0.7363089 Val loss: 0.4868031
epoch: 100 Train loss: 0.7365759 Val loss: 0.563059
time: 52.46 sec elapsed
epoch: 10 Train loss: 0.3203349 Val loss: 0.2916249
epoch: 20 Train loss: 0.2584534 Val loss: 0.2832893
epoch: 30 Train loss: 0.3461084 Val loss: 0.4698916
early stop at epoch: 30 Train loss: 0.3461084 Val loss: 0.4698916
epoch: 10 Train loss: 0.2917067 Val loss: 0.340226
epoch: 20 Train loss: 0.2737002 Val loss: 0.4729629
epoch: 30 Train loss: 0.3829814 Val loss: 0.2404467
early stop at epoch: 39 Train loss: 0.282572 Val loss: 0.3722654
epoch: 10 Train loss: 0.2662156 Val loss: 0.4312515
epoch: 20 Train loss: 0.2852738 Val loss: 0.3266925
epoch: 30 Train loss: 0.2425076 Val loss: 0.1510627
early stop at epoch: 31 Train loss: 0.2641311 Val loss: 0.4720969
epoch: 10 Train loss: 0.3119422 Val loss: 0.2394703
epoch: 20 Train loss: 0.305493 Val loss: 0.2802586
epoch: 30 Train loss: 0.3377549 Val loss: 0.3785875
epoch: 40 Train loss: 0.2927964 Val loss: 0.1815028
early stop at epoch: 46 Train loss: 0.2517458 Val loss: 0.5039786
time: 27.59 sec elapsed
epoch: 10 Train loss: 0.321931 Val loss: 0.5873973
epoch: 20 Train loss: 0.321931 Val loss: 0.5888883
epoch: 30 Train loss: 0.321931 Val loss: 0.5888883
early stop at epoch: 33 Train loss: 0.321931 Val loss: 0.6174102
epoch: 10 Train loss: 0.7876375 Val loss: 0.6463987
epoch: 20 Train loss: 0.7876375 Val loss: 0.6463987
epoch: 30 Train loss: 0.7876375 Val loss: 0.6463987
epoch: 40 Train loss: 0.7876375 Val loss: 0.6788496
epoch: 50 Train loss: 0.7876375 Val loss: 0.6463987
epoch: 60 Train loss: 0.7876375 Val loss: 0.6477246
epoch: 70 Train loss: 0.7942315 Val loss: 0.6798368
epoch: 80 Train loss: 0.7876375 Val loss: 0.6722983
epoch: 90 Train loss: 0.7876375 Val loss: 0.644978
epoch: 100 Train loss: 0.7876375 Val loss: 0.6463987
epoch: 10 Train loss: 0.6406012 Val loss: 0.5059289
epoch: 20 Train loss: 0.6406012 Val loss: 0.5059289
epoch: 30 Train loss: 0.6406012 Val loss: 0.5059289
epoch: 40 Train loss: 0.6583429 Val loss: 0.5059289
epoch: 50 Train loss: 0.6406012 Val loss: 0.5059289
epoch: 60 Train loss: 0.6406012 Val loss: 0.5696048
epoch: 70 Train loss: 0.6374811 Val loss: 0.5059289
epoch: 80 Train loss: 0.6659683 Val loss: 0.5059289
epoch: 90 Train loss: 0.6406012 Val loss: 0.5059289
epoch: 100 Train loss: 0.6406012 Val loss: 0.5059289
time: 20.01 sec elapsed
epoch: 10 Train loss: 0.6911417 Val loss: 0.5956179
epoch: 20 Train loss: 0.6911417 Val loss: 0.5845087
epoch: 30 Train loss: 0.6911417 Val loss: 0.587561
early stop at epoch: 33 Train loss: 0.7172304 Val loss: 0.587561
epoch: 10 Train loss: 0.7261904 Val loss: 0.7383378
epoch: 20 Train loss: 0.7196836 Val loss: 0.6981781
epoch: 30 Train loss: 0.7512888 Val loss: 0.7383378
epoch: 40 Train loss: 0.7196836 Val loss: 0.6981781
epoch: 50 Train loss: 0.7196836 Val loss: 0.6981781
epoch: 60 Train loss: 0.7196836 Val loss: 0.6981781
early stop at epoch: 67 Train loss: 0.6642933 Val loss: 0.7383378
epoch: 10 Train loss: 0.2583119 Val loss: 0.3011031
epoch: 20 Train loss: 0.4441832 Val loss: 0.2575635
epoch: 30 Train loss: 0.261421 Val loss: 0.254054
early stop at epoch: 31 Train loss: 0.4870647 Val loss: 0.2995192
time: 12.99 sec elapsed
epoch: 10 Train loss: 0.5787235 Val loss: 0.6820362
epoch: 20 Train loss: 0.6734827 Val loss: 0.7054596
epoch: 30 Train loss: 0.6681605 Val loss: 0.6837615
early stop at epoch: 31 Train loss: 0.7518322 Val loss: 0.7065848
epoch: 10 Train loss: 0.496736 Val loss: 0.5855419
epoch: 20 Train loss: 0.4847084 Val loss: 0.2743525
epoch: 30 Train loss: 0.4644409 Val loss: 0.6274837
early stop at epoch: 30 Train loss: 0.4644409 Val loss: 0.6274837
epoch: 10 Train loss: 0.5467301 Val loss: 0.5948564
epoch: 20 Train loss: 0.5125578 Val loss: 0.5383613
epoch: 30 Train loss: 0.5572807 Val loss: 0.6518743
early stop at epoch: 30 Train loss: 0.5572807 Val loss: 0.6518743
time: 17.66 sec elapsed
random search: 50.67 sec elapsed
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test.R:89:13'): Correct outcome format and size for base outcome3 ───
<purrr_error_indexed/rlang_error/error/condition>
Error in `purrr::pmap(hyper_params, ~spinner(graph, target, node_labels,
edge_labels, context_labels, direction = ..1, sampling = NA,
threshold = 0.01, method = ..2, node_embedding_size = ..13,
edge_embedding_size = ..14, context_embedding_size = ..15,
update_order = ..3, n_layers = ..4, skip_shortcut = ..5,
forward_layer = ..6, forward_activation = ..7, forward_drop = ..8,
mode = ..9, optimization = ..10, epochs, lr = ..11, patience,
weight_decay = ..12, reps, folds, holdout, verbose, seed))`: i In index: 1.
Caused by error in `pmap()`:
i In index: 1.
Caused by error in `training_function()`:
! not enough data for training
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
Error: Test failures
Execution halted
Flavor: r-devel-windows-x86_64